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The quasiparticle density of states in correlated and quantum-critical metals directly probes the effect of
electronic correlations on the Fermi surface. Measurements of the nuclear spin-lattice relaxation rate provide one
such experimental probe of quasiparticle mass through the electronic density of states. By far the most common
way of accessing the spin-lattice relaxation rate is via nuclear magnetic resonance and nuclear quadrupole
resonance experiments, which require resonant excitation of nuclear spin transitions. Here we report nonresonant
access to spin-lattice relaxation dynamics in AC-calorimetric measurements. The nuclear spin-lattice relaxation
rate is inferred in our measurements from its effect on the frequency dispersion of the thermal response of
the calorimeter-sample assembly. We use fast, lithographically defined nanocalorimeters to access the nuclear
spin-lattice relaxation times in metallic indium from 0.3 to 7 K and in magnetic fields up to 35 T.

DOI: 10.1103/PhysRevB.107.195145

I. INTRODUCTION

In nuclear magnetic resonance (NMR) and nuclear
quadrupole resonance (NQR) experiments, the nuclear spin
transitions are excited resonantly by radio-frequency (RF)
pulses. To measure the nuclear spin-lattice relaxation rate,
the first RF pulse takes nuclear spins out of their equilibrium
with the electrons on the Fermi surface and lattice excita-
tions (phonons), and the second pulse probes their relaxation
toward equilibrium [1–4]. By applying the heat load on the
lattice, nuclear spin transitions can be excited nonresonantly
by the same spin-lattice interactions that are responsible
for nuclear spin relaxation toward equilibrium. With fast
calorimeters, one can resolve the dynamics of the heat flow
between the lattice and the nuclear spins, as manifest in the
delayed temperature response of the lattice to the heat load.

Because of the large mismatch between nuclear and elec-
tronic energy-level splittings in a magnetic field, the nuclear
spin-lattice relaxation times in elemental metals are extremely
slow compared to other microscopic timescales [4], ranging
from 5 ms in thallium at 1 K to 100 ms in indium and
palladium and 1–50 s for most other metals. These timescales
can be accessed in small calorimeters. The slow spin-lattice
relaxation dynamics determines the characteristic time delay
between the temperature of the sample and the heat load on it
through the thermal link to the calorimeter platform. Equiva-
lently, the spin-lattice relaxation shows up as the characteristic
time in the frequency dependence of the complex thermal
impedance of the calorimeter-sample assembly.

The specific heat of the nuclear spins (nuclear Schottky)
and the specific heat of the lattice (electrons + phonons)
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can be determined independently by such “thermal impedance
spectroscopy” (TISP) because they are distinguished by their
time-delayed response rather than by their magnitude. This
presents a significant advantage, compared to the traditional,
“static” specific heat measurements, in which the two are su-
perimposed. Compared to NMR and NQR measurements, the
nonresonant excitation of nuclear spins in TISP experiments
puts less stringent requirements on the homogeneity of the
internal and external magnetic fields. Here we report TISP
measurements of the nuclear spin-lattice relaxation rate in
metallic indium.

