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Anisotropic positive linear and sub-linear magnetoresistivity in
the cubic type-II Dirac metal Pd3In7
Aikaterini Flessa Savvidou1,2, Andrzej Ptok 3, G. Sharma4, Brian Casas1, Judith K. Clark5, Victoria M. Li5, Michael Shatruk5,
Sumanta Tewari 6 and Luis Balicas 1,2✉

We report a transport study on Pd3In7 which displays multiple Dirac type-II nodes in its electronic dispersion. Pd3In7 is characterized
by low residual resistivities and high mobilities, which are consistent with Dirac-like quasiparticles. For an applied magnetic field
(μ0H) having a non-zero component along the electrical current, we find a large, positive, and linear in μ0H longitudinal
magnetoresistivity (LMR). The sign of the LMR and its linear dependence deviate from the behavior reported for the chiral-anomaly-
driven LMR in Weyl semimetals. Interestingly, such anomalous LMR is consistent with predictions for the role of the anomaly in
type-II Weyl semimetals. In contrast, the transverse or conventional magnetoresistivity (CMR for electric fields E⊥μ0H) is large and
positive, increasing by 103−104% as a function of μ0H while following an anomalous, angle-dependent power law ρxx / ðμ0HÞn
with n(θ) ≤ 1. The order of magnitude of the CMR, and its anomalous power-law, is explained in terms of uncompensated electron
and hole-like Fermi surfaces characterized by anisotropic carrier scattering likely due to the lack of Lorentz invariance.
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INTRODUCTION
Triggered by the discovery of topological insulators1, the
condensed matter community has, in recent years, focused
intensively on the topological nature of the electronic band
structure of materials. The subsequent discovery of Dirac2,3 and
Weyl semimetals4,5 as well as higher order topological systems6

continues to strengthen this interest. In particular, the study of
Dirac materials is at the forefront of research, ranging from d-wave
superconductors7, graphene8, bulk semi-metallic systems such as
Cd3As29, to Lorentz invariance violating systems that are
characterized by tilted Dirac/Weyl cones, or the so-called type-II
Dirac/Weyl compounds10–12.
This intense interest in topological compounds relies on the

prediction and observation of unreported phenomena such as a
fermion chirality-dependent circular galvanometric effect13–15, a
Hall-effect in the absence of time-reversal symmetry16,17, or the
prediction for an anomalous magnetoresistivity resulting from the
chiral anomaly among Weyl nodes18–24. In conventional or three-
dimensional type-I Dirac/Weyl systems, the chiral or axial anomaly
is predicted18–24 to provide an additional positive contribution to
the longitudinal magneto-conductivity (LMC) of semimetallic
systems when a component of the external magnetic field μ0H
is aligned along the electric field E driving the current density j.
Essentially, μ0H favors one fermion chirality to the detriment of the
other inducing a net charge transfer, or an axial current between
nodes.
In type-II Dirac/Weyl systems, the existence of tilted Dirac/Weyl

cones also leads to an anomalous contribution to the LMC25. It
was originally predicted25 to occur when μ0H is oriented within a
cone in k−space satisfying the condition ∣T(k)∣ > ∣U(k)∣, where
∣T(k)∣ and ∣U(k)∣ represent the kinetic and potential energy
components of the linear energy dispersion. Subsequent work
found that this anomaly introduces a linear in field contribution to

the LMC for fields applied along the tilt direction, but a quadratic
one under perpendicularly applied fields26,27. Recent studies paint
a more nuanced and complex scenario, with the anomaly leading
even to a positive contribution to the LMR, in contrast to the
proposed positive contributions to the LMC28–30. Furthermore,
according to refs. 28–30 the observation of positive versus negative
LMR would depend on the tilt direction of the Dirac/Weyl cones,
the level of tilting, their relative inclination, relative separation, the
orientation of μ0H relative to the vector connecting them, and the
strength of intervalley scattering. Throughout this text, conven-
tional magnetoresistivity (CMR) refers to a configuration where
j⊥μ0H
Type-II Weyl semimetals provide another interesting scenario

due to the presence of both electron and hole pockets coexisting
with the Weyl points on the Fermi surface. As observed in the
type-II Weyl semimetal WTe231, a near exact compensation of
electron and hole pockets may result in a very large and non-
saturating magnetoresistivity that varies quadratically with the
applied field. Here, we shall show that even uncompensated
electron and hole pockets can yield significant CMR and exhibit an
anomalous power law dependence on the magnetic field:
ρxx / ðμ0HÞn, with n ≤ 1. We thereby investigate both the
unconventional LMR and the anomalous CMR that results from
the axial anomaly acting on a type-II Dirac/Weyl system that lacks
carrier compensation and is characterized by anisotropic carrier
scattering on its Fermi surfaces.
To understand the influence of electronic topology on the

