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Anisotropic hopping in a toy Hofstadter model was recently invoked to explain a rich
and surprising Landau spectrum measured in twisted bilayer graphene away from the
magic angle. Suspecting that such anisotropy could arise from unintended uniaxial
strain, we extend the Bistritzer–MacDonald model to include uniaxial heterostrain
and present a detailed analysis of its impact on band structure and magnetotransport.
We find that such strain strongly influences band structure, shifting the three
otherwise-degenerate van Hove points to different energies. Coupled to a Boltzmann
magnetotransport calculation, this reproduces previously unexplained nonsaturating
B2 magnetoresistance over broad ranges of density near filling � = ±2 and predicts
subtler features that had not been noticed in the experimental data. In contrast to these
distinctive signatures in longitudinal resistivity, the Hall coefficient is barely influenced
by strain, to the extent that it still shows a single sign change on each side of the charge
neutrality point—surprisingly, this sign change no longer occurs at a van Hove point.
The theory also predicts a marked rotation of the electrical transport principal axes as
a function of filling even for fixed strain and for rigid bands. More careful examination
of interaction-induced nematic order versus strain effects in twisted bilayer graphene
could thus be in order.
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The discovery of superconductivity and correlated insulating states in magic-angle twisted
bilayer graphene (TBG) (1, 2) placed the material at the forefront of condensed matter
physics research (3–18). The moiré superlattice potential of TBG, resulting from a small
relative twist angle � between the graphene layers, can induce nearly flat, topologically
nontrivial, isolated bands, consisting of electronic states near the Dirac points of each
monolayer of graphene (19). As a result, TBG is an exceptional platform for studying
the interplay of electron correlations and band topology (20–38).

Strain—especially differing lattice distortions in the two layers, termed heterostrain—is
believed to play an important role in the phase diagram of TBG (37–41). Scanning probe
measurements typically find uniaxial heterostrain in the range of 0.1 to 0.7% (3, 9, 11, 42)
in samples fabricated with the tear-and-stack method (43, 44). For heterostrain, as
opposed to strain applied equally to both layers, the linear distortion of the moiré unit
cell is amplified by a factor of ∼ 1/� relative to the linear distortion of the microscopic
atomic lattice. For example, 0.2% uniaxial heterostrain causes an ∼ 8% change in the
largest linear dimension of the moiré unit cell for a twist angle of 1.38◦. The moiré unit
cell area changes by much less, only∼ 0.1%, but because we infer twist angle from moiré
unit cell area in transport, this dependence of area on strain still leads to underestimates
of the uncertainty in twist angles presented in the transport literature, as noted in ref. 3.

In a recent report by some of the authors [Finney et al. (45)], a TBG sample with a
moiré unit cell area of 90 nm2 (corresponding to � = 1.38◦) displayed several unusual
phenomena in magnetotransport. As anticipated for a twist well above the magic angle,
the sample did not exhibit the strong interaction-driven effects typically observed in near-
magic-angle devices. Surprisingly, though, over a broad filling range near half-filling the
longitudinal magnetoresistivity (MR) exhibited a B2 increase up to ∼ 100-fold at ≈ 5
T, after which quantum oscillations set in. The authors found that a toy Hofstadter
model with anisotropy showed multiple features similar to those in the data, and they
conjectured that uniaxial strain might cause such anisotropy.

In this work, we present a systematic theoretical study of the impact of uniaxial
heterostrain on the narrow-band dispersion of TBG above the magic angle, analyze
its consequences for weak field magnetotransport, and compare it with experimental
data from ref. 45. We base our theory on the Bistritzer–MacDonald (BM) continuum
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model (19), incorporating heterostrain in the form of a deforma-
tion potential, a pseudomagnetic field (46, 47), and a distortion
of the moiré pattern.

Our key theoretical result is that heterostrain lifts the energetic
degeneracy of the two Dirac points as well as that of the three
van Hove points of a given band. The splitting of the two Dirac
points leads to a semimetallic state with small Fermi pockets
near the charge neutrality point (CNP). More interestingly, the
splitting of the van Hove points leads to open Fermi surfaces
(FSs) in the filling range bounded by two of the van Hove points.
In the weak field semiclassical regime governed by the Boltzmann
equation, the open FSs generally lead to a nonsaturating B2 MR
(48), accounting for this previously unexplained feature in the
experimental data of ref. 45.

This theory makes a number of falsifiable predictions. 1) If the
direction of current flow in the lithographically patterned Hall
bar is not aligned with the 1D-like principal axis of transport
in the open FS regime, longitudinal magnetoresistance should
mix substantially into the measured resistance at Hall contacts.
2) A subtle cusp should appear in resistivity as filling crosses the
lowest-energy van Hove point. 3) A Lifshitz transition from two
FS pockets to one should also coincide with crossing this lower
van Hove point. We reanalyze experimental data from ref. 45
and find that these predictions are verified. The strained BM
model studied here has electron–hole symmetry. We leave the
discussion of electron–hole asymmetry in the experimental data
to future works.

The theory also has implications that are not so far directly
probed by the experiment, but are striking. First, on each side
of the CNP, the divergence and sign change in the Hall number
near half-filling of a 4-fold degenerate band does not coincide
with any of the van Hove points but instead occurs within the
filling range where FSs are open. Second, the transport principal
axis continuously rotates by up to 90◦ as density is tuned from the
CNP to the open FS regime. Such rotation of the transport axes
has been presented as evidence for interaction-induced nematic
order (14), but here, we find that it can arise purely due to
strain-induced band structure effects.

