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Absence of superconductivity in topological metal ScInAu2 
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A B S T R A C T   

The Heusler compound ScInAu2 was previously reported to have a superconducting ground state with a critical 
temperature of 3.0K. Recent high throughput calculations have also predicted that the material harbors a to
pologically non-trivial band structure similar to that reported for β-PdBi2. In an effort to explore the interplay 
between the superconducting and topological properties properties, electrical resistance, magnetization, and x- 
ray diffraction measurements were performed on polycrystalline ScInAu2. The data reveal that high-quality 
polycrystalline samples lack the superconducting transition present samples that have not been annealed. 
These results indicate the earlier reported superconductivity is non-intrinsic. Several compounds in the Au-In-Sc 
ternary phase space (ScAu2, ScIn3, and Sc2InAu2) were explored in an attempt to identify the secondary phase 
responsible for the non-intrinsic superconductivity. The results suggest that elemental In is responsible for the 
reported superconductivity in ScInAu2.   

1. Introduction 

Many recent studies in condensed matter physics and materials sci
ence have been focused on the investigation of symmetry-protected to
pological states [1,2]. On top of the initial efforts to identify and classify 
different topological states, increasing efforts have been spent on 
exploring the interplay between these states and other electronic and 
magnetic phases [3,4]. One such avenue of particular interest is mate
rials systems exhibiting both non-trivial topological states and super
conductivity [5,6]. These compounds are candidates for being realized 
as true topological superconductors which are predicted to host 
Majorana fermions. 

One such candidate, the 5.4K superconductor β-PdBi2, attracted 
attention when it was found to have topologically non-trivial surface 
states [7]. Ensuing research of the compound revealed a variety of 
interesting properties including complex spin textures [8] and a possible 
spin-triplet order parameter [9,10]. Furthermore, spectroscopic mea
surements on thin films of β-PdBi2 were claimed to have shown evidence 
of non-trivial superconductivity and Majorana fermions [11]. However, 
other measurements have shown that the topological surface states 
likely play no role in the compound’s bulk superconductivity [12,13]. 
Clearly, it would be interesting to compare these results to those for a 
different compound with a similar combination of superconducting and 

topological properties. 
The search for candidate materials with certain combinations of 

properties has recently been facilitated by the accessibility of new da
tabases of both experimental and computationally predicted properties. 
In this case, we searched for materials that exhibited an intersection of 
two properties: 1. Previous experimental reports of superconductivity, 
and 2. Computational prediction of a topologically non-trivial band 
structure. The list of experimental Tc values was taken from the Super
Con database [14]. Topological classification for these compounds were 
obtained from the Topological Quantum Chemistry Project [15–17]. The 
compound ScInAu2 was among a small number of materials that indi
cated superconductivity at readily accessible temperatures (above ∼ 2K) 
and a “TI” (topological insulator) classification. This combination of 
properties lead us to investigate ScInAu2 further. The topological clas
sification “topological insulator - split electronic band representation” is 
the same as that for β-PdBi2 [15–17]. 

Given the facts above, we thus sought to characterize the potential 
interplay of superconductivity and topological properties in ScInAu2. 
Polycrystalline ScInAu2 was synthesized via arc-melting. Annealing the 
samples yielded nearly single phase ScInAu2 that displayed no super
conducting transition down to 1.8K via electrical resistivity measure
ments and 2K via magnetization measurements. These results are in 
contrast to earlier work  [18] which indicated superconductivity in 
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ScInAu2 with a critical temperature of 3K. Measurements reveal that 
only unannealed samples present the previously reported super
conducting transition at 3K, though the shielding in the magnetic sus
ceptibility is incomplete. These results indicate that ScInAu2 is not 
superconducting down to 1.8K and that the previously reported critical 
temperature (Tc) of 3K is likely due to a secondary phase. Based on these 
results several other compounds in the Au-In-Sc system were probed in 
search of a potential superconducting phase that could explain the 
partial shielding of unannealed ScInAu2 leading to the conclusion that 
elemental indium is responsible. 