magnetoresistivity, a number of Dirac/Weyl systems have been
recently studied, including proposed type-II Weyl semimetals such
as WTe231 or NbP32, three-dimensional type-I Dirac semimetals
such as Cd3As29 or Na3Bi3, type-I Weyl semimetallic systems such
as TaAs4,5 and many others. These materials exhibit high carrier
mobilities9, in some cases very large, and linear CMR9,31,33, and
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evidence for the chiral anomaly (negative LMR)3–5. Experimentally,
there have been few reports on the transport properties of pure
type-II Dirac systems, with the CMR of systems like NiTe2 or SrAgB
displaying linear34,35, and in occasions a sublinear36 dependence
on field. And systems displaying substantial residual resistivities,
i.e., tens of μΩ cm like Ir2In8S, claimed to display power laws in
field with exponents ranging between 1 and 237. It is therefore
important to expose the transport properties of very clean and
isotropic type-II Dirac systems that do not display any type of
ordering.
Here, we focus on compounds belonging to the Ir3Ge7 family of

cubic structures that are known to display a remarkable
compositional variability. Chemical substitutions can vary the
electron count widely leading to semiconductors like
Mo3Sb5Te238, metals like Pd3In7, and even superconductors such
as Mo3Sb739. Metallic compounds like Pd3In7 or Pt3In7 have
already been previously predicted to be topologically non-trivial40.
Furthermore, the electronic band structure of the newly dis-
covered Rh3In3.4Ge3.6 compound, which belongs to the same
structural family, displays multiple band crossings close to the
Fermi energy εF, leading to type-I, type-II, and even type-III Dirac
nodes41. Our calculations reveal the existence of multiple type-II
Dirac nodes near the Fermi level of Pd3In7. In this study, we find
Pd3In7 to display a very low residual resistivity, high carrier
mobilities due to low carrier effective masses, and pronounced
CMR, which are the transport hallmarks of Dirac-like quasiparticles.
Remarkably, this compound tends to display linear CMR but with a
superimposed conventional quadratic in-field term42 at rather low
fields. This dependence crosses over to an angle-dependent
power law ρxx / ðμ0HÞn at higher fields, with n < 1, except for a
very specific magnetic field orientation where n= 1 over the
entire field range. In a LMR configuration, that is for j∥μ0H, we do
not observe the conventional saturating magnetoresistivity43.
Instead, a positive LMR is observed under fields as high as
μ0H= 35 T.

Given that Pd3In7 is a clean system that remains well below the
quantum limit under available magnetic fields, and displays no
magnetic or electronic order, we conclude that its anomalous LMR
results from the axial anomaly among type-II Dirac/Weyl nodes. In
contrast, the sublinear dependence of the CMR on the magnetic
field is explained as a multi-band effect due to the presence of
uncompensated electron and hole pockets of distinct carrier
mobilities. The angular dependence of the power-law exponent as
the field is rotated is attributed to a pronounced angle-dependent
Zeeman effect resulting from the large and anisotropic value of
the Landé g-factor in Pd3In7. This is likely to lead to an anisotropic
modification of the geometry of the Fermi surface(s) changing the
scattering rates or mobilities of electrons and holes on them, as
the field is rotated relative to the crystallographic axes. This effect
might be pronounced on the smallest Fermi surfaces. We argue
that this might explain the experimentally observed angular
dependence of the exponent n(θ) in an uncompensated metal like
Pd3In7.

RESULTS
Anomalous magnetoresistivity in Pd3In7
Figure 1a, b provide a schematic depicting the planes of rotation
of the magnetic field relative to the crystallographic axes, as well
as the definition of the angles ϕ and θ, used for measuring the
longitudinal and conventional magnetoresistivities, respectively.
The planes of rotation were defined by the natural morphology of
the measured single crystals. The resistivity ρxx as a function of the
temperature T for a Pd3In7 single crystal is displayed in Fig. 1c,
revealing metallic behavior with a linear dependence on T (red
line is a linear fit) for T > 50 K. For T≦ 50 K, it follows a quadratic
dependence on T (cyan line is a fit to a T2 term), indicating Fermi-
liquid behavior. The high value of the residual resistivity ratio,
RRR= (ρxx(300K)− ρxx(2K))/ρxx(2K)≃ 137, as well as the low
residual resistivity ρ0≃ 110 nΩ cm (inset in Fig. 1c), point to the
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Fig. 1 Linear and sub-linear magnetoresistivity in Pd3In7. a Sketch depicting the planes of rotation of the magnetic field μ0H, from I⊥μ0H to
I∥μ0H (longitudinal magnetoresistivity configuration or LMR), as a function of the angle ϕ. I is the electrical current. b Sketch illustrating sample
rotation under μ0H, where I is kept ⊥μ0H and the angle θ is varied (conventional magnetoresistivity configuration or CMR) c Electrical resistivity
ρxx of Pd3In7 as a function of the temperature T. For T > 50 K, ρxx displays a linear dependence on T (red line is a linear fit), while ρxx exhibits a
quadratic behavior (cyan line is a fit) for T≤50 K. Inset: ρxx in a magnified scale illustrating the residual resistivity ρ0≃ 110 nΩ cm. d Hall
conductivity σxy as a function of μ0H, displaying a minimum at μ0H0= 0.84 T. e Magnetoresistivity MR as a function of μ0H for 3 T≦ μ0H≦ 41.5
T. Blue and black lines correspond to the experimental data for θ= 0∘ and θ= 35∘, respectively. Dashed magenta line corresponds to a linear fit
of the θ= 0∘ data for the entire field range, while red dashed line indicates the deviation of the black line with respect to linear behavior. Inset:
MR as a function of μ0H, for fields up to μ0H= 9 T. Red line is a fit of the data for μ0H < 4 T to MR = d1 + d2(μ0H) + d3ðμ0HÞ2, where d2 and d3 are
coefficients of the linear and quadratic terms, respectively.
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very high crystalline quality of the sample, or its low level of
disorder. To evaluate the mean transport mobility μtr of our
crystals, we calculated the Hall conductivity σxy based on the
magnetoresistivity ρxx and the Hall resistivity ρxy:

σxy ¼ � ρxy
ρ2xx þ ρ2xy

(1)

σxy as a function of μ0H is plotted in Fig. 1d. From σxy, we can
extract the mean transport mobility of the charge carriers: μtr ¼
ðμ0H0Þ�1 ¼ 1:2 ´ 104 cm2V−1s−1. This value is comparable to those
extracted from type-II Dirac semimetallic systems like MoTe244 or
WP245, which are characterized by extremely high magnetoresis-
tivities, but considerably smaller than those values reported for
Dirac nodal line systems like ZrSiSe46, and over two orders of
magnitude smaller than the mobilities reported for the Dirac
semimetal Cd3As29. In contrast, Pd3In7 is a metal characterized by
large Fermi surfaces (or large carrier densities) as discussed below,
or is not a nearly compensated semimetal as is the case for those
systems. The mean free path l0 ¼ vFμtrm

?=e (vF is the Fermi
velocity and e the electron charge) can be estimated from the
effective mass m⋆ extracted from the de Haas-van-Alphen (dHvA)
oscillations (discussed below) and the average transport mobility
μtr, yielding Fermi surface cross-sectional area dependent values
l0 ≈ 0.88− 4.75 μm at T= 0.35 K. The low value of the residual
resistivity ρ0 and the large values of l0 clearly indicate that
impurities have a negligible role on the transport properties of
Pd3In7. This is an important point for the subsequent discussions.
The magnetic field dependence of the magnetoresistivity MR

depends on the angle of rotation relative to the main crystal-
lographic axes. The MR, in %, is defined as:

MR ¼ ρxxðμ0HÞ � ρxxð0Þ
ρxxð0Þ

� 100 (2)

As depicted in Fig. 1a to measure LMR, the magnetic field μ0H
was rotated from an initial position perpendicular to the current I
or ϕ= 0∘, with μ0H∥(−1, 2, −1), and towards μ0H∥I∥(−1, 0, 1) or
ϕ= 90∘. For the conventional magnetoresistivity or CMR, μ0H
remains perpendicular to the current I over the entire angular
range, with θ= 0∘ corresponding to μ0H∥(−1, 2, −1) and θ= 90∘

to μ0H∥(1, 1, 1) (Fig. 1b). The magnetic field was rotated within
these specific crystallographic planes due to the morphology of
the as-grown crystals. Electrical contacts were placed on the
largest as-grown crystalline surface. Previously, the crystal was
polished on the opposite surface to decrease its thickness. In
Pd3In7 crystals, planes perpendicular to the main crystallographic
axes, i.e., (1,0,0), (0,1,0) or (0,0,1), yield rather small surfaces which
precluded transport measurements with magnetic fields applied
along them. The lowest temperatures were chosen to minimize
the role of phonons.
As seen in the inset of Fig. 1e, most field orientations lead to a

similar MR behavior, quadratic in field dependence at low fields and
sublinear at higher fields (Fig. 1e, black trace). A sublinear MR in a
very clean system, that displays several Dirac crossings in its band
structure (as we show below), has not been thoroughly exposed and
characterized. In the inset of Fig. 1e, or for θ= 35∘, the quadratic in
field response is observed for μ0H < 4 T where the MR is fitted (red
line) to a combination of linear and quadratic components: MR
¼ d1 þ d2ðμ0HÞ þ d3ðμ0HÞ2. At the same angle and for μ0H > 4 T,
the MR becomes sub-linear in μ0H, but as seen in Fig. 1e for the
black trace, it does not saturate even under fields as large as μ0H =
41.5 T. The red dashed line is a guide to eye indicating the deviation
of the raw data with respect to linear behavior.
Over a broad range of fields the MR can be fitted to a power law

(red line in Supplementary Fig. 4), i.e., MR = aðμ0HÞn with n < 1.
Remarkably, and as seen in Fig. 1e, blue line, when the angle of
rotation is θ= 0∘ the MR displays a linear dependence on μ0H from
μ0H= 0 T all the way up to μ0H= 41.5 T. The magenta dashed line

is a linear fit illustrating this point. At the highest fields, the
observed deviations with respect to linearity are attributable to
the Shubnikov-de Haas oscillations. This linear dependence is
observed only at this precise orientation, whereas for all other
angles the MR displays a combination of linear and quadratic
terms for μ0H < 4 T, followed by sublinear dependence at higher
fields. Notice that the linear MR of Pd3In7 is far more pronounced
than that of Ag2+δSe, a compound previously proposed as a
possible megaGauss sensor47, and extends to higher fields. This
linearity extends to higher temperatures and follows Kohler’s
scaling48, as seen in Supplementary Fig. 5. The LMR displays a
positive, and nearly linear in field behavior over the entire ϕ range.
In Supplementary Fig. 6, the LMR is displayed for μ0H∥I, or ϕ= 90∘.
This linear (and sublinear) in magnetic field dependence for the