This work clearly demonstrates that the effects of even
miniscule amounts of heterostrain in TBG cannot be neglected.
Dramatic and unexpected phenomena occur in strained TBG
even in the single-particle regime, without the strong correlation
effects that arise near the magic angle. Given the amplifying effect
of a small heterostrain on the moiré length scale, it is tantalizing
to consider strain engineering of such devices to achieve effects
that would be impossible in regular solids due to structural
instabilities.

The paper is organized as follows: In Section I, we present
the theoretical calculation of the changes in band structure
resulting from uniaxial strain. In Section II, we use the Boltzmann
transport equation to calculate the electron transport properties
in magnetic fields resulting from the strain-induced alterations in
the band structure. Section III is a comparison of our predictions
with experiment, and it is sufficiently self-contained that a reader
who does not need all the theoretical details can jump directly
there. In Section IV, we summarize our results.

1. Geometric and Energetic Effects of Uniaxial
Heterostrain on TBG

In the limit of small deformations, both uniaxial heterostrain and
a small twist angle are captured via a coordinate transformation:
r′l = r + ul (r), where l = t, b labels the Top (Bottom) graphene

layers, and ul (r) ≈ El r is the local deformation field. The
symmetric and antisymmetric part of the 2×2 tensor El describes
strain and rotation, respectively. For twist angle (�) and a uniaxial
heterostrain of strength (�) and direction ('), we parameterize
Et = −Eb ≡ E/2, where E ≡ T (�) + S(�,'), and given by:

T (�) =
(

0 −�
� 0

)
, S(�,') = RT

'

(
−� 0
0 ��

)
R'. [1]

Here, R' is the two-dimensional rotation matrix, and � ≈
0.16 is the Poisson ratio (3). Physically, � > 0 corresponds
to compressing the Top layer while stretching the Bottom layer
along the direction determined by ', as illustrated in Fig. 1A.
A relative deformation E between the graphene bilayers gener-
ates a moiré superlattice, with moiré reciprocal lattice vectors
gi=1,2 = ETGi=1,2, where Gi are reciprocal lattice vectors of
the undeformed monolayer graphene. The moiré lattice vectors
Li=1,2 are uniquely defined through the relation Li · gj = 2��ij.
It is important to note that only relative deformations generate
the moiré superlattice. Deformations that act homogeneously on
the two layers have little effect on the narrow band physics, and
we accordingly neglect them in this work*.

Under rotation R', the strain tensor transforms as a headless
vector that remains invariant under '→ '+ 180◦. Combined
with the C3z symmetry of the undeformed graphene lattice, the
strained electronic dispersion within a given graphene valley
simply rotates 60◦ under ' → ' + 60◦. We therefore only
report results for ' ∈ [0◦, 60◦). For concreteness, we define the
microscopic unit cell vectors ai=1,2 of an undeformed graphene
lattice as a1 = a( 1

2 ,−
√

3
2 ), a2 = a(1, 0), where a ≈ 2.46

Å is the lattice constant. The positions of the sublattice A, B
within a unit cell are chosen as E�A = (0, 0) and E�B = a

√
3
(0, 1).

The reciprocal lattice vectors are G1 = 4�
√

3a
(0,−1) and G2 =

4�
√

3a
(
√

3
2 , 1

2 ). Different conventions lead to different definitions
of the Dirac Hamiltonian (see for instance ref. 40), but the physics
is consistent.

Fig. 1 A and B illustrates the geometric effects of heterostrain
for twist angle � = 1.38◦. At � = 0, AA-stacked regions of the
moiré form an equilateral triangular superlattice. Introducing
uniaxial heterostrain changes the spacings between neighboring
AA-stacked regions (Li=1,2,3). For � = 0.2%, typical in these
systems (3, 9, 11), the variation in spacings can be as large as
�/� ≈ 8%. Such dramatic amplification of the microscopic strain
makes moiré materials uniquely suited to strain engineering—
conventional materials become structurally unstable at distor-
tions only 10% as large as those achieved in the moiré superlattice.
Note that the effect of uniaxial heterostrain on the moiré unit cell
area is small at �2�2/�2, as some spacings become larger while
others become smaller (SI Appendix, section I).

We proceed to discuss the energetic effects in the context of
the continuum BM model (19). We work in the limit where both
El and the wavevector k in the moiré Brillouin zone are small
and consider only the leading order terms in both. This would
mean, for instance, that terms such as Ek are omitted as higher-
order terms. This treatment is generally justified away from the
magic angle because higher-order terms can play an important
role only close to the magic angle where the bandwidth becomes
comparable to these terms (49, 50). We explicitly checked that