2. Methods 

Arc-melted samples were prepared by combining the raw elements 
(Au 99.95% metal basis, In 99.99% metals basis, and ultra high purity 
Ames Laboratory Sc) in stoichiometric ratios and melting on a water- 
cooled copper hearth under Ar atmosphere. Each sample was melted 
multiple times, and was flipped in between each melting to ensure ho
mogeneity throughout the boule. Samples that did not contain In had 
negligible mass loss, whereas samples containing In showed mass losses 
around 3%. In order to compensate for this, extra In was added and the 
samples were arc-melted again until the mass of the sample indicated 
the correct stoichiometry had been reached. The samples were then 
annealed while wrapped in Ta foil under partial Ar atmospheres. The 
crystal structures were characterized with powder x-ray diffraction 
(XRD) using a Siemans D500 diffractometer or a Panalytical X’Pert Pro- 
diffractometer, and Rietveld refinements using GSAS-II  [19] yielded 
lattice parameters consistent with those given in literature for each 
compound unless otherwise noted. Electrical transport and magnetiza
tion measurements were performed in Quantum Design PPMS and 
MPMS systems respectively, at temperatures down to ∼ 2K. 

3. Experimental results 

3.1. ScInAu2 

Polycrystalline samples of ScInAu2 were synthesized via arc-melting. 
Samples were measured both before and after annealing at 700∘C for 
three days. Fig. 1 presents XRD data for both the annealed and unan
nealed samples. While the unannealed sample shows a mixture of pha
ses, including ScInAu2, ScAu2, and In, the annealed data indicates nearly 
single phase ScInAu2. The annealed sample presents a single unidenti
fied impurity peak near 34∘C (marked with an asterisk). The fit pre
sented here indicates a cell parameter of 6.695øA which is in good 
agreement with literature values, and produces a residual of ∼ 8%. 
Electrical resistivity measurements performed on the annealed sample 
(Fig. 2) show metallic behavior from room temperature down to the base 
temperature of 1.8K with no indication of the superconductivity at 3K 
previously reported [18]. It should be noted that the earlier work did not 
mention if the samples were subjected to any annealing process. 
Therefore, we carried out additional measurements on the un-annealed 
multi-phase sample in order to confirm that the reported superconduc
tivity comes from a secondary phase. 

Fig. 3 shows the result of magnetic susceptibility measurements on 
unannealed ScInAu2. The data show a clear drop in the susceptibility 
beginning slightly below 3K. At the base temperature of 2K the transi
tion is still incomplete but has reached a shielding fraction of more than 
50%. In order to estimate the shielding fraction, we included the 
demagnetization correction of the roughly spherical sample. The sub
stantial shielding indicates that the secondary phase likely comprises a 
sizable fraction of the total sample volume. Hence, the XRD data sug
gests that either In or ScAu2 is responsible. A measurement of the 
magnetization vs field at 2K (inset of Fig. 3) indicates Hc1 ∼ 0.004T and 
complete flux expulsion by ⪅0.015T. The critical field of In at 2K is only 
0.018T, which is roughly consistent with our observations [20]. The low 
critical field indicates that the superconducting impurity is almost 

certainly unreacted elemental indium (Tc = 3.4K). Though the Tc 
observed here is somewhat lower that that of indium (∼ 3.0K from the 
onset in susceptibility), this could be caused by a combination of dis
order, impurities, strain, and/or granularity. Nonetheless, we also tested 
several other compounds in the Au-In-Sc system (including ScAu2) that 
had not previously been measured at low temperatures in order to 
determine if they could instead be responsible for the superconductivity 
observed in the unannealed sample. 

3.2. ScAu2 

Arc melted and annealed samples of ScAu2 show diffraction patterns 
that matched the expected MoSi2-type structure [21]. Electrical re
sistivity measurements present metallic behavior with a residual re
sistivity ratio (RRR) of ∼ 50. No evidence for superconductivity is 

Fig. 1. Top: XRD pattern of unannealed ScInAu2 with ticks indicating expected 
peaks of In, ScAu2, and ScInAu2. Bottom: XRD pattern of annealed ScInAu2. The 
small residual indicates that a nearly single-phase sample of ScInAu2 was 
grown. A small impurity peak is marked with an asterisk. 