II. THERMAL IMPEDANCE OF THE
CALORIMETER-SAMPLE ASSEMBLY

Our lithographically defined nanocalorimeter consists of
a 150 nm thick, 1 × 1 mm2 SiN membrane with a 100 ×
100 µm2 calorimeter platform at the center [5,6]. The platform
contains a calorimeter stage, heater, and thermometer, all in
fast thermal contact with each other [Figs. 1(a) and 1(d)].
The thermal link to the heat bath is provided by gold-capped
chromium leads [Figs. 1(a) and 1(d)]. The strength of the
link is approximately 10 nW/K at 1 K and increases approx-
imately linearly with the temperature between 0.1 and 10 K
[Fig. 1(b)]. The heat capacity of the calorimeter platform is
10 pJ/K at 1 K and increases approximately linearly with
temperatures between 1 and 10 K [Fig. 1(b)]. The nominal
characteristic time of such a calorimeter, given by the ratio of
the heat capacity of the calorimeter platform and the thermal
conductance of the thermal link, is 1 ms. On a millisecond
timescale, the calorimeter stage, thermometer, and heater act
as a monolithic calorimeter platform with uniform tempera-
ture T (t )C measured by the thermometer [Figs. 1(a) and 1(d)].
A metallic indium sample with a mass of 1.7 μg (15 nmol)
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FIG. 1. Thermal impedance spectroscopy with lithographic
nanocalorimeters. (a) Sketch of the components of the
nanocalorimeter. Colored elements indicate the heat bath (purple),
chromium leads (orange), and calorimeter platform (blue),
which contains the heater and the thermometer as well as the
1 × 1 mm SiN membrane (black). The distance markers
x = 0, L, s, h on the lead (highlighted in orange) illustrate the
notation used in the discussion of the thermal susceptibility of a
quasi-one-dimensional object in Appendix D. κLB and κCL indicate
the thermal conductance of the lead-bath contact and lead-platform
contact, respectively, used in the discussion in Appendix B.
(b) Thermal conductance of the calorimeter-heat-bath heat link
κCB and heat capacity of the calorimeter platform CC. The ratio of
CC/κCB is an indicator of the characteristic time of the calorimeter
platform, ranging from 1 to 2 ms between 0.1 and 1 K. (c) The
heat flow diagram of the calorimeter-sample assembly. The sample
is thermally coupled to the calorimeter platform via a thin layer
of grease with contact conductance κCS. (d) Optical image of the
nanocalorimeter. The gold-capped chromium leads are 400 µm long,
35 µm wide, and 60 nm thick. The 1 × 1 mm2 SiN membrane is
150 nm thick [5,6].

is mounted on the calorimeter platform using a thin layer of
grease.

We drive an oscillating heat load P(ω) [Fig. 1(c)] and
measure the complex (both in-phase and out-of-phase) tem-
perature response of the calorimeter platform T (ω)C. This
defines a complex thermal impedance [7,8] of the calorimeter-
sample assembly, ζ (ω)C = T (ω)C/P(ω). Figure 2(a) shows
the observed thermal impedance of the metallic indium sam-
ple in the frequency range of 10 mHz to 1 kHz plotted in the
complex plane of ζ C. Figure 1(c) shows the different compo-
nents that make up the thermal response of the calorimeter.
The thermal impedance corresponding to the heat flow dia-
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FIG. 2. The thermal impedance of the calorimeter-sample as-
sembly in the complex plane of ζ . (a) Measured thermal impedance
ζ (ω) at 35 T at temperatures in the range from 0.7 to 8 K.
The upper half, Imζ > 0, shows the observed thermal impedance.
The lower half, Imζ < 0, is added as a guide for the eye to rep-
resent the thermal impedance at negative frequencies, ζ (−ω) =
ζ ∗(ω). (b) The normalized thermal impedance ζ (ω)/ζ (ω = 0),
where ζ (ω = 0) = 1/κCB. The upper half of the plot shows the
observed normalized thermal impedance. The lower half shows the
fit to Eq. (1) with fitting parameters discussed in Fig. 3(a).

gram in Fig. 1(c) is given by

1

ζ (ω)C
= κCB − iωCC + −iω

(
CS + CN

−iωT1+1

)
κSC

−iω
(
CS + CN

−iωT1+1

) + κSC
, (1)

where κSC is the thermal conductance of the contact between
the calorimeter platform and the sample, κCB is the thermal
conductance from the calorimeter platform to the heat bath, T1

is the nuclear spin-lattice relaxation time, and CC,S,N are heat
capacities of the calorimeter platform and electron + phonon
and nuclear spin subsystems in the sample, respectively. Equa-
tion (1) faithfully describes the heat circuit in Fig. 1(c) below
3 kHz, set by the thermal diffusion time across the leads, 50 μs
at 1 K. At higher frequencies, the frequency dispersion of the
thermal link κCB(ω) needs to be accounted for (Appendix B).