CMR contrasts markedly with previous reports for type-I Weyl
semimetals, i.e., a ðμ0HÞ2 dependence followed by a linear one at
high fields49. For compensated semimetals, the dependence on
the magnetic field is quadratic over the entire field range31,49. As
we discuss below, the linear as well as sublinear dependence on
the magnetic field is explained as a multi-band effect due to the
presence of uncompensated electron and hole pockets in the
Type-II Dirac metal Pd3In7.
For an axis of rotation that maintains the magnetic field

perpendicular to the electrical current, i.e., for a configuration that
maintains the Lorentz force at its maximum value throughout the
entire angular range, we observe an anisotropic fourfold, butterfly-
like, angular MR (Fig. 2a, b). Figure 2b shows the CMR for various
magnetic fields, showing an increase of ~1000% under μ0H = 9 T.
Figure 2a corresponds to a polar plot of the CMR in units of %.
From the polar plot one observes two- and fourfold symmetries, as
well as dips in the CMR at θ= 0∘, 30∘ and 90∘. It is important to
emphasize that this angular structure cannot be attributed to the
superimposed Shubnikov-de Haas oscillations. Supplementary Fig.
1 displays the CMR as a function of μ0H for several values of θ. At
the highest fields, its background, upon which the oscillations are
superimposed, displays two clear minima at θ ~ 30∘ and θ ~ 55∘.
This confirms the intrinsic origin of the angular structure in the
CMR that originates the butterfly like magnetoresistivity seen at
lower fields, albeit over the entire angular range the current is
always maintained perpendicular to the field.
For a rotation starting from I⊥μ0H or ϕ= 0∘ tilting towards

ϕ= 90∘ or I∥μ0H, thus modulating the strength of the Lorentz
force, the MR is shown in Fig. 2c. As expected, for ϕ= 0∘ the MR
reaches its maximum value of 7500% under μ0H= 35 T,
decreasing as the angle increases or as the Lorentz force
decreases. Nevertheless, in the region between ϕ= 30∘ and
ϕ= 55∘, the MR displays a second maximum whose origin remains
to be understood. This so-called butterfly magnetoresistivity, was
previously reported for the ZrSiS family of compounds and
attributed to charge carriers initially exploring topologically trivial
orbits on the Fermi surface that become non-trivial as the
magnetic field rotates with respect to the main crystallographic
axes50. Subsequent work concluded the existence of an aniso-
tropic scattering rate on its Fermi surface that is probed by the
electronic orbits upon rotation of the magnetic field46.
To further expose the sublinear magnetoresistivity in Pd3In7, we

plot in Fig. 3a and b the power exponent n as well as the
coefficient α respectively, extracted by fitting the raw MR as a
function of μ0H (Fig. 1e), measured at several angles, to the
function MR ¼ αðμ0HÞn. For θ= 0∘, we obtain n= 1 but it
progressively decreases as the θ increases, displaying a minimum
n≃ 0.7 around θ= 55∘–60∘. In contrast, the coefficient α displays a
maximum around this angular range, increasing by nearly 250%
relative to its value at 0∘. The power law exponent was also
calculated through the derivative of ρxx ¼ ρ0 þ αðμ0HÞn, i.e.,
n ¼ ∂ lnðρxx � ρ0Þ=∂ lnðμ0HÞ, in order to expose its field and
angular dependence. In Fig. 3c and d, we plot n for two distinct
crystallographic planes of rotation of μ0H relative to I. In Fig. 3c, I is
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kept ⊥μ0H while μ0H rotates, or the angle θ is varied, as seen in
Fig. 1b. The plot reveals n= 2 for μ0H < 4 T, which becomes n ~ 1
for 4 ≤ μ0H ≤ 10 T. Above 10 T, n takes values 0.5≦ n≦ 0.9, for all
angles excluding θ= 0∘. In contrast, when the current is rotated
from I⊥μ0H to I∥μ0H, n ≈ 1 is extracted for the entire angular
range, see Fig. 3d. In this panel, deviations with respect to n= 1
result from noise in the derivative due, for example, to the
superimposed Shubnikov-de Haas oscillations. Both sets of
measurements were performed on the same crystal, with the
electrical contacts attached to the same crystallographic plane.
The raw magnetoresisistivity data ρxx(μ0H) for multiple values of
both angles ϕ and θ, are presented in Supplementary Figs. 1 and 2
in the SI file. Small differences between distinct θ= 0∘and ϕ= 0∘