*We checked numerically that adding a small homogeneous strain in addition to a
heterostrain of similar strength yields band and transport properties almost identical
to those produced by adding a heterostrain alone.
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Fig. 1. (A) Schematics of applying a uniaxial heterostrain on the pair of microscopic unit cells of monolayer graphene making up TBG. (Upper sketch) Orange
(blue) color corresponds to the Top (Bottom) layer. The uniaxial strain of strength +(−)�/2 and direction ' on the Top (Bottom) layer are represented as colored
arrows. (Lower sketch) Deformation of the moiré superlattice for twist angle 1.38◦ due to a uniaxial heterostrain of � = 0.2% and ' = 0◦. Unstrained (gray,
dashed) and strained (black, solid) triangular lattice sites of AA stacking regions of the moiré superlattice are depicted. (B) Dependence of the three moiré
triangular bond lengths on ' for a fixed strength. (C–F ) Energy maps of the Upper band of the BM Hamiltonian in valley K, plotted in the moiré Brillouin zone
specified by k = k1g1 + k2g2, where k1,2 ∈ [0,1). There are six special points of the band structure, i.e., two Dirac points (black stars), three van Hove points
(colored dots), and one band maximum (black cross). The contour lines intersecting the van Hove points are plotted and labeled by their respective filling
fractions. In the unstrained case (C), the two Dirac points and three van Hove points are respectively at equal energies. The energy degeneracies are lifted in
the presence of uniaxial heterostrain, as illustrated in (D–F ). This leads to semimetallic behavior at the CNP, and a '-dependent filling range near � = 2 with
open FSs. (G and H) '-dependence of the energies and filling fractions of the band structure special points for a fixed heterostrain strength. The background
colormap is the calculated density of states, with a broadening of � = 1meV. Green (blue) color represents high (low) density of states. The energetic minimum
and maximum of the narrow bands are shown with horizontal dashed gray lines.

at � ≈ 1.38◦, the effects of such higher-order terms are indeed
negligibly small. To leading order, the strained BM Hamiltonian
for a given valley is given by

H� = (
∑
l=t,b

H intra
�,l ) + H inter

� , [2]

where � = ±1 labels K (K′) valleys of monolayer graphene. The
interlayer Hamiltonian is given by

H inter
� ≈

∫
d2r †

�,t(r)

 ∑
j=1,2,3

T�,je−i�qj ·r

 �,b(r) + h.c.,

[3]
where  �,l (r) ≡ ( �,l,A(r), �,l,B(r))T is a spinor in the
sublattice basis for a given valley and layer. We have suppressed
the spin index for simplicity. qj=1,2,3 are the three nearest
neighbor bonds of the reciprocal honeycomb lattice, and

T�,j = w0�0 + w1

(
cos

2�(j − 1)
3

�x + � sin
2�(j − 1)

3
�y
)

.

[4]
(�0, �x , �y) are Pauli matrices acting on sublattice degrees of

freedom.
The intralayer Hamiltonian is given by:

H intra
�,l = �

∫
d2r †

�,l (r)(tr[El ]�0) �,l (r)

−
ℏvF
a

∫
d2r †

�,l (r)
[
(−i∇ − A�,l ) · (��x , �y)

]
 �,l (r).

[5]

Here, the first term is the deformation potential that couples
to the electron density. Its value is not precisely known in

the literature, with numbers ranging from −4.1 eV to 30 eV
depending on the methodology (51–54). We use � = −4.1 eV in
this work based on first principles calculations (54), although for
heterostrain � ≈ 0.2% varying the deformation potential over the
range proposed in the literature leads to only minor quantitative
differences in band dispersions. A�,l is the pseudovector potential
that comes from changes in the intersublattice hopping due to
deformations and changes sign between graphene valleys. It is
given as refs. 46 and 47: A�,l =

√
3�

2a �(�l,xx − �l,yy,−2�l,xy),
where we choose � ≈ 3.14 from refs. 3 and 40. We further fix
ℏvF/a = 2.68eV based on Fermi velocity in monolayer graphene
vF ≈ 106m/s (55), w0 = 88meV, and w1 = 110meV (19) in
our calculations and also set ℏ = 1 in the remainder of the paper.

To leading order approximation, the strained BM Hamilto-
nian in a given valley (Eq. 2) has particle–hole symmetry under
P l (r) =

∑
l ′ i(�y)ll ′ l ′(−r) (56), where �y is a Pauli matrix

acting on the layer degrees of freedom. This means that for
every single-electron state at energy E and wavevector k, there
is a state at energy −E and wavevector −k. This particle–hole
symmetry has been investigated extensively for the unstrained
BM model, e.g., refs. 26 and 57, and here, it is generalized to the
strained case. The source of experimentally evident particle–hole
asymmetry in the off-magic-angle device (45) could be higher-
order gradient terms beyond what is captured in the BM model
in Eq. 2, interaction effects (58–61), or their combination.

Fig. 1 D–F displays the effects on the band structure of � =
0.2% heterostrain applied in select directions relative to the x-axis
defined in Fig. 1A, as specified by ' ∈ [0◦, 60◦). For simplicity,
we show only contour maps of the upper band from valley K in
the moiré Brillouin zone specified by k = k1g1 + k2g2, where
k1,2 ∈ [0, 1). Heterostrain preserves C2T and valley U (1) (23),
so the Lower and Upper bands remain connected via two Dirac
points. The Upper band features six special points—two Dirac
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points (black stars), three van Hove points (colored dots), and
one band maximum (black cross). The six special points of a
given band are related to “critical points” in the context of the
Morse theory, which states that

∑
i

(−1)
i = � , [6]

where 
i is the index of the i-th critical point, and � is the
Euler characteristic of a manifold (62); � vanishes for the
Brillouin zone which is a torus. Although a Dirac point is
strictly a point of nonanalyticity and is not directly covered by
Morse theory, if we imagine adding a tiny gap term, it will
become a legitimate band extremum allowing Morse theory
to apply. Whereas the two band minima (Dirac points) and
the band maximum have even 
 , and so each contributes +1
to the sum, every conventional van Hove point (i.e., not a
higher order) has an odd 
 and contributes −1. The overall
sum thus vanishes. Therefore, the van Hove points can only
be annihilated/created by colliding with local minima/maxima.
For a relatively small heterostrain as shown in Fig. 1, the
number of special points per band is the same as at � = 0.
However, for larger heterostrain (e.g., � = 0.5%, see SI Appendix,
Fig. S1), more striking behavior of the special points can occur,
such as a change in their total number via aforementioned
collisions and the appearance of tilted type II Dirac cones
(63, 64).

