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Abstract
The pioneering work of William F. Vinen (also known as Joe Vinen) on thermal 
counterflow turbulence in superfluid helium-4 largely inaugurated the research on 
quantum turbulence. Despite decades of research on this topic, there are still open 
questions remaining to be solved. One such question is related to the anomalous 
increase in the vortex-line density L(t) during the decay of counterflow turbulence, 
which is often termed as the “bump” on the L(t) curve. In 2016, Vinen and col-
leagues developed a theoretical model to explain this puzzling phenomenon (JETP 
Letters, 103, 648-652 (2016)). However, he realized in the last a few years of his 
life that this theory must be at least inadequate. In remembrance of Joe, we discuss 
in this paper his latest thoughts on counterflow turbulence and its decay. We also 
briefly outline our recent experimental and numerical work on this topic.

Keywords Quantum turbulence · Superfluid helium-4 · Thermal counterflow · 
Vortex-line density · Leith equation

1 Introduction

When liquid 4 He is cooled to below about 2.17 K, it enters the superfluid phase 
(known as He II) [1]. Phenomenologically, He II can be considered as a mixture of 
two miscible fluid components: an inviscid superfluid and a viscous normal fluid 
that consists of thermal quasiparticles (i.e., phonons and rotons)  [2]. The flow 
of the superfluid is irrotational, and any rotational motion in a simply-connected 
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volume can emerge only with the formation of topological defects in the form 
of quantized vortex lines. These vortex lines are density-depleted thin tubes, 
each carrying a quantized circulation of � = h∕m , where h is Planck’s constant 
and m is the mass of a helium atom [3]. As a two-fluid system, He II has many 
unique thermal and mechanical properties. For instance, bulk He II can support 
two sound-wave modes: an ordinary pressure-density wave (i.e., the first sound) 
where the two fluids oscillate in phase, and a temperature-entropy wave (i.e., the 
second sound) where the two fluids oscillate oppositely  [2]. Furthermore, heat 
transfer in He II is via a counterflow mode  [2]: the normal fluid moves in the 
direction of the heat flux q with a mean velocity Un = q∕�sT  , where � = �s + �n 
is the total density of He II, s is its specific entropy, and T is the temperature; the 
superfluid moves in the opposite direction with a mean velocity Us = (�n∕�s)Un to 
ensure no net mass flow.

In the pioneering work of Joe Vinen, he discovered that turbulence can spon-
taneously emerge in counterflow in a uniform channel when the relative velocity 
Uns = |Un − Us| exceeds a small critical value Uc [4–7]. A phenomenological theory 
was proposed by him at the same time [6], and a more detailed understanding was 
achieved later by Schwarz who developed a vortex filament model to simulate the 
counterflow turbulence [8, 9]. More sophisticated simulations were reported subse-
quently by other researchers [10–12]. According to these theoretical works, the tur-
bulence exists only in the superfluid and is induced by a more or less random tangle 
of quantized vortices. A mutual friction force between the two fluids then emerges 
due to the scattering of the thermal quasiparticles off the quantized vortices [6, 9]. 
This model also nicely explains the observed Uns dependence of the vortex-line den-
sity L in steady-state counterflow, i.e., L1∕2 = �(Uns − Uc) with � being a tempera-
ture-dependent coefficient.

However, extensive experimental studies by Tough and colleagues indicated that 
counterflow turbulence may be more complex  [13]. They demonstrated that there 
can be two turbulent regimes in a uniform channel with relatively small cross-
sectional area: a T-I state with smaller values of � and a T-II state with larger val-
ues of � . They proposed that transitions to turbulence in the normal fluid may be 
responsible. In larger channels, they found a transition from laminar flow directly 
to a turbulent state denoted as T-III, and they suggested that both fluids might be 
turbulent in T-III. Later, Melotte and Barenghi developed a theory showing that the 
T-I to T-II transition may be associated with an instability in the laminar flow of 
the normal fluid [14]. Possible existence of normal-fluid turbulence in counterflow 
was indeed indicated in some early experimental studies  [15, 16]. More specific 
evidence showing the laminar-to-turbulent transition of the normal fluid in counter-
flow was provided later by Guo et al., who used metastable He∗

2
 molecular tracers to 

visualize the normal-fluid flow  [17]. Since then, there have been various measure-
ments of the normal-fluid velocity field in steady counterflow, revealing the pres-
ence of large-scale turbulence in the normal fluid with non-classical second-order 
statistics [18–25].