traces shown in the main text and in the SI file, are attributable to
the backlash of the mechanical rotator used for the experiments,
i.e., Δθ ≈ 1∘ and Δϕ ≈ 1∘. The important point is that the power law
exponent of the magnetoresistivity remains at a value n= 1, or

well below it, as the field perpendicular to the current increases,
displaying a quadratic term only at the lowest fields. Below, we
argue that sublinear behavior is expected for a non carrier
compensated system with both types of carriers having distinct
mobilities. In contrast, the linear behavior for the LMR can result
from the chiral anomaly among type-II Dirac nodes. Notice, that
this unconventional magnetotransport behavior, precludes a
reliable extraction of carrier densities and mobilities. This would
require a simultaneous fitting of both the Hall-effect and the MR
to semiclassical equations, which cannot describe the linear
magnetoresistivity over the entire field range.

Band structure calculations and Fermi surface through the de
Haas-van Alphen effect
We proceed to evaluate the geometry of the Fermi surface (FS) of
Pd3In7 through the de Haas-van Alphen (dHvA) effect, in an
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attempt to correlate its geometry with the one predicted by band
structure calculations. The magnetic torque, τ= VM × (μ0H), where
V is the volume of the sample and M its magnetization, is shown in
Fig. 4a as a function of the magnetic field. The sample was rotated
according to the sketch in Fig. 4 starting with μ0H∥(0,−1, 1)
corresponding to θ0 ¼ 0� and ending with μ0H∥(0, 1, 1) or
θ0 ¼ 90�. This particular plane of rotation was defined by the
geometry of the sample given that its (0,−1, 1) plane was the
largest. The crystal was first characterized via a 4-probe resistivity
measurement, before it was cut for the magnetic torque
magnetometry. As seen in Fig. 4a, one observes oscillations in τ
at T= 0.35 K due to the dHvA effect, starting at ~2–3 T, which
implies carrier mobilities exceeding 3000 cm2 V−1s−1. It turns out
that this value is smaller than μtr, but it could result from the
inherent lack of sensitivity of the torque technique at the lowest
fields. The oscillatory component, or the dHvA signal, which is
obtained after subtracting the background through a polynomial
fit, is plotted as a function of inverse magnetic field ðμ0HÞ�1 in Fig.
4b. Figure 4c, d displays the Fast Fourier transform (FFT) of the
dHvA signal to extract the superimposed frequencies F. Many
frequencies, and their harmonics, can be observed in the range
0–4 kT, which correspond to extremal cross-sectional areas of the
different FS sheets, according to the Onsager relation, F= ℏ/
2πe ⋅ A, where A is the cross-sectional area, ℏ is the reduced Planck
constant and e the electron charge. The magnitude of selected
frequencies as a function of the temperature are shown in
Supplementary Fig. 3 in the SI file. The experimental data have
been fitted using the temperature damping factor of the Lifshitz-

Kosevich formalism, i.e., X= sinhðXÞ, where X= 2π2kBTm⋆/eℏμ0H,
m⋆ is the carrier effective mass in units of the free electron mass
me

51. Supplementary Table 2 summarizes all the detected
frequencies and their corresponding effective masses. As seen,
all the experimentally obtained effective masses display values
within the ~0.08− 0.24me, with those associated to the lower
frequencies agreeing well with the theoretically predicted values.
On the other hand, the theoretical band masses mb associated
with the higher frequencies are overestimated in comparison to
the measured effective masses, indicating that the electronic
bands yielding these FS sheets disperse more linearly than
predicted by the calculations.
Interestingly, the amplitude of these dHvA frequencies is

markedly angle dependent. For instance, the κ-branch reveals
the existence of the so-called spin-zeros or angles where the
magnitude of the oscillations vanishes due to the spin-dephasing
factor in the Lifshitz-Kosevich formalism, i.e., Rs ¼ cosðπgm?=2m0Þ,
where g is the Landé g-factor51. This term reaches zero whenever
πgm⋆/2m0= (2n+ 1)π/2. Supplementary Fig. 7, displays the FFT
magnitude of the κ-branch as a function of θ0, revealing two spin-
zeros from which one can estimate both the value and the
anisotropy of the g-factor. To calculate the g-factor, we use two
approaches, one based on DFT calculations and the other on
experimental results. According to the theoretically calculated
effective masses shown in Supplementary Fig. 8, at the first spin-
zero occurring at θ0 � 30�, chosen by us to correspond to n= 0,
one obtains g ≈ 1.96. For the second at θ0 � 80�, or n= 1, one
obtains g ≈ 5.26. From Supplementary Fig. 8 it is evident that the

Fig. 4 De Haas-van Alphen effect in Pd3In7. a Magnetic torque τ at T= 0.35 K and as a function of μ0H for the angle θ0 ¼ 0�, where θ0 is the
angle between μ0H and the (0,− 1, 1) direction. Red line is a polynomial fit to the background. b Superimposed de Haas van Alphen (dHvA)
signal, as extracted from the magnetic torque in panel a as a function of inverse magnetic field ðμ0HÞ�1. c, d Fast Fourier Transform (FFT) of the
dHvA signal in (b), showing peaks at low and high frequencies that correspond to different extremal cross-sectional areas of the Fermi surface
labeled with Greek letters. Peaks labeled by gray colored letters are likely harmonics of the fundamental frequencies, or their combination.
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m?
κ associated to the κ-branch does not change considerably as a

function of θ0. In fact, even if we did not choose specific values for
m?