A key finding of the present work is that the respective energy
degeneracies of the two Dirac points and the three van Hove
points are lifted by uniaxial heterostrain, by amounts depending
sensitively on '. In the absence of strain, Fig. 1C, the three van
Hove points are at equal energy, and separate closed contours of
constant energy centered around the Dirac points from closed
contours centered around the band maximum. As illustrated in
Fig. 1 D–F, uniaxial heterostrain splits the energy degeneracy
of the two Dirac points, leading to a semimetallic state with
small Fermi pockets near the CNP (40). The three van Hove
points also split in energy. The two outermost van Hove points
(i.e., closer to the band maximum) bound a filling range of open
FSs near � = 2, whereas the innermost van Hove point moves
closer to one of the Dirac points. If we continue increasing �,
a collision of the critical points occurs, the innermost van Hove
disappears, the two Dirac points become type II tilted, and a
new ordinary minimum is created. Note that a small mass added
to type II tilted Dirac points will not introduce band extrema,
and as a consequence, type II tilted Dirac points are not critical
points of Morse theory. Therefore, after the collision, Eq. 6
still holds.

Interestingly, the elongation of the FSs shows a strong filling
dependence. Close to the CNP, the bigger Fermi pocket that
encloses a Dirac point is stretched along a direction perpendicular
to that of the open FSs; see Figs. 1 D–F. As explained later,
this leads to a dramatic rotation of the principal transport
axis when the filling is tuned from the CNP to the open
FS range.

The dependence of the energy and filling of the band structure
special points on ' at a fixed � is shown in Fig. 1 G and H. Of
notable interest is the sensitivity of the filling range with open FSs
to '. This filling range must in fact vanish at some ' between
0◦ and 60◦, when the energies of the two outermost van Hove
points cross. As seen in Fig. 1 D–F, this also alters the elongation
of the open FSs.

2. Boltzmann Equation and Magnetoresistivity
in TBG

Having understood the heterostrain effects on the bandstructure,
we proceed to discuss the implications for magnetotransport. We
begin by considering the general structure of the two-dimensional
resistivity tensor � subject to heterostrain. The resistivity tensor
is defined via (

Ex
Ey

)
=
(
�xx �xy
�yx �yy

)(
jx
jy

)
, [7]

where E = (Ex , Ey)T and j = (jx , jy)T are electric field and
current vectors, respectively. Under rotation by ��, the resistivity
tensor transforms as:

�′ = RT
���R�� , R�� =

(
cos �� − sin ��
sin �� cos ��

)
. [8]

If the underlying system has a point group symmetry
higher than C2z (e.g., C3z , C6z), then � = �0I − i�H �y is
the most general form of � invariant under such rotations.
Here, �y is the Pauli matrix acting in the two-dimensional
coordinate basis, �0(−B) = �0(B) is the longitudinal resistivity,
and �H (−B) =−�H (B) is the Hall resistivity. The even/odd
parity under time reversal is guaranteed by the Onsager reciprocal
relations.

Since heterostrain breaks the point group symmetry down to
C2z , we generally expect �xx 6= �yy, �xy 6= −�yx . Nevertheless, it
is always possible to define transport principal axes after a suitable
rotation �� of the coordinate system, such that

�principal =
1
2
(�1 + �2)I +

1
2
(�1 − �2)�z + �H i�y. [9]

Here, �1,2 are longitudinal resistivities along the principal
transport directions ê1,2, respectively. The rotation angle �� is
determined up to 180◦ by requiring �1 < �2.

Below, we first derive the MR tensor using a Boltzmann
approach for a general noninteracting electronic system within
the relaxation time approximation. Since there is currently
limited understanding of the scattering mechanisms determining
electrical transport in TBG, here, we follow ref. 65 and use the
relaxation time approximation. We then present the results
for heterostrained TBG, showing that in the open FS region,
the low-resistivity principal axis (ê1) is nearly perfectly aligned
with the shortest moiré bond direction. However, there is a
dramatic rotation of the principal axis as the filling moves toward
the CNP. We further show that the open FSs lead to a B2

nonsaturating MR along ê2 and a saturating resistivity along ê1.
For random orientation (�0) of the principal axis to the electrical
current axis in the Hall bar geometry, e.g., as in ref. 45, the
longitudinal resistivity is given by: �xx = �1 cos2 �0 + �2 sin2 �0.
This is dominated by the �2 ∼ B2 component. As a result, the
experimental measurements should observe the nonsaturating
MR component if there is a misalignment of the Hall bar
orientation with respect to the principal transport axis. Such
misalignment is generically to be expected and indeed must
occur over most of the relevant filling range since the principal
axes rotate with filling while the device geometry remains
fixed.

Boltzmann Equation and Method of Characteristics. We begin
with a brief description of the method of characteristics used to
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solve the Boltzmann equation perturbatively in electric field E
but without a restriction on the strength of the perpendicular
magnetic field B = Bẑ, as long as the semiclassical regime holds
(66). Due to C2zT symmetry of TBG at B = 0, there is no Berry
curvature contribution to the semiclassical equations of motion.
Then, within the relaxation time approximation, the Boltzmann
equation for a given energy band becomes

∂nk
∂t

+ (qE + qvk × B) ·
∂nk
∂k

= −
nk − n0,k

�
, [10]

where qE+qvk×B is the total force on the Bloch electrons, with
vk ≡ ∇k"k and charge q; n0,k is the equilibrium Fermi–Dirac
distribution and nk is the desired nonequilibrium distribution
function.

