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ABSTRACT: Nature is rich with examples of highly specialized biological materials produced by organisms for functions, including
defense, hunting, and protection. Along these lines, velvet worms (Onychophora) expel a protein-based slime used for hunting and
defense that upon shearing and dehydration forms fibers as stiff as thermoplastics. These fibers can dissolve back into their precursor
proteins in water, after which they can be drawn into new fibers, providing biological inspiration to design recyclable materials.
Elevated phosphorus content in velvet worm slime was previously observed and putatively ascribed to protein phosphorylation.
Here, we show instead that phosphorus is primarily present as phosphonate moieties in the slime of distantly related velvet worm
species. Using high-resolution nuclear magnetic resonance (NMR), natural abundance dynamic nuclear polarization (DNP), and
mass spectrometry (MS), we demonstrate that 2-aminoethyl phosphonate (2-AEP) is associated with glycans linked to large slime
proteins, while transcriptomic analyses confirm the expression of 2-AEP synthesizing enzymes in slime glands. The evolutionary
conservation of this rare protein modification suggests an essential functional role of phosphonates in velvet worm slime and should
stimulate further study of the function of this unusual chemical modification in nature.

Velvet worms comprise an ancient group of terrestrial
invertebrates, including about 230 described species. The

two major subgroups, Peripatidae and Peripatopsidae, diverged
about 380 MYA.1 Velvet worms capture their prey by
projecting sticky slime from the papillae on each side of
their head2 (Movie S1). This gel-like slime, primarily
comprised of proteins, transforms into solid fibers under
mechanical shearing and rapid drying. The struggling of the
ensnared prey accelerates hardening into glassy fibers with a
stiffness comparable to Nylon.3 These biopolymeric fibers can
be solubilized in water, and new indistinguishable fibers can be
drawn mechanically in vitro from the resulting solution.3 The
mechanism for reversible fiber formation is thus encoded in the
chemical structure of the proteins. Indeed, mechanoresponsive
fiber formation outside the animal’s body under ambient
conditions and their recyclability provides a promising avenue
for bioinspired development of sustainable plastics and glues.3

Yet, many questions remain regarding slime composition and
underlying biochemical mechanisms guiding reversible fiber
formation.
Previous biochemical analyses from several onychophoran

species have revealed a primarily proteinaceous composition
with components of different sizes.4−6 Mid-molecular-weight
(MMW) proteins and small quantities of lipids (<1%) were
proposed to form condensed nanodroplets,4 while low-
molecular-weight (LMW) proteins are proposed to act as
antimicrobial components.6 However, several high-molecular-
weight (HMW) proteins were shown to be the major
structural component of slime fibers.3−8 Based on positive
phosphostaining and elemental analysis of the HMW proteins

from the Peripatopsidae species Euperipatoides rowelli, as well
as the high content of divalent cations (Mg2+, Ca2+),
phosphate-mediated electrostatic interactions were hypothe-
sized to drive reversible fiber formation.7,9 However, the
prediction of phosphorylated amino acids in Eu. rowelli slime
was solely based on bioinformatics analyses, and never
experimentally confirmed.7 Moreover, similar analysis of
HMW slime protein sequences from a Peripatidae species
collected in Singapore did not detect phosphorylation sites.10

Here, we elucidated the chemical nature of the slime’s
phosphorus content in two distantly related velvet worm
species using natural abundance NMR spectroscopy and
heteronuclear dynamic nuclear polarization (DNP) experi-
ments with magic-angle spinning (MAS), in combination with
higher-energy collision-induced dissociation (HCD) tandem
mass spectrometry (MS/MS) analysis of glycan protein
modifications. We demonstrate that in both species�the
peripatopsid Eu. rowelli and the peripatid Epiperipatus
barbadensis�large slime proteins possess an extremely rare
post-translational modification consisting of phosphonated
glycans. The occurrence of this protein modification in both
species indicates a highly conserved feature over at least 380
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MY, suggesting a critical functional role in the slime storage,
fiber formation, and/or adhesion.
Phosphorus is ubiquitous in living organisms and typically