κ , the values of g for the first spin-zero would fall within
1.64 ≤ g ≤ 2.04, and 4.92 ≤ g ≤ 6.12 for the second. The other
approach is to use the experimentally obtained effective masses.
In Supplementary Fig. 9 we provide values of m?

κ for two angles,
i.e., θ0 ¼ 0� and 40∘. The DFT calculations in Supplementary Fig. 8
imply that m⋆ does not change much within the range
θ0 ¼ 30� � 60�. Therefore, the experimental value of m⋆ at θ0 ¼
40� can be safely used to estimate g at the first spin-zero, or n= 0,
yielding g= 9.1. For the second spin-zero, or n= 1, the value ofm?

κ
at θ0 ¼ 0� can be used, since our calculations indicate this value to
be equal to the value of m?

κ at θ0 ¼ 90�. This effective mass value
would yield g= 17.64. Regardless of the precise values used, one
can safely conclude that the Landé g-factor in Pd3In7 is anisotropic
and displays large values. Values that are considerably larger than
the usual g= 2 value assumed for free electrons, pointing to a
pronounced orbital contribution to g. The immediate conse-
quence of a large and anisotropic g-factor, would be a very
pronounced and anisotropic Zeeman-effect, capable of spin
polarizing and therefore deforming the geometry of the smaller
Fermi surfaces of Pd3In7. This, in turn, is likely to affect the
scattering rates and hence carrier mobilities on the FS sheets.
Now we proceed to compare the geometry of the experimen-

tally determined FS sheets with those resulting from our electronic
band structure calculations. A good agreement between them
would support the validity of the calculations, and hence the

existence of Dirac nodes in Pd3In7. Figure 5a displays the first
Brillouin zone of Pd3In7 along with its high symmetry points as
well as high symmetry directions connecting them. The actual
electronic band structure, along the main reciprocal lattice
directions of Pd3In7, is shown in Fig. 5b and Supplementary Fig.
11. Blue lines depict calculations including spin-orbit coupling
(SOC) while the orange ones exclude SOC. As seen in Fig. 5b, c,
and Supplementary Fig. 11, one easily identify a total of five tilted
Dirac type-II nodes along the Γ− H, Γ− N, and P-H directions that
are within ± 250 meV from the Fermi level εF, with some of the
associated bands dispersing linearly all the way up (or down) to εF.
In Fig. 5c, the crossings leading to type-II Dirac nodes are indicated
by green markers. Notice that several of the crossings observed in
Fig. 5b become gaped by the SOC, as is illustrated in Fig. 5c by the
red dashed line encircling two nearly touching bands. Other
crossings lead to Dirac nodal lines (see, Supplementary Fig. 11). To
illustrate the presence of multiple type-II Dirac nodes in this
system, we show in Fig. 5d a three-dimensional plot of a specific
crossing, or a type-II Dirac band touching, labeled as crossing 1 in
Fig. 5c, which is relatively close to εF. See methods for calculation
details.
Experimentally, the topography of the FS can be mapped out

via the angular dependence of the dHvA frequencies. A good
agreement between our observations and the theoretically
predicted angle-dependent FS cross-sectional areas would sup-
port our calculations and therefore the existence of Dirac nodes
close to εF in Pd3In7. Here, the fundamental question is if there is a

Fig. 5 Comparison between calculated and experimental Fermi surface cross-sectional areas. a First Brillouin zone (FBZ) of Pd3In7
indicating its high symmetry points and the high symmetry paths explored within its FBZ to evaluate its electronic band structure.
b Theoretically calculated electronic band structure of Pd3In7 in the absence (orange lines) and presence (blue lines) of spin orbit coupling
(SOC). c Electronic band structure of Pd3In7 along the Γ-H direction, revealing a number of degenerate crossings that lead to type-II Dirac
nodes (indicated by green dots). Several crossings become gaped when the SOC is incorporated into the calculations (indicated by dashed
red circle). d Three-dimensional plot of the band crossing labeled as 1 in panel c, revealing a type-II Dirac band touching. A few of these
crossings were found to produce Dirac nodal lines. e Three-dimensional plots of the calculated Fermi surface sheets in the FBZ resulting from
the distinct bands intersecting the Fermi level. f Comparison between the angular dependence of the experimental dHvA frequencies (gray
dots) and the theoretically predicted (colored dots) Fermi surface cross-sectional areas of Pd3In7. Here, the colors of the markers were chosen
to match those depicting each FS sheet. See, Supplementary Fig. 10 for a colored depiction of the individual bands leading to each of the
plotted Fermi surfaces.
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correlation between the type-II Dirac nodes and the anomalous
magnetoresistivity displayed by Pd3In7. But first, we must confirm
their presence by comparing calculated and experimentally
determined FS geometries.
Colored panels, in Fig. 5e, display the FS sheets for the different