Besides the studies on steady-state counterflow, many experiments have also been 
reported on the decay of counterflow turbulence when the heat flux is turned off [5, 
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26–30]. According to Vinen’s model, the decay of the vortex-line density is given 
by:

where �2 is a dimensionless parameter of order unity. Therefore, one would expect 
to see a monotonic decay of the line density as L(t) ∝ (t + t0)

−1 . However, in the 
earliest work by Vinen [5], it was noted that L did not always decay monotonically, 
i.e., a “bump" can appear at about one second after the heater was turned off. Skr-
bek et al. first realized that the line density in the final stage of the decay actually 
scaled as L(t) ∝ t−3∕2  [26], which is consistent with the decay of a quasiclassical 
turbulence having a Kolmogorov energy spectrum [31]. Such a quasiclassical turbu-
lence can emerge in He II when the two fluids are strongly coupled by mutual fric-
tion at length scales greater than the mean vortex-line spacing � = L−1∕2 . However, 
the mechanism underlying the observed bump remained a mystery for many years. 
Several theories have been proposed to explain the origin of the bump [32–34], but 
a complete understanding of the phenomenon requires experimental information on 
the velocity field in counterflow besides just the time variation of L. This informa-
tion was provided by Gao et  al. in a more recent experiment where both quanti-
tative flow visualization and second-sound attenuation measurements were incor-
porated [28]. These authors reported that the anomalous decay of L(t) was always 
correlated with large-scale normal-fluid turbulence in steady counterflow before the 
heater was switched off. This observation inspired Vinen to develop a theoretical 
model of the bump. At the same time, a similar theory was developed independently 
by L’vov and Pomyalov. Together with the experimental teams, they published a few 
joint papers in 2016 to report this progress [29, 30]. The essence of the bump theory 
was later adapted by Walmsley and Golov to explain similar bumps observed in the 
decay of superfluid turbulence in the T = 0 limit [35].

During a visit to our group in 2019, Vinen realized that a key assumption in his 
model was likely incorrect. Since then, he focused on this problem until he passed 
away in 2022. In remembrance of Joe Vinen, we discuss his latest thoughts in this 
paper. In Sect.  2, we review the bump theory and some key observations in our 
experiments. In Sect. 3, we discuss Vinen’s thoughts on why the model needs to be 
revised. Section 4 summarizes the content of this paper and also briefly outlines our 
ongoing experimental and numerical work on counterflow turbulence in He II.

2  Variation of L(t) in Decaying Counterflow

In the experiment reported by Gao et al. [28], a vertical flow channel with a square 
cross-section (side width: 9.5  mm; length 300  mm) was connected to a tempera-
ture-controlled He II bath (see the setup schematic in Fig. 1a). A planar heater was 
installed at the bottom of the flow channel to generate thermal counterflow. To probe 
the normal-fluid motion, a femtosecond laser pulse (wavelength: 800  nm; pulse 
length: about 30 fs)  [36] was focused to pass through the channel to create a thin 

(1)
dL

dt
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�2�
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horizontal line of He∗
2
 excimer molecules with a thickness of about 100 � m and a 

length of about 1 cm. These molecular tracers, which are entrained by the viscous 
normal fluid, can be imaged via laser-induced fluorescence driven by an imaging 
laser pulse at 905 nm [17]. By examining the displacement of tracer-line segments, 
one can determine the local normal-fluid velocity in the heat flux direction U(z)

n
(r) 

at any location r along the tracer line. At the meanwhile, standard second-sound 
attenuation measurements were conducted to determine the spatially averaged vor-
tex-line density L(t) in the channel using a pair of porus membrane-based second-
sound transducers [37].