The thermal impedance in Eq. (1) is a superposi-
tion of three complex Lorentzians, ζ (ω) = ∑

i=1,2,3 Ai/

[−iω + 1/mi], all centered at zero frequency. The amplitudes
A1,2,3 are real, and characteristic times, denoted m1,2,3, are all
positive by causality. The temperature dependences of m1,2,3

obtained from the data in Fig. 2 are shown as gray lines in
Fig. 3(a). The two longer characteristic times, m1 and m2, span
the interval from 1 s to 1 ms in the temperature interval from
0.2 to 7 K. The measurement frequency range encompasses
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FIG. 3. Fitting the thermal impedance of the calorimeter-sample
assembly. (a) The temperature dependence of the fitting parameters
τS = CS/κCB, τC = CC/κCB, and τN = CN/κCB; the nuclear spin-
lattice time T1; and a dimensionless ratio ν = κCB/κSC, determined
by the fit to Eq. (1). The solid circles represent measurements in
the resistive magnet at 35 T on a 15 nmol size sample. The open
circles represent measurements in the superconducting magnet at
12 T on a 7.8 nmol sample. The nuclear Schottky for the 12 T mea-
surements is scaled by a factor (35/12)2. Thick gray lines represent
the characteristic times m1, m2, and m3 of the calorimeter-sample
assembly determined by the observed thermal impedance via ζ (ω) =∑

i=1,2,3 Ai/[−iω + 1/mi]. The dashed cyan line indicates the nu-
clear spin-lattice time T1 measured in NQR experiments [12,13].
Solid lines tracing τS,N,C and ν are guides for the eye. (b) and
(c) Frequency dependence of the polar components (amplitude and
phase) of the observed thermal impedance in the frequency range of
10 mHz to 1 kHz. (d) and (e) Frequency dependence of the polar
components of ζ (ω) in Eq. (1) with the best-fit parameters from (a).
The values of parameters τC,S,N and T 1 are indicated by markers at
f = 1/(2πτC,S,N ) on top of 7.3 K and at 0.7 K frequency scans.

the two longer characteristic times, m1 and m2, in this temper-
ature interval.

We can define three timescales using parameters in
Eq. (1), τS = CS/κCB, τC = CC/κCB, and τN = CN/κCB. Fig-
ure 3(a) shows the temperature dependence of τS, τC, and τN

determined by the fit of the observed frequency dependence
to Eq. (1) at each temperature and magnetic field (Appendix
C).

At higher temperatures, the sample and the calorimeter
platform are in thermal equilibrium. In this low-frequency
regime, the thermal impedance in Eq. (1) reduces to a

single-characteristic-time form used in AC-calorimetric mea-
surements [5,6,9–11], ζ (ω)C = 1/[κCB − iω(CC+ CS+CN)].
At 7 K, this low-frequency regime extends up to about 20 Hz,
which is the inverse of the second-largest characteristic time at
that temperature [Fig. 3(a)]. The plateauing of the amplitude
at 7 K below about 1 Hz [red curve in Fig. 3(b)] corresponds
to the longest characteristic time m1 at 7 K [Fig. 3(a)]. This
low-frequency regime corresponds to a large circle in the com-
plex plane of ζ C, defined by the Lorentzian A1/[−iω + 1/m1]
with the longest characteristic time m1 shown in Fig. 2(b),
where we plot the normalized value of the thermal impedance
ζ (ω)C/ζ (ω = 0)C.

As we lower the temperature, the internal thermal equilib-
rium between the calorimeter platform and the sample, and
between the electron-phonon and nuclear-spin subsystems of
the sample, breaks down. The multiple-relaxation-time char-
acter of the frequency dependence of the thermal impedance
in this regime is evident in the “multicircle” geometry of the
frequency traces of ζ (ω) in the complex plane [Figs. 2(a) and
2(b)]. At 0.7 K the two resonances in ζ (ω)C are clearly visible
in the amplitude plot [Figure 3(b)]. The plateau below 30 Hz
corresponds to a broad resonance with a characteristic time
of 5 ms, the intermediate characteristic time m2 in Fig. 3(a)
at 0.7 K, which is close to τC and τS at that temperature.
The plateau in the amplitude below 0.3 Hz [purple curve in
Fig. 3(b)] corresponds to the longest characteristic time of
0.5 s in Fig. 3(a) at 0.7 K.

III. TISP MEASUREMENTS OF INDIUM METAL

Figure 4(a) shows the specific heat of the nuclear spin (in
red) and lattice (electrons + phonons, in blue) subsystems, as
extracted from the data shown in Fig. 2 using the model given
by Eq. (1). The specific heat of metallic indium, measured in
Ref. [14], is shown as a dashed blue line in Fig. 4(a). Naturally
occurring indium has two isotopes: 115In (95.7%) and 113In
(4.3%). Both isotopes have nuclear spin J = 9/2 and g factors
differing by 0.2%, 115gN =+1.231 and 113gN = +1.229 [15].
At low magnetic fields, μNB � kBT , the nuclear Schottky per
mol is cN = (1/3)J (J+1)NAkB(gNμNB/kBT )2, where μN =
32.5 neV/T is the nuclear magneton. For elemental indium,
this is shown as a dashed red line in Fig. 4(a).