bands intersecting εF. In Supplementary Fig. 10 the electronic
band structure is displayed with the bands intersecting εF having
different line colors to convey the respective bands that yield each
of the FS sheets shown in Fig. 5e. While gray markers in Fig. 5f
depict the angular dependence of the observed dHvA frequencies
F, colored markers correspond to the theoretically calculated FS
cross-sectional areas (in Fig. 5e). Bands 1 through 3 yield hole
pockets, while bands 4 and 5 produce electron-like sheets. In Fig.
5f, there is a good agreement between the experimental and
theoretical points for the high frequencies, or FS sheets, from
bands 2 and 3. These hole pockets are the FSs with the largest
volume relative to the volume of the Brillouin zone, and therefore
they contribute the most to the density of carriers. For the smaller
volume FS sheets (or lower frequencies), there are discrepancies
between the theoretical and experimental points. In our
experience, minor discrepancies between FSs determined through
quantum oscillatory phenomena and those resulting from Density
Functional Theory (DFT) calculations are rather common, see for
example refs. 52,53. One can understand this from the fact that
different DFT implementations, for example using distinct
electron-density functionals (GGA, PBE, HSE06, etc.), tend to yield
slightly different positions for the electron and hole bands relative
to εF. Therefore, we estimate the typical DFT error bar to be in the
order of a few tens of meV, by comparing the distinct DFT
implementations. However, such a small energy value, or small
displacement relative to εF, can strongly impact the sizes of the
smaller FS sheets.
In addition, multiple frequencies, harmonics and combinations

of harmonics are observed due to the complexity of the calculated
Fermi surface, and the high quality of the single crystals of Pd3In7
(Fig. 4c, d). This makes it challenging to distinguish fundamental
frequencies from harmonics and their combinations. Therefore,
we conclude that Fig. 5 points to a quite honest agreement
between calculations and the experimental data, thus supporting
the existence of Dirac type-II nodes in Pd3In7. This conclusion is
further supported by the small effective masses tabulated in
Supplementary Table 2, albeit they are not perfectly captured by
the calculations that yield heavier masses for the larger Fermi
surface sheets. This indicates that DFT overestimates the curvature
of some of the bands in the vicinity εF. The small experimental
quasiparticle effective masses, for all FS sheets, further support the
notion of Pd3In7 being a Dirac like compound. Despite minor
disagreements with the experiments, DFT reveals the presence of
multiple type-II Dirac nodes in Pd3In7 near εF and this is crucial for
interpreting our observations, as we outline below.

DISCUSSION
From the magnetoresistivity measurements we extracted four
important observations: (i) it displays a linear in field behavior
from μ0H= 0 T all the way up to the highest field value of
μ0H= 41 T when θ= 0∘, (ii) for all other values of θ, the
magnetoresistivity displays a superposition of linear plus quadratic
in field terms that becomes sub-linear when μ0H exceeds 4 T, with
a power exponent as low as n= 0.7, (iii) for a metal characterized
by large Fermi surface sheets (or, in contrast to nearly
compensated semimetals), the magnetoresistivity is very large,
reaching 104 % under μ0H= 41 T, and iv) its anisotropy leads to a
butterfly like angular dependence that was previously reported for
Dirac nodal line semimetals.
Linear CMR starting from very low magnetic fields was

previously reported for the pnictide FeP54, where a combination
of topological band structure with helimagnetic order, led the

authors to propose intra-band scattering among topological
bands for its origin. Linear CMR was also observed in high
mobility semiconducting GaAs quantum wells55 and ascribed to
the so-called resistance rule, dictating that their magnetoresistivity
should be proportional to the derivative of the Hall response with
respect to the induction field B or Rxx= dRxy/dB × B × α, where α is
a constant of proportionality. However, and as we show in
Supplementary Fig. 12, dRxy/dB × B is not at all linear for Pd3In7,
indicating the irrelevance of this scenario for this compound.
Linear CMR in the cuprates56, and also in the Fe based
superconductors57, was attributed to the field-induced renorma-
lization of the dynamics intrinsic to their quantum critical
fluctuations (associated to suppression of their magnetic order)
and hence of their concomitant quasiparticle lifetime. However,
Pd3In7 is non-magnetic, does not exhibit long-range charge-order,
and does not reveal evidence for pronounced electronic correla-
tions due to a possible proximity to a quantum critical point.
Therefore, these previously proposed mechanisms are unable to
address its linear magnetoresistivity, which in contrast to these
examples, is observed also for fields aligned along the electrical
currents, or in a LMR configuration. Linear CMR was reported for
Dirac and Weyl semimetals, like Cd3As29,58, NbP32, TiBiSSe59,
graphene60,61, topological insulators like YPdBi62 or Bi2Te3
nanosheets63, as well as charge/spin density-wave materials64.
Given the observation of linear CMR in multiple Dirac/Weyl
systems including Pd3In7, see Fig. 3c and d, one is led to conclude
that linear in field magnetoresistivity is intrinsic to linearly
dispersing electronic bands. Notice that linear LMR was previously
reported for WTe265, a compound also proposed to be a type-II
Weyl semimetal25. Although, in contrast to Pd3In7, WTe2 displays a
quadratic in field CMR31.
The theory of the quantum linear magnetoresistivity by