found as phosphate esters (C−O−P bond),11 and less
frequently as phosphonates (C−P bond) in natural organo-
phosphorus compounds.12−14 We applied solution and solid-
state (ss) 31P NMR experiments to differentiate between these
forms in the slime from Eu. rowelli (Figures 1a, b) and Ep.
barbadensis (Figures 1c, d).1,13 Several intense 31P NMR
signals appear at 20−23 ppm (Figures 1b and d), which are
unambiguously assigned to phosphonates and are not environ-
mental contaminations (Figure S1). Additional weaker

phosphate peaks between 0−5 ppm, only found in Eu. rowelli,
are ascribed to phosphoproteins rather than phospholipid
phosphate esters, considering the low lipid abundance (Figure
S2).7 Quantitative peak analysis reveals that Eu. rowelli‘s slime
contains 17 times more phosphonates than phosphates (Figure
1b), while phosphates are essentially absent in Ep. barbadensis
(Figure 1d). The 31P NMR spectra reveal a difference in the
phosphonate region, with three peaks being detected in Eu.
rowelli’s slime at 22.2/21.6/21.0 ppm while the 21.0 ppm peak
is absent in Ep. barbadensis. This suggests subtle differences
between their phosphonate environments and may indicate
evolutionary variations between the two onychophoran
subgroups. In addition, the lack of phosphates in the slime
of Ep. barbadensis is consistent with the lack of phosphor-
ylation sites detected in the HMW proteins of the Singapore
velvet worm (Eoperipatus sp., a representative of Peripati-
dae).10

These results provide strong evidence that the high
phosphorus content in velvet worm slime previously ascribed
to phosphorylated proteins7,9 is, rather, associated with
phosphonate-rich molecules. These findings apply to both
fibrilized and nonfibrilized slime, as revealed for Eu. rowelli
(Figure 1b and Table S1). Phosphonates were also detected in
the bodies of both species by ssNMR (Figure S3). The
occurrence of natural phosphonates is well supported for
various marine and freshwater organisms; whereas phospho-
nate-containing moieties have only rarely been detected in
terrestrial invertebrates (see literature review of natural
phosphonates in Table S2). We thus proceeded to a detailed
characterization of the phosphonate moiety and its association
with slime proteins.
Comparison of 1D 1H (31P-decoupled) and 1H−31P TOCSY

(total correlation spectroscopy) solution NMR spectra of Eu.
rowelli slime to those of several phosphonate standards15

revealed that they are in good agreement with 2-amino-
ethylphosphonate (2-AEP) (Figures S4 and S5, and Table S1).
In marine microorganisms, the biosynthesis pathway of 2-AEP
is catalyzed by phosphoenolpyruvate mutase (PEPm),
phosphoenolpyruvate decarboxylase (Ppd) and 2-aminoethyl
phosphonate transaminase (AEPt).16−18 Local BLAST
searches of published protein sequences of these three
enzymes17 against transcriptomes of Eu. rowelli and Principa-
pillatus hitoyensis (representative of Peripatidae, like Ep.
barbadensis) revealed that PEPm-, Ppd- and AEPt-encoding
genes are expressed in the slime glands of both onychophoran
species (Tables S3−S6), supporting the ability of velvet worms
to produce 2-AEP phosphonate moieties. In addition to the
slime gland, these genes are expressed in several other tissues,
consistent with the detection of phosphonates in various parts
of the body of the worm (Table S4 and Figure S3), suggesting
a role of 2-AEP in other biological functions.