The nuclear spin-lattice interactions in metallic indium
were studied previously in NQR [12,13,16,17] and NMR
[18,19] experiments. Figure 4(b) shows the nuclear spin-
lattice relaxation rate 1/T1T determined by the fits of Eq. (1)
to the data in Fig. 2. The dashed line shows the value of
T1T = 0.086 s K from NQR experiments [12,13].

IV. THERMODYNAMICS OF NUCLEAR SPIN-LATTICE
RELAXATION

We now briefly discuss the thermodynamic description of
nuclear spins [4,20–22] as it relates to TISP experiments.
In a metal, the spin temperature is established by spin-spin
interactions on the timescale of the spin-spin relaxation time
T2 of the order of 1–100 µs [4,23], faster than T1 in a typical
metal. In indium metal, T2 = 100 µs [13]. Thus, the nuclear
spin temperature is well defined on the timescale of 1 ms.
The nonuniform spatial dependences of the nuclear spin and
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FIG. 4. Temperature and magnetic field dependence of the
spin-lattice relaxation rate and nuclear and lattice heat capacity.
(a) Magnetic field dependence of the nuclear Schottky CN (in red)
and electronic specific heat CS (in purple) at 0.7 K. The magnetic
field axis scales as field squared. The shaded region around the line
represents the error bars (Appendix C). (b) The nuclear spin-lattice
relaxation rate 1/T1T vs field. (c) Temperature dependence of the
nuclear Schottky CN (per mol) and the electron (+ phonon) specific
heat CS (per mol) at 35 T (solid circles) and 12 T (open circles). For
the sake of comparison, the nuclear Schottky at 12 T is scaled up by a
factor of (35/12)2. The dashed blue line indicates heat capacity mea-
sured in Ref. [14], cS = (1.69mJ/mol K2) T + (1.43mJ/mol K4) T 3.
The dashed red line indicates the expected magnitude of the nu-
clear Schottky in indium metal, cN = (0.015mJ K/mol T2)B2/T 2.
(d) Temperature dependence of the nuclear spin-lattice relaxation
rate 1/T1T at 35 T (solid circles) and 12 T (open circles).

lattice temperatures do not need to be similar to each other,
despite the fact that the spin-lattice interaction is local. This
is because the heat can flow “laterally” between the nuclear
spins mediated by spin-spin interaction and across the lattice,
mediated by heat diffusion. The (lattice) heat diffusion time
across the cuboid-shaped sample of mass of 1.7 µg is short,
about 10 ns (Appendix B). Therefore, both the lattice TS and
spin TN temperatures are uniform across the sample in our
measurements, as assumed in Eq. (1).

Different isotopes of the same nucleus will be out of
equilibrium with each other when an oscillating heat load
is applied to the lattice because spin-spin relaxation is inef-
fective in establishing the common temperature for isotope
species when energy-matching conditions between them are
broken. Indium, however, is peculiar in this respect: the g
factors of its two naturally occurring isotopes, 113In and 115In,
differ by only 0.2%. At low magnetic fields, the nuclear-
spin energy levels of the two isotopes effectively overlap
due to finite-width effects. The nuclear-spin energy states are
broadened by inelastic energy exchange mediated by either
the spin-spin or spin-lattice interactions. In metals, the en-
ergy transfer mediated by the spin-spin interactions dominates
these effects [4,22,24]. In metallic indium, the width of the

nuclear energy states, ∼h̄/T2, is comparable to the energy
mismatch of its two isotopes in applied magnetic fields of 10 T
or less.

Regardless, the detection of partial thermal equilibrium
between indium isotopes in metallic indium requires a sub-
percent level of determination of T1, beyond our current
sensitivity [Fig. 4(b)]. The partial equilibrium between dif-
ferent isotopes (or different lattice sites with different Knight
shifts) might be an important consideration in other systems
(Appendix E).