We consider a stationary solution to the Boltzmann equation
by parameterizing the distribution function as:

nk = n0,k + n1,k. [11]

As a result, the Boltzmann equation for the deviation of the
distribution function from equilibrium is:

(qE · vk)
∂n0,k

∂"k
+ (qvk × B) ·

∂n1,k

∂k
= −

n1,k

�
. [12]

Note that the magnetic field only couples to n1 since (qvk×B) ·
∇kn0,k = (qvk × B) · vk∂"kn0,k = 0.

To solve the above partial differential equation (PDE), we seek
a family of curves covering the k-space which we parameterize
as k(s) with s ∈ [0, s0), such that along these curves, the PDE
becomes an ordinary differential equation (ODE). If a curve k(s)
satisfies

dk(s)
ds

= qv(s)× B, [13]

then n1,k(s) ≡ n1(s) satisfies

(qE · vk)
∂n0,k

∂"k
|k=k(s) +

dn1(s)
ds

= −
n1(s)
�

. [14]

Because
d"(s)
ds

= v(s) ·
dk(s)
ds

= 0, [15]

the curve k(s) must coincide with the contour of constant energy.
Thus, the Boltzmann equation becomes:

[qE · v(s)]
∂n0(s)
∂"(s)

+
dn1(s)
ds

= −
n1(s)
�

. [16]

The ODE is readily solved with

n1(s) = �0e−s/� − e−s/�
∫ s

0
ds′es

′/� [qE · v(s′)]
∂n0(s′)
∂"(s′)

. [17]

where �0 is a constant determined by the following argument.
Since k(s) describes a constant energy contour in a two-
dimensional Brillouin zone, it is either a closed contour or several
open contours that terminate on boundaries of the Brillouin zone
such that they form a closed loop on a torus. In either case, k(s)
is periodic under s → s + s0 modulo a moiré reciprocal lattice
vector, where s0 is the periodicity. The periodicity condition
n1(s0) = n1(0) leads to

�0 =
1

1− es0/�

∫ s0

0
ds′es

′/�(qE · v(s′))
∂n0(s′)
∂"(s′)

, [18]

which determines the desired n1(s).
In the low-temperature limit, the steady-state current from a

given energy band is calculated as:

j� = q
∫

d2k
(2�)2 v

�
kn1,k =

q2B
(2�)2

∫
d"
∫ s0

0
dsv�(s)n1(s)

=
q3B
(2�)

�
!c

∞∑
n=−∞

v�n v�−n
1 + in!c�

E� ,
[19]

where (�, �) = x, y, and we have defined the cyclotron frequency
as:

!c ≡ 2�/s0. [20]

We have also made use of the periodicity of velocity under
s → s + s0 to write it in terms of Fourier series, v(s) =∑
∞

n=−∞ vne−in!c s.
To show that the second line of Eq. 19 holds, note that at

every k, we can define a local coordinate system (êv, ês) such
that v ≡ vêv where v ≥ 0, and ês = êv × ẑ. The infinitesimal
wavevector can be equivalently written as:

dk = dkx êx + dky êy = dks ês + dkv êv.

Eq. 13 can then be written as dk/ds = qvBês, or equivalently
dks = qvBds. As a result,∫

dkxdky =
∫

dksdkv = qB
∫

d"ds.

The conductivity tensor is therefore given by the following
expression:

��� =
q3B
2�

�
!c

∞∑
n=−∞

v(�)n v(�)−n
1 + in!c�

. [21]

Eq. 21 gives the magnetoconductivity for a given FS contour.
In the case of multiple FS contours and multiple bands—
associated for example with spin and valley degeneracy in TBG—
conductivities from different FS contours and bands add. Finally,
the MR tensor is obtained by inverting the conductivity tensor,
i.e., � =

(∑
n,i �n,i

)−1, where n, i are band and contour labels
respectively for a given energy level.

To better understand Eq. 21, consider an example of a
parabolic dispersion with "k = 1

2m0
(k2

x + k2
y ), where m0 is the

bare electron mass. At a fixed energy �, the contour is a circle
parameterized as (kx , ky) =

√
2m0�(cos �, sin �), � ∈ [0, 2�).

Using the method of characteristics, we get d�
ds = − qB

m0
, or

� = �0 − !0s, where !0 ≡
qB
m0

is the cyclotron frequency
of bare electrons. This leads to the periodicity in s to be
s0 = 2�/!0, where we have chosen the clockwise trajectory such
that s0 > 0. The Fourier series of the velocity along the constant
energy contour is given by vx(s) =

√
�

2m
(
e−i!0s + ei!0s

)
, and

vy(s) =
√

�
2m

1
i
(
e−i!0s − ei!0s

)
. Substituting into Eq. 21, we

obtain the conductivity tensor:

� = q2�
�
2�

1
1 + !2

0�2

(
1 −!0�
!0� 1

)
. [22]
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Note that the total number density of filled electrons is given
by n =

∫ d2k
(2�)2 Θ(� − "k) = m0�

2� . We therefore reproduce the
well-known magnetoconductivity tensor:

� =
nq2�
m0

1
1 + !2

0�2

(
1 −!0�
!0� 1

)
. [23]

In this simple example of a closed FS, the longitudinal
resistivity is given by m0

nq2� , independent of the magnetic field.
The average of the velocity field, vn=0 ≡

1
s0

∫ s0
0 dsv(s), vanishes.