1H and 31P solution NMR diffusion experiments on Eu.
rowelli slime revealed that phosphonates are associated with
large molecules (Figure S6). On the other hand, lipid
extraction, 13C ssNMR, and phenol-sulfuric acid assay show
low amounts of lipids and glycans in the slime7 (Figures S1
and S7), excluding phosphonate modification of lipids or pure
polysaccharides. Therefore, phosphonates are most likely
associated with HMW proteins. 31P ssNMR experiments on
HMW (>300 kDa), MMW (100−300 kDa), and LMW (8−
100 kDa) fractions obtained from a triple dialysis of the slime
confirm this hypothesis (Figure 2). Phosphonates are indeed
associated with molecules above 100 kDa, while LMW

Figure 1. 31P ssNMR reveals phosphonates in the slime of two
distantly related onychophoran species. Photographs of (a) the
peripatopsid Euperipatoides rowelli and (b) corresponding solution
(black) and solid-state (red) 31P NMR spectra indicate predominant
phosphonates (Phn, highlighted in blue) compared to phosphate ester
(Pho, green). (c) Photographs of the peripatid Epiperipatus
barbadensis and (d) corresponding slime 31P ssNMR spectrum
shows only phosphonates.
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compounds contain phosphates (Figure 2b). According to
previous SDS-PAGE analyses, this includes HMW monomers/
complexes (232−429/478−634 kDa) or MMW (110 kDa)
proteins in Eu. rowelli slime.4,10

Deeper structural analysis of the 2-AEP moieties was
performed by MAS-DNP and HCD-MS/MS. MAS-DNP
provides enhanced sensitivity (Figure 3a and Figure S8),
enabling detection and identification of carbon signals in
endogenous abundance, and determination of proximity
between carbon and phosphorus atoms by monitoring the
magnetization transfer from 31P to 13C during cross-polar-
ization (CP); as duration increases, carbons further from the
phosphorus atom gradually appear on the spectra (Figure 3a,
b). The 2D 31P−13C CP MAS-DNP ssNMR experiments
performed on slime further confirm that 13C−31P contacts arise
from phosphonates rather than from phosphorylation (Figure
S9). Furthermore, carbons closer to the phosphonate moieties
have chemical shifts of 24.8 and 35.4 ppm (Figure 3b and
Figure S10), which agrees well with 2-AEP’s structure (Table
S1). This is further confirmed by the natural abundance 15N
MAS-DNP ssNMR spectrum in which the signal at ∼31 ppm
could correspond to 2-AEP’s amine (Figure S11). Carbons
further from the phosphorus atom appear at 63.3/75.0 ppm in
Eu. rowelli, and 61.1/66.5/75.0 ppm in Ep. barbadensis, which

are typical of glycans (Figure 3a, b, Table S7),16,19 indicating
the presence of phosphonated glycans in the slime. Addition-
ally, an intermolecular contact with a carbon at 44.4 ppm,
possibly corresponding to arginine carbon side chain (Figure
3a, Figures S10−S12) was detected only in Eu. rowelli’s slime.
DFT calculations (Figure S13) support an ∼2.9 Å distance
between 2-AEP’s phosphorus and arginine.
The 2-AEP modification of glycans associated with slime

proteins is further corroborated by HCD-MS/MS analyses of
trypsin-digested Eu. rowelli slime. The results show oxonium
ions revealing both unmodified and 2-AEP-modified N-
acetylhexosamine (HexNAc) decorating tryptic peptides
(Figures 3c and Figure S14). Previous biochemical analyses
of the peripatopsid Eu. kanangrensis assumed that carbohy-
drates mostly occur as N-acetyl galactosamine (GalNAc)5

bound to slime proteins via O-glycosylation. However, the
exact linking pattern and nature of the carbohydrate units
require further investigation (Figure 3d).
The physicochemical properties of glycans and, by