Finally, the spin-lattice relaxation time T1 is defined in
Eq. (1) via effective “contact” thermal conductance be-
tween the nuclear spins and the lattice, κeff

SN = CN/T1. To
establish a connection between the TISP measurements
and the NMR and NQR experiments [4,22,24], we con-
sider the energy exchange between the nuclear spins and
the lattice. The approach to thermal equilibrium is gov-
erned by the relaxation dynamics of the entropy [25,26],
d (SN + SS)/dt = qN←S(1/TN − 1/TS), where heat flux from
the electron-phonon subsystem to the nuclear spins, qN←S =
TN(dSN/dt ) = −TS(dSS/dt ), is equal to the rate of change of
the energy of the nuclear-spin subsystem, qN←S = dQN/dt .
Following Refs. [25,26], we chose x = dQN = CNdTN as
a measure of the deviation from complete equilibrium and
X = 1/TN − 1/TS as the corresponding thermodynamic force.
Then the rate of change of x is proportional to the thermo-
dynamic force, dx/dt = � X . Rewriting dx/dt = CN dTN/dt
as −T 2

NCN × d (1/TN)/dt , we obtain the rate equation for the
nuclear temperature,

d (1/TN)

dt
= − 1

T1

(
1

TN
− 1

TS

)
, (2)

where 1/T1 = �/(T 2
NCN) is the nuclear temperature relax-

ation rate. When temperature oscillations are weak, δT � T ,
this equation sets the effective contact thermal conductance
between the nuclear spins and the lattice to CN/T1. This es-
tablishes the equivalence of our definition of T1 in Eq. (1) and
that in magnetic resonance experiments [4,22].

The nuclear spin-lattice relaxation indicates the spin-flip
dynamics of electrons in the host material [1–3]. In con-
ventional metals and in liquid 3He below 1 K [27], all
spin flips occur on the Fermi surface [4,23,28], and the nu-
clear spin-lattice relaxation rate indicates the quasiparticle
density of states [28] as well as the static Fermi liquid renor-
malization factors [27,29–32]. Beyond conventional metals,
nuclear spin-lattice relaxation probes the correlation dynam-
ics and its impact on the Fermi surface, as well as Fermi
liquid renormalization factors not included in mass renor-
malization. One advantage of TISP measurements in this
broader scientific context is that the nuclear spin-lattice
relaxation rates can be measured simultaneously with elec-
tronic specific heat, thus providing two independent and
complementary ways to access the quasiparticle mass or
the density of states on the Fermi surface in the same
measurement.
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APPENDIX A: THERMAL IMPEDANCE

In lithographically defined nanocalorimeters [5,6], the
calorimeter stage, heater, and thermometer are in tight ther-
mal contact (Fig. 1). The complete thermal signature of the
calorimeter-sample assembly (Fig. 1) is obtained by measur-
ing its thermal impedance ζ (t − t ′)C [7,8], which describes
the temperature change δT (t )C of the thermometer at time t
in response to the heat influx at the heater δP(t ′) at an earlier
time t ′,

δT (t )C =
∫ t

−∞
dt ′ ζ (t −t ′)CP(t ′), T (ω)C=ζ (ω)CP(ω). (A1)

The second equation defines the thermal impedance in the
frequency domain measured directly in AC calorimetry. The
time dispersion of ζ (t − t ′)C encapsulates an internal memory
of the history of heat injection over a finite time interval
into the past. To describe components of the thermal circuit
with finite thermal memory we also use dimensionless ther-
mal susceptibilities, 
(ω)=−iωCζ (ω), which describe the
frequency-dispersed response to the heat influx of the rate of
temperature change, −iωCT (ω) = 
(ω)q(ω). For thermally
isolated components it approaches unity in the low-frequency
limit, 
(ω → 0) = 1.

On millisecond timescales, the calorimeter stage, ther-
mometer, and heater act as a monolithic “calorimeter plat-
form” with temperature T (t )C measured by the thermometer.