However, for an open FS, generally, vn=0 6= 0, i.e., electrons
have a finite drift velocity when a magnetic field causes them to
traverse the contour (SI Appendix, Fig. S2). The impact of such a
finite drift velocity on the magnetotransport can be qualitatively
understood using the following example: In the expression for
the conductivity tensor (Eq. 21), we consider vxn=0 6= 0 but
vyn=0 = 0. This corresponds to an open FS with a drift velocity
along the x direction. In the high-field limit ( !c� ∝ B � 1),
we truncate the Fourier series at the leading order, yielding

�open FS ≈
q3B
2�

�
!c

 (vx0)
2

−
2Im(vx

−1v
y
1)

!c�
2Im(vx

−1v
y
1)

!c�
|vy1|

2

!2
c �2

 , [24]

where we made use of the equality: v−n = v∗n . Inverting the
matrix, we obtain the MR tensor:

�open FS ≈
(2�)!c

q3B�
1

4Im(vx
−1v

y
1)2 + (vx0)2|vy1|2

×

(
|vy1|

2 2Im(vx
−1v

y
1)!c�

−2Im(vx
−1v

y
1)!c� (v(x)0 )2 (!c�)2

)
.

[25]

We see that for an open FS, the longitudinal MR has
nonsaturating B2 behavior along the axis with a zero drift velocity
(ŷ in the above example), and saturating behavior (constant in B
in this simple model) along the other axis.

3. Comparison between Theory and
Experiment

As we will see, the theory satisfactorily explains the weak-field
magnetotransport measurements presented in ref. 45. We then
present two predictions of the theory that we did not anticipate
prior to starting this work: the dependence of the principal axis
of transport on filling, and the behavior of magnetoresistance
and quantum oscillations at densities between the CNP and the
onset of quadratic MR. The former has important implications,
but it cannot be confirmed with our present datasets because of
limitations of the Hall bar geometry. The latter can be considered
smoking gun evidence for the presence of the lowest-energy van
Hove point and the energetic splitting of the Dirac cones.

We present calculations for � = 1.38◦ (independently
measured for the region of the experimental device we focus on),
and � = 0.2% and ' = 0◦, parameters which are not measured
in the experiment but are chosen to yield reasonable quantitative
agreement between the theoretical and experimental results with
respect to the filling range of open FSs and to the frequencies
of magnetoresistance oscillations to be presented later. The
general phenomena of open FSs and quadratic MR hold for
a broad range of heterostrain parameters � and '. We do not
perform fine-tuning of these input parameters for two reasons: 1.
We do not expect our strained BM model in Eq. 2 to yield

precise quantitative agreement with experiment. Specifically,
the model has particle–hole symmetry, which is absent from
experimental measurements. More sophisticated noninteracting
model calculations (49, 50) as well as interaction renormalizations
(61) would likely be necessary to properly account for such
details. 2. Increasing � broadens the filling range that displays
open FSs, but for a given �, varying ' strongly tunes this range
(Fig. 1 G and H ), so there is some flexibility in assigning the two
parameters to match the experimental measurements. This might
be overcome by also seeking to match the position of the lowest
van Hove singularity and the evolution of sizes of the two Fermi
pockets near the CNP, but the simplifications in the BM model
noted in (1) above caution us against drawing strong quantitative
conclusions from the comparison.

In Fig. 2, we show the computed MR along the principal
transport axes (A) and the Hall number (B). For comparison,
we plot the experimentally measured longitudinal and transverse
resistivities (C ) and Hall number (D) for the TBG device studied
in ref. 45.

In the filling ranges with open FSs, the calculated �2(B)
exhibits quadratic nonsaturating MR, whereas �1(B) saturates.
The filling range for which quadratic MR occurs is bounded by
the two outermost van Hove points of the zero-field strained
band structure. In experiment, we observe quadratic MR in
longitudinal resistivity within a similar range of fillings. More
strikingly, we observe quadratic MR in the transverse resistivity
as well. In some cases, with increasing field, the symmetric
part of the transverse resistivity becomes larger than that of the
longitudinal resistivity. As discussed earlier, this degree of mixing
can be attributed to the misalignment between the strain-induced
but filling-dependent principal axis of transport and the direction
of current flow in the Hall bar geometry.

At the first van Hove point (� ≈ ±0.6), the nonanalyticity
in the density of states leads to a cusp in the first derivative
of the zero-field resistivity with respect to filling (SI Appendix,
Fig. S6). As shown in Fig. 2A, atB 6= 0 the longitudinal resistance
as a function of filling develops a cusp at the first van Hove
point. The cusp becomes more pronounced with increasing B.
Experimentally, as shown in Fig. 2C, there is a cusp-like feature
developing at |�| ∼ 0.5 − 0.8 depending on the contact pair
within the device used, consistent with theoretical predictions.
In many contact pairs, this feature presents as a shoulder atB = 0,
only developing into a cusp at B ∼ 0.1 T (SI Appendix, Fig. S7).