The key observations are summarized in Fig. 1b–d. At relatively large heat fluxes 
in steady counterflow, we found that as the heater was turned off, L(t) first dropped 
drastically and then a bump emerged. At large decay times, L(t) appeared to decay 
as L(t) ∝ t−3∕2 . These results are in good agreement with the earlier observations 
of Skrbek et  al.  [26]. However, at sufficiently low heat fluxes, we discovered that 
L(t) indeed decayed as L(t) ∝ (t + t0)

−1 , which is what one would expect for the 
decay of a random tangle of vortices according to Eq. 1. More importantly, our flow 
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Fig. 1  a A schematic of the He II counterflow experimental setup. b Decay of the vortex-line density 
L(t). The measurements were conducted at 1.65 K, and t = 0 denotes the moment when the heater was 
turned off. The dashed blue curves are model simulations as reported in Ref. [29]. The inset images show 
the deformation of representative He∗

2
 molecular tracer lines created in steady counterflow before the 

heater was turned off. c Measured second-order transverse velocity structure function of the normal fluid 
S
2
(r) at different decay times. The solid lines represent power-law fits to the data in the shaded region. d 

The power-law index extracted from c as a function of the decay time t 
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visualization measurements revealed that the appearance of the bump was correlated 
with the large-scale turbulence in the steady state. At large heat fluxes where the 
bump was seen, the normal-fluid flow in the steady counterflow was always turbu-
lent since we observed random deformations on the tracer lines (see inset in Fig. 1b). 
On the other hand, at small heat fluxes where the bump was absent, the tracer lines 
deformed in a reproducible manner in the steady counterflow, suggesting laminar 
normal-fluid flow.

The deformation of the tracer lines also allowed us to evaluate the second-order 
transverse velocity structure function defined as S2(r) = ⟨(U(z)

n
(r + r0) − U(z)

n
(r0)

2⟩ , 
where the angled brackets denote an ensemble average over various reference loca-
tion r0 and different experimental runs  [28]. The obtained S2(r) at different decay 
times with a steady-state heat flux of q = 426  W/cm2 is shown in Fig.  1c. In the 
shaded region, the S2(r) data can be fitted with a power-law function S2(r) ∝ rn . The 
extracted power index n as a function of the decay time t is shown in Fig.  1d. It 
is clear that n deceases with t from about 1 in steady state to about 2/3 at t ≃ 1 s, 
i.e., the time around which the bump of L(t) appears. Beyond this time, n settles at 
2/3. Note that the second-order velocity structure function and the turbulence energy 
spectrum are connected through a bridge relation as detailed in Ref.  [38]. Within 
the scaling length-scale range, the power-law form of S2(r) ∝ rn corresponds to a 
scaling of the energy spectrum E(k) ∼ k−(n+1) . Our data suggests that in decaying 
counterflow with a high steady-state heat flux, the energy spectrum evolves from an 
approximate form of E(k) ∼ k−2 to the classical Kolmogorov form of E(k) ∼ k−5∕3 
as the turbulence decays, and the bump of L(t) appears upon the completion of the 
spectrum evolution. We would also like to point out that we calculated the energy 
spectrum in steady counterflow directly using our flow visualization data, as doc-
umented in Ref.  [24]. Our analysis confirmed that the energy spectrum in steady 
counterflow exhibits a power-law scaling with a power index of about 2, consistent 
with the scaling of the structure function.

Inspired by these observations, Joe proposed an appealing explanation of the 
bump. Note that as the heat current was switched off, the two fluids can become 
strongly coupled by the mutual friction in a few milliseconds [39]. Assuming homo-
geneous and isotropic flows, the total energy E  per unit He II mass is approximately 
given by E = E1 + E2 , where E1 = B(�s∕�)�

2L accounts for the flows associated with 
individual vortices at scales comparable or smaller than � (here B is a dimensionless 
factor of order unity)  [3], and E2 represents the kinetic energy density associated 
with the large-scale coupled flows. The decay rate of the turbulence energy is related 
to the vortex-line density L as [31]:

where �′ is an effective viscosity of He II  [28, 40, 41]. If there are no large-scale 
flows, i.e., E2 = 0 , Eq. (2) reduces to exactly Eq. (1), which essentially describes the 
decay of a random tangle of vortices. But when E2 is nonzero, i.e., there are large-
scale flows induced by polarized vortex bundles, the variation of L(t) can deviate 
from the (t + t0)

−1 scaling.