At very low frequencies, the calorimeter platform CC is in
thermal equilibrium with the sample (electron-phonon sub-
systems CS and nuclear spin CN), −iω(CS+CC+CN)T (ω)C =
P(ω) + q(ω)C←B, where q(ω)C←B = −κCBT (ω)C is the heat
flux from the thermal bath into the calorimeter platform and
κCB is its heat conductance (Fig. 1). In this limit the ther-
mal impedance is characterized by a single characteristic
time,

ζ (ω) = 1

−iω(CS+CC+CN) + κCB
, (A2)

determined by the ratio of the total heat capacity CS+CC+CN

and κCB [Fig. 1(d)]. Thus, the total heat capacity CS+CC+CN

and κCB can be determined from the measurement of ζ (ω) at a
single frequency, typically chosen near argζ (ω) = 45◦ [5,6,9–
11]. At higher frequencies, the sample and the calorimeter
platform are out of equilibrium, and a single characteristic

time no longer faithfully represents the thermal response of
the calorimeter.

To access nuclear relaxation rates, one needs to analyze the
thermal impedance of a calorimeter with its components out
of equilibrium.

APPENDIX B: THERMAL IMPEDANCE OF THE
CALORIMETER-SAMPLE ASSEMBLY

The heat balance of the calorimeter platform [Figs. 1(a)
and 1(d)] is described by

−iωCCT (ω)C = P(ω) − q(ω)S←C − q(ω)L←C − q(ω)M←C.

(B1)

The right-hand side lists all the heat sources of the calorime-
ter platform, including the heat fluxes from the membrane
[−q(ω)M←C], the electric leads [−q(ω)L←C], and the sample
[−q(ω)S←C], determined self-consistently by the temperature
T (ω)C of the calorimeter platform.

The heat fluxes across the leads and across the membrane,
−q(ω)L←C and −q(ω)M←C, act together to provide the heat
link to the heat bath [Figs. 1(a) and 1(c)],

q(ω)L←C + q(ω)M←C = κCB(ω) T (ω)C, (B2)

where κCB(ω) is the frequency-dependent heat conductance
from the calorimeter platform to the heat bath.

The heat conductance through leads can be understood in
terms of the series-connected heat conductances of the lead-
platform contact (κLC), the lead-heat-bath contact (κLB), and
the leads themselves (kLA/L, where A is the cross-sectional
area of the leads and L is their length), 1/κCB = 1/κLC +
1/κLB + 1/(kLA/L) [Fig. 1(a)]. Of the three, the heat con-
ductance of the leads kLA/L is the weak link because both
κLC and κLB are controlled by the thermal flow across wide
metallic surfaces in the lithographic assembly. The combined
heat conductance of the gold-capped chromium leads [κL =
5 mW/cm K; Fig. 1(a)] is 10 nW/K at 1 K, comparable to the
measured value of κCB at this temperature [Fig. 1(b)]. The SiN
membrane accounts for about 0.3 nW/K [κM = 1 mW/cm K;
Fig. 1(a)]. The heat diffusion time across the 400 µm long
gold-capped chromium leads, τL = (cL/κL)L2, is estimated as
L2/(vF �/3) = 50 μs at 1 K, where � is the mean free path in
chromium at 1 K [33,34]. Therefore, κCB is independent of
frequency below about 3 kHz.

The same conclusion is reached in a detailed analysis of
the heat balance in the leads [Figs. 1(a) and 1(c)],

−iωCL

[
T (ω)x=0

T (ω)x=L

]L

=
[
ξ (00; ω) ξ (0L; ω)
ξ (L0; ω) ξ (LL; ω)

]L[
q(ω)x=0

q(ω)x=L

]L

,

q(ω)L
x=0 = −κLC

[
T (ω)L

x=0 − T (ω)C]
,

q(ω)L
x=L = −κLB T (ω)L

x=L. (B3)

The first equation determines the temperature T (ω)L
x at the

x = 0, L ends of the leads when two heat sources, q(ω)x=0

and q(ω)x=L, act simultaneously. ξ (sh; ω) is the dimensionless
thermal susceptibility of the barlike object (Appendix D) [35],
describing temperature at point s when heat is applied at point
h in the bar [Fig. 1(a)], −iωCLT (ω)L

x=s = ξ (sh, ω) q(ω)L
x=h.
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The second line in Eq. (B3) determines the heat flux
q(ω)L

x=0 at the calorimeter end of the leads in terms of the
temperature difference at that contact point (κLC is the contact
conductance). The third equation determines the heat flux
q(ω)L

x=L at the heat bath end of leads in a similar way (κLB

is the contact conductance).
Solving Eq. (B3) for q(ω)L←C = q(ω)L

x=0, we find

q(ω)L←C = T (ω)C −iωCL

−iω (CL/κCL) + 
(ω)L
,


(ω)L = −iωτL−iω (CL/κLB) ξ (00; ω)L

−iω (CL/κLB) + ξ (00; ω)L
. (B4)