As depicted in Fig. 2B, the calculated filling dependence of
the Hall number shows two singular sign changes near � ≈ ±2,
each falling within inside an open FS region. The filling at which
each sign-changing singularity occurs is B-independent and is
not directly associated with any van Hove point (see SI Appendix,
Fig. S5 for a plot of �H (B), which crosses zero at the same
filling fraction inside the open FS filling range for varying field
strength). Moreover, the filling dependence of the Hall number
nH tracks the filling fraction in a broad filling range near the
CNP, with the filling range being extended upon increasing B.
Note also that the Hall number is generally field-dependent due
to the impact of crystalline symmetries on the band dispersions
(See SI Appendix, section IV.A for a detailed analysis). In Fig. 2D,
we observe the same general shape of the Hall number. Within
the open FS filling range, however, the measured Hall number
qualitatively deviates from the theoretical curves. We tentatively
attribute this to a small constant offset in the magnetic field of
order 10 to 20 mT, an amount typical for trapped flux in a
NbTi/Nb3Sn superconducting magnet like ours. To explicate,
in the open FS regime, we expect (and observe) a large quadratic
symmetric component of the transverse resistivity together with
a vanishing antisymmetric component. Hence, quantification
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A B

C D

Fig. 2. Magnetotransport properties of strained TBG. (A and B) Theoretical calculations of transport properties as a function of magnetic field strengths !0�
for � = 1.38◦, � = 0.2% and ' = 0◦. The cyclotron frequency !c defined in Eq. 20 is filling dependent, hence our choice to use the bare cyclotron frequency
!0� = eB�/m0. The vertical dashed lines mark the calculated van Hove points, with yellow regions indicating open FSs. (A) Longitudinal MR along the principal
axes ê1 (dashed) and ê2 (solid) in units of �Q Γ

�M
, where �Q ≡ h/e2 is the quantum of resistance, Γ ≡ ℏ/� is the transport decay rate, and �M ≡ ℏvF |K|� is

the characteristic energy scale for moiré electrons. For a transport rate Γ = 0.1meV, �Q Γ
�M
≈ 9.6Ω, and !0� ≈ 0.13 is equivalent to a magnetic field strength

B ≈ 0.11T . (B) Hall number nH ≡ B/e�H plotted in units of ns , where 2ns is the total electron density for the narrow bands. (C and D) Experimental measurements
of longitudinal MR (contact pair 14-15) and transverse MR (contact pair 15 - 5) for the TBG sample in ref. 45, which has 20 contacts, at 1.6 K. Vertical dashed lines
mark the densities that we ascribe to van Hove points based on the cusp near � ∼ 0.8 and the onset of quadratic MR (shaded yellow). Finite-field resistivities
in panel (C) are symmetrized: � = (�(B) + �(−B))/2. Panel (D) is calculated from the antisymmetrized transverse resistivity. In the experimental figures, n/ns
labels the electron filling fractions per moiré unit cell.

of the antisymmetric component involves subtracting two large
numbers. An offset of only a few mT in the assigned field will
lead to a small part of the symmetric component mixing into
the antisymmetric component, leading to these deviations from
theory (SI Appendix, Fig. S8).

Our calculation finds a dramatic rotation of the principal axis
with filling, as illustrated in Fig. 3. In the filling range with open
FSs, the principal axis with saturating MR (ê1) is aligned with
direction of the shortest moiré triangular bond, suggesting that
the electrons are hopping more efficiently along the shortest
bond, which leads to a larger conductivity and therefore a smaller
resistivity. Remarkably, when filling is changed from the second
van Hove point (� ≈ ±1.3) to the vicinity of the CNP, ê1 rotates
by about 90°. This is likely associated with the larger Fermi pocket
encircling a Dirac point being elongated in a direction nearly
perpendicular to the open FS contours; see, for example, Fig. 1
D–F. Such rotation of the principal transport axis with filling
has been attributed to interaction-induced nematicity (14), but
we can now see that in some contexts, it could occur purely due
to strain-induced bandstructure effects. Such a filling-dependent
rotation of the principal transport axis was not possible to observe
in ref. 45 using the Hall bar geometry, where only �xx and �yx
are measured but not �yy. Additional transport measurements
are needed, where the filling dependence of the entire resistivity
tensor can be mapped out.

Since this theory predicts a third van Hove point between the
CNP and the filling range with open FSs, a direct experimental

signature of this van Hove point is desired. In Fig. 4, we reanalyze
quantum oscillation measurements of the TBG device discussed
in ref. 45. The effective cyclotron mass m∗ is light in the filling
range with two small closed Fermi pockets and dramatically
heavier in the filling range with only one closed pocket (Fig. 1
D–F and SI Appendix, Fig. S5). The large difference in masses on
either side of the innermost van Hove singularity can account for
the substantially lower-field onset of quantum oscillations close
to the CNP than away from it, as shown in Fig. 4A. Fig. 4B is
a Fourier transform of the quantum oscillation data with respect
to 1/B. In the filling range of −0.7 ≤ � ≤ 0.8, three distinct
frequencies fi=1,2,3 are clearly observed in the data, with f1 and
f2 corresponding to two small Fermi pockets, and f3 = f1 + f2
to the breakdown orbit: By 1T, the inverse magnetic length is
comparable to the momentum space distance between the two
small Fermi pockets (67). Each edge of this filling range is marked
by two features: 1. f1 and f2 disappear from the Fourier transform,
leaving only f3 at higher electron or hole filling. 2. A cusp-like
feature occurs in longitudinal MR (Fig. 2 A and C ). These both
are predicted by our model as features of a Lifshitz transition
on either side of the CNP, associated with crossing the lowest-
energy van Hove points. This detailed match unambiguously
demonstrates the existence of a third van Hove singularity to each
side of the CNP, at electron or hole filling range (respectively)
lower than the onset of B2 MR. The Hall number does not show
a sign-changing singularity at this van Hove point, as illustrated
in Fig. 2 B and D.
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A

B

Fig. 3. (A) Rotation of the transport principal axis ê1 with respect to the
global coordinate system for strained BM with � = 0.2% and ' = 0◦. The
three horizontal dashed lines are the bond directions. In the open FS region,
the saturating MR axis is locked to the shortest bond (L1) direction. However,
it rapidly rotates in the closed FS region upon approaching the CNP. (B)
Principal transport axes ê1 (red) and ê2 (blue) for a few filling fractions. Near
the CNP, ê1 is perpendicular to the shortest moiré bond direction. In the open
FS filling range (e.g., � ≈ 2.13), it is rotated to be parallel to the shortest bond
direction.