extension, the possible interactions with charged amino acids
will be altered by 2-AEP functionalization.20,21 At the native
pH of 5.2 for the ejected slime,3 the phosphonate moiety is
most likely in a zwitterionic charge state (Figure S15),
consistent with previous work highlighting the role of
electrostatic interactions between slime proteins during storage
and fiber formation.7 The local charge density in the HMW
proteins should increase their solubility, while also enabling
electrostatic interactions with divalent ions present at elevated
concentrations in the slime.4 This chemical strategy resembles
that observed in well-studied biological adhesives derived from
mussels and sandcastle worms. These materials are enriched in
charged amino acid residues, as well as post-translational
protein modifications such as 3,4-dihydroxyphenylalanine
(DOPA) and phosphoserine, which are crucial for material
formation and function.22,23 Electrostatic interactions are
especially important in these systems for influencing phase
separation of proteins, which functions in storage, transport,
and eventual solidification into functional glues.22−24 The
charged phosphonate moieties discovered here may thus
contribute to onychophoran slime storage and its transition to
recyclable biopolymeric fibers.
The occurrence of phosphonates in slimes from distinct

onychophoran subgroups suggests that phosphonate produc-
tion has been evolutionarily conserved for at least 380 MY and
might be shared by all existing onychophoran species. Given
the large metabolic cost to produce this modification,16 the
evolutionary conservation of phosphonate production suggests
an important role in the formation and function of slime fibers.
More generally, natural phosphonates have been reported
across various taxonomic groups of organisms, associated with
small organic molecules, glycans, lipids, or decorating
biomolecules such as glycolipids, glycoceramides, and glyco-
proteins with diverse functions (see detailed information and
references in Table S2). Given that phosphonate producers
have been predominantly reported in aquatic environments,
our findings suggest that the prevalence of natural
phosphonates in terrestrial organisms may be underesti-
mated.14,16,17,25 Notably, the ancestors of velvet worms (and
their closest extant relatives, water bears and arthropods) were
extinct lobopodians that mostly, if not exclusively lived in
marine habitats.26 Therefore, phosphonate production might
be an ancestral feature inherited from marine lobopodians, and
it seems probable that phosphonates may be detected in other

Figure 2. Triple dialysis of Eu. rowelli slime followed by 31P ssNMR.
(a) Simultaneous triple dialysis setup. (b) Dialysis fractions analyzed
by 31P ssNMR show that HMW proteins contain most of the
phosphonates (Phn), while LMW proteins (<100 kDa) lack
phosphonates but contain phosphates (Pho).
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descendants of this lineage, including tardigrades and various
arthropods (as already confirmed for migratory locusts; Table
S2).
In conclusion, this work describes a rare, presumably

charged phosphonoglycan modification (containing 2-AEP)
of HMW proteins in onychophoran slime. Verifying the
potential functions of this modification requires further
investigation, but our key insights into the molecular
composition and assembly of velvet worm slime may help to
inspire the design of sustainable polymers and adhesives.
Furthermore, the discovery of phosphonates in another
terrestrial invertebrate underlines the necessity to consider
phosphonates as a potential source of organophosphorus in
understudied groups of animals and their biological functions.
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■ ABBREVIATIONS
NMR, nuclear magnetic resonance; 2-AEP, 2-aminoethyl
phosphonate; MMW, mid-molecular-weight proteins; LMW,
low-molecular-weight proteins; HMW, high-molecular-weight
proteins; MS, mass-spectrometry; Phn, phosphonate; Pho,
phosphate; ssNMR, solid-state NMR; PEPm, phosphoenolpyr-
uvate mutase; Ppd, phosphoenolpyruvate decarboxylase; AEPt,
2-aminoethyl phosphonate transaminase; MAS-DNP, magic-
angle spinning combined with dynamic nuclear polarization;
HCD MS/MS, higher-energy collision induced dissociation
combined with tandem mass spectrometry; CP, cross-polar-
ization; HexNAc, N-acetylated hexose; GalNAc, N-acetyl
galactosamine; DOPA, 3,4-dihydroxyphenyalanine; MAS,
magic-angle spinning; DFT, density-functional theory; CID,
collisional-induced dissociation
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