(2)
dE

dt
= B�2

�s

�

dL

dt
+

dE2

dt
= −��(�L)2,
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For instance, if the large-scale flows exhibit a Kolmogorov spectrum so that the 
energy cascade rate �(k) remains constant in the inertial k range, Ė2 can be estimated 
based on the energy cascade rate at the integral scale, i.e., Ė2 = −𝜖(kD) ≃ −ΔU2

D
∕2𝜏D , 

where ΔUD denotes the velocity variance at the integral scale (which is comparable 
to the channel width D) and �D ≃ D∕ΔUD is the turnover time of the large-scale 
eddies. Then, considering the fact that ΔUD decreases with time as the turbulence 
decays [31], one can derive Ė2(t) ≃ −ΔUD(0)

3∕2D[1 + t∕𝜏D(0)]
3  [29]. Adding this 

Ė2 to Eq. (2) can lead to a smooth transition from the scaling of L(t) ∝ (t + t0)
−1 at 

small t to the scaling of L(t) ∝ t−3∕2 at large t.
However, the situation changes when the large-scale flows have an initial spec-

trum steeper than the Kolmogorov form, i.e., E(k) ∼ k−2 . In this case, it is straight-
forward to derive that the energy cascade rate depends on k as �(k) ∼ k−1∕2 . There-
fore, initially Ė2 ≃ −𝜖(k

�
) , which is smaller than −�(kD) by a factor (k

�
∕kD)

−1∕2 and 
hence should be negligible under typical experimental conditions. Only after the 
spectrum evolves into the Kolmogorov form, Ė2 can rise to −�(kD) and contribute 
to the buildup of the vortices. This delayed cascade of the large-scale turbulence 
energy can give rise to a bump of L(t). Based on this idea, Joe proposed that Ė2 in 
decaying counterflow could be modeled as:

with F(t) being a dimensionless function that evolves smoothly from 0 to 1 over a 
time comparable to �D(0) ≃ D∕ΔUD(0) [29]. It turns out that numerical simulations 
based on Eqs. (2) and (3) can reasonably reproduce the location and the height of 
the bump, as shown in Fig. 1b.

3  Vinen’s Latest Thoughts

A key assumption made in the theory presented in Sect. 2 is that the time it takes for 
the initial energy spectrum (i.e., E(k) ∼ k−2 ) to evolve to the final Kolmogorov form 
is about the turnover time of the large-scale eddies, i.e., �D(0) ≃ D∕ΔUD(0) . But is 
this assumption valid? During a visit to our lab in 2019, Joe raised this question to 
us. Based on his suggestion, we adopted the Leith diffusion model to examine the 
time evolution of E(k, t) [42]:

where C = 1.71 is the Kolmogorov constant and � is the kinematic viscosity of He II. 
This equation applies to homogeneous and isotropic turbulence and has been widely 
utilized to study energy-spectrum evolution in classical fluids [43–45]. In decaying 
counterflow where the two fluids are strongly coupled, one would expect that the 
spectrum evolution of the large-scale flows may also obey this classical model.

In our study, we suppose that initially the energy spectrum E(k, 0) is proportional 
to k2 at small k, which reaches a maximum E0 at k = k0 , and then falls off as k−2 at 

(3)Ė2 ≃ −
ΔU(0)3

2D[1 + t∕𝜏D(0)]
3
F(t),

(4)
�E(k, t)

�t
=

2

11C3∕2

�

�k

[
k13∕2

�

�k
(k−3E3∕2(k))

]
− 2�k2E(k),
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large k as indicated by our flow visualization data. We take the turnover time for 
the energy-containing eddies as �0 = 23∕2�∕k

3∕2

0
E
1∕2

0
 . This is equivalent to taking 

k0 = 2�∕D and �0 = 2D∕ΔU0 . We can then introduce the following dimensionless 
parameters Ẽ = E∕E0 , t̃ = t∕𝜏0 , and k̃ = k∕k0 to convert Eq. (4) into a dimensionless 
form:

Here we have dropped the viscous term in Eq.  (4) and replaced it by imposing a 
sharp cutoff at k̃ = 1000 . Our initial energy spectrum then takes the following 
dimensionless form (i.e., see the black line in Fig. 2a:

By integrating Eq.  (5), the evolution of the spectrum can be obtained, which is 
shown in Fig. 2a. We see that the spectrum evolves to the Kolmogorov form after a 
dimensionless time t̃ less than 0.1, i.e., about an order of magnitude smaller than the 
turnover time of the energy-containing eddies. Indeed, this is not really a surprising 
result because only a small fraction of the energy in the energy-containing eddies 
needs to be lost in order for the evolution to the Kolmogorov spectrum to occur at 
large k.

We have also tested the evolution of an initial energy spectrum that has practi-
cally no weight for k̃ greater than about 2:

The simulation result is shown in Fig. 2b. Although this spectrum evolves into the 
Kolmogorov form more slowly than does that given by Eq. (6), the time required for 

(5)
𝜕Ẽ

𝜕t̃
=

𝜕

𝜕k̃

[
k̃13∕2

𝜕

𝜕k̃
(k̃−3Ẽ3∕2)

]
.

(6)Ẽ(k̃, 0) =
2k̃2

1 + k̃4
.

(7)Ẽ(k̃, 0) =
k̃2

1 + k̃4

[
1 − tanh(5(k̃ − 1.5))

]
.

Fig. 2  Evolution of the dimensionless energy spectrum with an initial form given by a Eq.  (6) and b 
Eq.  (7). These simulations were conducted using the Leith diffusion equation as discussed in the text. 
The dashed line shows the scaling of a Kolmogorov spectrum
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this evolution is still significantly less than the turnover time of the energy contain-
ing eddies. Therefore, the analysis based on the Leith equation clearly suggests that 
the evolution of the initial energy spectrum to the Kolmogorov form in decaying 
counterflow should be much quicker than what we had believed, i.e., the F(t) func-
tion in Eq. (3) should evolve from 0 to 1 in a much shorter time than �D(0) . Accord-
ing to the theory presented in Sect. 2, the bump should therefore emerge much ear-
lier than the observed time. On the other hand, experimental data shown in Fig. 1d 
do suggest that the spectrum evolves to the Kolmogorov form in a time comparable 
to �D(0) . This discrepancy made Joe realize that some ingredients may be missing in 
his original theoretical model.

Note that the Leith equation (i.e., Eq. 4) applies to isotropic turbulence. But as 
Biferale et al. pointed out recently, steady-state counterflow turbulence can exhibit 
strong anomalous anisotropy at small scales  [46, 47]. This anisotropy can be con-
ceptually understood by considering two turbulent eddies (one in each fluid) as 
shown schematically in Fig. 3a. If these two eddies do not correlate and overlap in 
space, they would be very effectively damped by the mutual friction  [39]. On the 
other hand, if the two eddies are coupled, the mutual friction dissipation may remain 
small such that these eddies could survive for a sufficient time to sustain a cascade. 
But due to the opposite mean flows, any initially coupled eddies must be swept apart 
at later times. The larger eddies can remain coupled for longer times, whereas the 
smaller eddies become uncorrelated quickly and hence are promptly damped. There-
fore, the population of the coupled eddies must be suppressed as the length scale 
is reduced. Furthermore, for coupled eddies that are elongated perpendicular to the 
heat flux direction (i.e., Fourier modes with large kz , which are denoted by Joe as the 
“perpendicular modes”), they remain coupled for much shorter times as compared 
to those eddies elongated parallel to the heat flux direction (i.e., Fourier modes 
with small kz , denoted as the “parallel modes”). Therefore, the perpendicular modes 
should be strongly suppressed in steady counterflow.