The factor multiplying T (ω)C on the first line is equal to
the frequency dispersed effective thermal conductance of the
heat link to the heat bath κCB(ω). In the low-frequency limit,
ωτL � 1, the thermal susceptibility of the leads approaches
unity (Appendix D), ξ (00; ω)L = 1, and thermal susceptibil-
ity in the second line approaches 
(ω � 1/τL)L =−iω[τL +
(CL/κLB)]. Therefore, when ωτL � 1, all frequency factors
in the heat conductance κCB(ω) cancel out; that is, κCB is
frequency independent at frequencies below 1/τL.

The sample-platform heat flux −q(ω)S←C is determined by
the heat balance for the sample [Fig. 1(c)],

−iωCST (ω)S = 
(ω)S q(ω)S←C − q(ω)N←S,

q(ω)S←C = −κSC[T (ω)S − T (ω)C], (B5)

where κSC is the heat conductance of the contact between
the sample and calorimeter platform. 
(ω)S is the thermal
susceptibility for the sample at the calorimeter contact end.
The sample has a standing-bar geometry; therefore, 
(ω)S =
ξ (00; ω) (Appendix D). At 1 K the heat diffusion time τS =
(cS/κS)L2 across the height (L = 30 μm) of the sample is
10 ns. Therefore, in this measurement the thermal impedance

(ω)S is frequency independent, 
(ω � 1/τS)S = 1.

q(ω)N←S in Eq. (B5) is the heat flux from nuclear spins to
the sample. The heat balance of the nuclear spins is described
by

−iωCNT (ω)N = q(ω)N←S,

q(ω)N←S = −CN

T1
[T (ω)N − T (ω)S], (B6)

where T (ω)N is the temperature of the nuclear spin subsystem
and T1 is the spin-lattice relaxation time [4,22,36]. Solving
Eq. (B6) for q(ω)N←S in terms of electron-phonon temper-
ature T (ω)S and Eq. (B5) for q(ω)S←C in terms of T (ω)C

and combining with Eqs. (B1) and (B2), we finally obtain the
thermal impedance of the calorimeter, ζ (ω)C = T (ω)C/P(ω),

1

ζ (ω)C
= −iωCC + κCB +

−iω
(
CS + CN

−iωT1+1

)
κSC

−iω
(
CS + CN

−iωT1+1

)
+ κSC

.

(B7)

The frequency sweeps are fitted to the model, Eq. (B7),
using six parameters, κCB, τS = CS/κCB, τC = CC/κCB, T1,

τN = CN/κCB, and ν = κCB/κSC, defined by

1

ζ (ω)κCB
= −iωτC + 1 + −iω

(
τS + τN

−iωT1+1

)
−iων

(
τS + τN

−iωT1+1

) + 1
. (B8)

The spectral decomposition of the thermal impedance in
Eq. (B8), ζ (ω) = ∑

i=1,2,3 Ai/[−iω + 1/mi], has three char-
acteristic times m1,2,3. They are related to the parameters in
the model via the set of equations

m1m2m3 = ντSτCT1,

m1 + m2 + m3 = T1 + τC + (1 + ν)(τN + τS),

m1m2 + m2m3 + m3m1 = T1τC + (1 + ν)τST1

+ ντC(τN + τS). (B9)

APPENDIX C: FITTING

The fitting parameters are found by the gradient-descent
minimization of the “goodness” function,

g(β(ω); {λi})

=
∫

dω β(ω)
[
ζ (ω)observed − ζ (ω)model

{λi}
] × [c.c.] → min,

(C1)

where β(ω) is the weight function, λi=1,...,6 are parameters
in Eq. (B8), and [c.c.] is the complex conjugate of the first
square bracket. The sensitivity of the fitting parameters (vari-
ances �λi=1,...,6) to the changes in the measured ζ (ω)observed

is determined by the curvatures of the “effective” goodness
function G(β(ω); {λi}), defined by

e−G(β(ω);{λi}) = 〈e−g(β(ω);{λi})〉, (C2)

as

�λi=1,...,6 =
√

[C−1]ii, Ci j = d2G(β(ω); λi )
dλidλ j

. (C3)

Here 〈· · · 〉 is the average with respect to the noise in
ζ (ω)observed [37]. Assuming Gaussian noise with power spec-
trum π (ω), the averaging 〈·〉 over the noise is equivalent to
setting the frequency-dependent “temperature” in the effec-
tive goodness function to the power spectrum π (ω) or the
weight β(ω) to its inverse, β(ω) = 1/π (ω). The variances
determined this way are shown as error bars in Fig. 4 in the
main text.