Fig. 2. Resistivity versus temperature of ScInAu2 down to 1.8 K. No indication 
of superconductivity is observed. 

J.M. DeStefano et al.                                                                                                                                                                                                                           



Physica C: Superconductivity and its applications 589 (2021) 1353928

3

detected down to 1.8K (see Fig. 4). The weak upturn in resistivity below 
∼ 10K could be due to a Kondo effect arising from magnetic impurities 
or due to grain boundary scattering in the polycrystalline sample. 

3.3. ScIn3 

Single crystals of ScIn3 were grown with the molten flux method: 
80:20 at. % In:Sc were heated in an alumina crucible sealed in a quartz 
ampule under 70torr Ar gas to 1000∘C and then cooled to 400∘C over 
240hours. After holding at this temperature of 8hours, the ampule was 
centrifuged to remove the flux. This revealed small, cubic crystals, 
confirmed by xray diffraction to be cubic ScIn3 [22]. 

Magnetic measurements on ScIn3 (see Fig. 5) yielded a diamagnetic 
signal with an onset of around 3K, but the shielding fraction of order 1%. 
Furthermore, a magnetic field of 0.05T removed this feature. Both of 
these facts indicate that the superconductivity is not intrinsic to the 
ScIn3 but is due to droplets of In flux on the surfaces of the crystals. 
Superconducting transitions have been observed at 0.78K and 0.71K in 
YIn3 and LaIn3 respectively [23], suggesting that ScIn3 probably be
comes superconducting below 1K. 

3.4. Sc2InAu2 

Samples of Sc2InAu2 were synthesized by arc melting. The tetragonal 
Mo2FeB2-type structure [24] was confirmed by x-ray diffraction, though 
unidentified secondary phases were present. Nonetheless, magnetic 
susceptibility measurements from 2-300K presented no evidence for 
superconductivity or any other anomalies. 

4. Conclusions 

The previously reported superconducting behavior of ScInAu2, a 
material that shares the same topological classification as β-PdBi2, has 
been re-analyzed. These measurements suggest that ScInAu2 is not 
intrinsically superconducting, but that unannealed samples can exhibit 
partial superconducting shielding in the magnetic susceptibility due to a 
secondary phase - most likely unreacted indium. We also investigated 
the possibility that another phase is responsible for the superconducti
vity in unannealed samples of ScInAu2. Queries were performed with the 
Materials Platform for Data Science [25] and the Superconducting Ma
terial Database [14] to search for compounds in the Au-In-Sc family that 
are reported to be superconducting. However, no other phases with 
reports of Tc ∼ 3K were found. Several compounds in this ternary phases 
space had not previously been characterized at low temperature, so we 
also screened ScAu2, ScIn3, and Sc2InAu2 and found that they are all 
essentially non-magnetic non-superconducting metals with no anoma
lies in the resistivity or magnetic susceptibility down to ∼ 2K. 

With the existence of large databases of experimental and compu
tational properties, the search for materials with certain combinations of 
properties is now straightforward. In this case we identified an inaccu
racy in the record - ScInAu2 is non-superconducting, though it had 
previously been reported to have Tc = 3K [18]. However, it is clear that 
there are a large number of known superconducting materials with 
non-trivial band structures awaiting further study. 
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Fig. 3. Shielding percentage versus temperature on unannealed ScInAu2. The 
incomplete shielding suggests that an impurity phase is responsible. The inset 
shows the magnetization as a function of applied field. Very small fields of 
order  0.01T are sufficient to suppress the superconductivity. 

Fig. 4. Electrical resistivity versus temperature for ScAu2 measured from 1.8 to 
400K. The sample is non superconducting in this temperature range. 

Fig. 5. Magnetic susceptibility vs temperature for ScIn3. The onset of a 
diamagnetic signal near 2.8K at 0.01T (100Oe), together with the tiny shielding 
fraction near 1% is consistent with superconductivity deriving from small 
amounts of indium secondary phase. 
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