Joe believed that this anisotropy in steady counterflow must affect how fast 
the energy spectrum could evolve into the Kolmogorov form after the heat flux 
was switched off. His idea is illustrated in Fig. 3b. In the steady state, the large-
scale eddies may feed energy to both the perpendicular modes and the parallel 

Big 
eddies
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mutual friction

Parallel modes:

Vortex
tangle

increasing

Dissipation by mutual friction

( ) ~ ; 2nE k k n
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Turbulent
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)b()a( Parallel modes
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nUsU

Fig. 3  a A schematic showing how the turbulent eddies in the two fluids of different orientations become 
decoupled in He II counterflow. See more detailed discussions in Refs. [46, 47]. b A schematic illustrat-
ing Joe Vinen’s view on how the turbulence energy flows in counterflow
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modes. The perpendicular modes are strongly damped by the mutual friction. 
Consequently, the parallel modes must lose energy by inertial transfer to both 
smaller eddies and to those perpendicular modes. As the heater is turned off, the 
energy contained in the parallel modes would continue to feed to the perpendicu-
lar modes until finally all the modes are populated such that a Kolmogorov spec-
trum can be achieved. The buildup of the perpendicular modes is likely to take 
longer time than is indicated by the solution of the Leith equation. Based on this 
idea, Joe started to develop a revised model of the bump, taking into account the 
spectrum anisotropy. But unfortunately, his physical conditions deteriorated rap-
idly starting from 2021, and he was not able to finish this work before he passed 
away in 2022.

4  Summary and Ongoing Work

We have performed a Leith equation analysis on the time evolution of the turbulence 
energy spectrum with an initial form that is consistent with what we observed in our 
decaying He II counterflow experiment. Our results suggest that a key assumption 
made in the theoretical model developed by Joe Vinen and colleagues for explaining 
the bump puzzle is likely inadequate. According to Joe, this issue may be resolvable 
by taking into account the anisotropy of the initial energy spectrum.

To carry forward Joe’s idea and research efforts, we recently started a numeri-
cal simulation using a revised Leith diffusion model designed for homogeneous but 
anisotropic turbulence  [48]. Besides the Leith equation simulation, we have also 
developed a stereoscopic molecular tagging technique to measure the normal-fluid 
velocities both parallel and perpendicular to the heat flux direction  [49]. Our pre-
liminary data suggest that the energy spectrum of the parallel velocity component 
is much larger than that of the perpendicular velocity component, and this differ-
ence increases with decreasing k. Note that in the Hall-Vinen-Bekarevich-Khalat-
nikov (HVBK) model simulations conducted by Biferale et  al., an isotropic driv-
ing force acting at large length scales was adopted to generate the turbulence [46, 
47]. This forcing scheme leads to comparable spectrum heights at small k for both 
velocity components, which is unable to account for our observation. On the other 
hand, our earlier experimental and numerical studies revealed that the vortex-line 
density fluctuations in steady counterflow can lead to velocity fluctuations primarily 
in the heat flux direction [50–52]. But these anisotropic disturbances occur at rela-
tively small length scales and are not expected to cause large-scale anisotropic flows. 
Nonetheless, Polanco and Krstulovic recently conducted HVBK-model simulations 
assuming a random isotropic driving force that acts only at small length scales [53]. 
They showed strikingly that the turbulence energy can inversely cascade to large 
length scales. We tried to repeat this HVBK-model simulation using a driving force 
at small length scales that fluctuates in both space and time but could not reproduce 
the reported inverse energy cascade. Through communications with these authors, 
we realized that the driving force adopted in their simulations was random in space 
but constant in time, which is probably not directly applicable in real thermal 
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counterflow. We are currently devising new forms of anisotropic driving force in 
the HVBK model with the hope to better reproduce our experimental observations. 
These experimental and numerical results will be compiled and reported in a future 
publication.

5  Dedication to Joe Vinen

The author W.G. first met Joe Vinen in 2008 at a workshop in San Antonio on 
low-temperature flow visualization, organized by Steven W. Van Sciver. They 
started collaborating since then. After W.G. joined Florida State University, Joe 
regularly visited W.G.’s lab every year to participate data analysis and result 
interpretation. Practically, Joe served the mentor role and motivated W.G. to 
investigate various aspects of quantum turbulence. Over the years, they jointly 
published over a dozen papers. Joe’s passion for research and his kind guidance to 
younger generations will be remembered for years to come.
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