APPENDIX D: THERMAL SUSCEPTIBILITY
OF A QUASI-ONE-DIMENSIONAL OBJECT

The thermal susceptibility ξ (sh, ω) describes the temper-
ature change at the point x = s at time t in response to heat
injection at x = h at earlier time t ′ [Fig. 1(a)],

−iωCT (ω)x=s = ξ (sh, ω) q(ω)x=h. (D1)

It is determined by the heat flow in a quasi-one-dimensional
(barlike) object with boundary conditions of no heat influx at
both ends, x = 0, L, satisfied by the basis

ϕkn (x) =
√

2/L cos knx, (D2)
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where

kn = πn/L

and

n = 1, . . . ,∞
is a positive integer. One finds

ξ (sh; ω) = 1 + 2
∑

kn

−iωτ

−iωτ + (knL)2
cos kns cos knh, (D3)

where τ = L2/D is the heat diffusion time across the bar and
D is the heat diffusion coefficient, D = κ/c. For s, h = 0, L
at either end of the bar, ξ (sh; ω) can be expressed in terms of
elementary functions as

ξ (00; ω) = √−iωτ coth
√−iωτ,

ξ (0L; ω)2 = ξ (00; ω)2 + iωτ. (D4)

APPENDIX E: CROSS RELAXATION

The thermodynamics of the nuclear spin subsystem can be
described in a standard way [38], starting from the free energy,
dFN = −SNdT − MNdB (where SN is its entropy and MN is
the magnetization) and then defining three thermodynamic
coefficients, the heat capacity CN, the magnetic susceptibility
πN, and the nuclear magnetocaloric coefficient γN via[

dSN

dMN

]
=

[CN
TN

γN

γN πN

][
dTN

dB

]
. (E1)

The heat exchange rate of nuclear spins is determined
by the first line in Eq. (E1), TN(dSN/dt ) = CN(dTN/dt ) +
TNγN(dB/dt ). It equates the heat influx qN←S = TN(dSN/dt )
from the lattice (Appendix B) to the difference between the
rate of change of the energy stored in the nuclear spin subsys-
tem and the work done per unit time by an external magnetic

field. For nuclear spins, the magnetocaloric coefficient [38]
γN = (dSN/dB)T = (dMN/dT )B is proportional to their mag-
netization, γN = −MN/TN, and therefore, the magnetocaloric
term in the energy balance TNγN(dB/dt ) is equal to the work
done per second by the external magnetic field on the nuclear
spins −M(dB/dt ).

When several nuclear spin species (or several inequiva-
lent lattice sites) are out of equilibrium, the energy exchange
rates between nuclear spins and the lattice are determined
not only by a distinct nuclear spin-lattice relaxation time
for each isotope species but also by cross-relaxation coeffi-
cients [4,22]. In the context of calorimetric measurements,
the energy exchange between spins and lattice is determined
by the symmetric matrix of relaxation coefficients [25,26],
and therefore, the effective nuclear spin-lattice contact heat
conductance is described by a symmetric matrix of transport
coefficients.

The entropy relaxation is governed by

d (SN1 + SN2 + SS)

dt

= qN1←S

(
1

TN1
− 1

TS

)
+ qN2←S

(
1

TN2
− 1

TS

)
. (E2)

The heat exchange between two isotopic components and
the electron-phonon subsystems is described by a symmet-
ric 2 × 2 matrix �i j of kinetic coefficients [25,26], dxi/dt =∑

j=1,2�i jXj , or, explicitly,

[
qN1←S

qN2←S

]
=

[
�11 �12

�12 �22

][
1

TN1
− 1

TS

1
TN2

− 1
TS

]
. (E3)

The term proportional to �12 describes cross relaxation
[4,22,24,39,40] in the two-isotope system. These equations re-
place Eq. (B6) for multi-isotope nuclear spins.
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