The frequencies f1,2 are a strong constraint on the amount
of heterostrain in the TBG sample. Specifically, as illustrated in
Fig. 4C, the frequency f2 is roughly two times f1, showing that the
two small Fermi pockets have an area ratio∼ 2 : 1. Theoretically,
as illustrated by the solid black lines in Fig. 4C, for a heterostrain
strength � = 0.2% and ' = 0◦, the areas Ai=1,2 of the two small
pockets, when converted to frequency via f −1

i ≡ (Δ 1
B )i = 2�e

ℏAi ,
are in good agreement with experiment. Furthermore, also note

that the frequencies f1,2 extrapolate to 0 at � ≈ ±0.04, showing
that the two Dirac points are shifted to finite (opposite) filling
fractions by heterostrain.

We observe behavior qualitatively similar in all respects to that
in Fig. 4A in all 3 longitudinal contact pairs for which we have
dilution-fridge measurements (SI Appendix, Fig. S11).

4. Summary and Outlook

In summary, we have shown that due to the large size of the moiré
unit cell at small twist angles, even a small amount of uniaxial
heterostrain on the microscopic scale can lead to dramatic changes
in the narrow bands of twisted bilayer graphene. A key feature
of the strained bandstructure is the splitting of the respective
energetic degeneracies of the two Dirac points and the three van
Hove points. The splitting of the two Dirac points leads to a
semimetallic state with two small Fermi pockets at the CNP.
On the other hand, the two outermost van Hove points bound
a broad filling range near � = ±2 where the constant energy
contours become open. Interestingly, the elongation of the larger
Fermi pocket near the CNP is perpendicular to that of the open
FSs, the latter being perpendicular to the direction of the shortest
moiré triangular bond.

We have analyzed the resulting magnetotransport in strained
TBG in the framework of the Boltzmann equation using the
method of characteristics, treating the magnetic field nonpertur-
batively. We showed that a nonsaturating quadratic longitudinal
magnetoresistance in a broad filling range near � = ±2 naturally
arises due to the heterostrain-induced open Fermi surfaces,
therefore explaining in remarkable detail experimental results in
off-magic-angle devices with lattice anisotropy (45). We have also
shown that the sign-changing singularities in the Hall number
occur in the open FS filling range and are not directly associated
with any van Hove singularity as commonly assumed, e.g., in
ref. 68. Furthermore, our theory reveals a dramatic rotation
of the transport principal axis as the filling is tuned from the
charge neutrality point to the filling range of open Fermi surfaces,
without invoking interaction-induced electronic nematicity.

A B

C

Fig. 4. (A) Line cuts of MR near the CNP taken at 26 mK in contact pair 4 to 5 at the indicated field strengths, in Tesla. Vertical dashed lines indicate our
estimated location of the lowest-energy van Hove points, based on the cusps in resistivity at low field. Within the region bounded by these points, the quantum
oscillations show up before 0.4 T, and their relative strengths do not follow a simple pattern. Outside of this region, the quantum oscillations onset at higher
field, and every multiple of 4 quantum Hall filling fraction is observed relatively equally. (B) Fourier transform of the quantum oscillation data with respect to 1/B.
It reveals a transition from two pockets to one pocket at the lowest-energy van Hove points. (C) Schematic description of the frequencies observed in panel (B).
Red dashed lines are frequencies from the experimental data. Solid black lines are predictions from the theory for � = 0.2% and ' = 0◦. The two frequencies
f1 and f2 sum to the one-pocket frequency f3 that extends beyond the first van Hove point. They additionally account for the nontrivial relative strengths of the
quantum oscillations within the bounds of the first van Hove points. As with other details of this work, the theory predicts electron–hole symmetry, while some
asymmetry is observed in experiment.
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Given the importance of energy-shifted van Hove points
in the transport properties of TBG devices, we have analyzed
previous quantum oscillation data, which has revealed a Lifshitz
transition from two pockets to one pocket at a filling fraction
where the innermost van Hove singularity is predicted to occur
based on theoretical calculations, offering strong evidence of
heterostrain effects on these devices. We have further proposed
several additional signatures to look for in future experiments.
These include a significant difference in cyclotron mass on either
side of the innermost van Hove singularity (probed qualitatively
but not quantitatively in the extant experiment) and a principal
transport axis with saturating magnetoresistance in the open
Fermi surface filling range.

Finally, given the amplifying effect of a small strain at the
underlying carbon lattice scale on the moiré lattice scale, the
latter of which controls the electronic behavior within the narrow
bands, it is tantalizing to consider strain engineering of such
devices to achieve effects which in regular solids would require
applying strain magnitudes incompatible with structural stability.

Data, Materials, and Software Availability. The data for Fig. 4 and SI
Appendix, Fig. S11 were previously published with ref. 45 in ref. 69. All
other experimental data are available at ref. 70. The code for calculating
magnetotransport of TBG under uniaxial heterostrain is available at ref. 71.
Tabular data with analysis notebook data have been deposited in Stanford
Digital Repository (https://doi.org/10.25740/zs335dw3715).
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