Abrikosov66, cannot be applied to Pd3In7. According to it, a very
small Fermi surface pocket dominates the magnetoresistivity
when it is driven to the quantum limit by an increasing field, or
when all carriers fill the lowest Landau level. In our case, the
observed as well as the calculated de Haas-van Alphen
frequencies, exceed μ0H= 100 T, implying that during the
measurements we remained far below the quantum limit for all
Fermi surface sheets. In Cd3As2 the linear MR is attributed to the
magnetic-field induced lifting of a proposed topological protec-
tion against backscattering9,67 or to mobility fluctuations caused
by disorder in this system58. We have no experimental evidence
pointing to topological protection in Pd3In7. As for mobility
fluctuations, it is very unlikely that such scenario would also
explain its sublinear magnetoresistivity as the crystal is tilted, or
the angular dependence of the power law exponent n. Instead, we
discuss below the possible role of a large anisotropic Zeeman-
effect on the geometry of the Fermi surface of Pd3In7 which we
postulate to be a non-compensated metallic system. Notice that
we cannot extract its carrier densities through fittings of our
transport data to conventional transport models because these
assume a quadratic in field behavior for the magnetoresistivity.
Pd3In7 has multiple type-II Dirac nodes (Fig. 5b, c, and

Supplementary Fig. 11) dispersing along distinct directions within
its Brillouin zone. Under a magnetic field, each type-II Dirac cone
splits into type-II Weyl cones of opposite chirality due to the
Zeeman effect. The vector connecting them is defined by both the
Zeeman-effect and the spin-orbit coupling (SOC) acting on each
band. Now, as the sample is rotated, the high Landé g-factor of the
system can trigger a strong and anisotropic Zeeman response,
modifying the geometry and hence the scattering rate on the FSs.
As a result, the ratio between electron and hole mobilities (μe/μh)
is likely to vary with the field. Now, as we show below, varying μe/
μh for a system with uncompensated carrier density (ne/nh ≠ 1)
explains the linear as well as the sublinear dependence of the
power-law exponent n(θ) of the CMR, even when these ratios are
assumed to be field independent.
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To better emphasize our point, we consider a simple two-band
model, for which the semiclassical conductivity is given by the
following expression in complex representation31

σ ¼ e
neμe

ð1þ iμeμ0HÞ
þ nhμh

1� iμhμ0Hð Þ
� �

; (3)

where ne and nh are the carrier densities of electrons and holes,
respectively, and μe and μh are their corresponding mobilities.
Equation (3) can be inverted to find the resistivity ρ in complex
representation. The real part of ρ provides ρxx.
In Fig. 6 the exponent n, corresponding to the power-law, ρxx �

ðμ0HÞn is plotted for the above two-band model. For illustrative
purposes, in the color contour plot of n displayed in Fig. 6a, we
assume that the electron and hole carriers are uncompensated by
fixing nh/ne= 0.75, while allowing both the magnetic field and the
mobility ratio μh/μe to vary. In Fig. 6b, we display a few traces
leading to the color contour plot. The ratio nh/ne= 0.75 is not
based on experimental values extracted from measurements on
Pd3In7 since, as previously mentioned, one cannot satisfactorily fit
its transport data to conventional transport models. In fact, when
we attempted to fit the Hall conductivity to the two-band model,
it tended to converge to very large, non-physical ratios for the
electron and hole mobilities, and respective densities, suggesting
that our interpretation is correct. It turns out that from Eq. (3) the
behavior of the exponent n with respect to the magnetic field and
the mobility ratio μh/μe is in general non-monotonic. The
important observation is that the exponent n can fall below two
and all the way to one (linear dependence) and even below one
(sublinear dependence). In Fig. 6c and d, we maintained the
mobility ratio fixed at μh/μe= 0.5 but varied the ratio nh/ne. As
seen, the magnetoresistivity displays a sublinear dependence on
the external field for all values of nh/ne. Experimentally, we

determine that 1/μe ≈ μ0H0 ≈ 0.8 T (Fig. 1d) corresponding to the
magnetic field range from 0 to 32 T in Fig. 6.
Since varying the angle θ in Fig. 1b can change the mobility

ratio μh/μe (k-dependent scattering rate on the Fermi surfaces), the
angular behavior of the exponent n(θ) in Fig. 3c is explained. We
do not have an explanation for the evolution of the power law
prefactor α. We point out that sublinear magnetoresistivity was
also detected in the type-II Dirac semimetal NiTe236.
As seen through Fig. 5 and Supplementary Fig. 11, the spin orbit

coupling gaps a series of linear band crossings, but it still leaves
others ungapped. The DFT calculations indicate that there are two
non-gapped type-II Dirac nodes along the Γ− H direction, a third
one along the Γ− N direction, and a fourth one along the P− H
direction, all located within ~ 250 meV of εF. The calculations
indicate that other bands, not associated to linear band crossings
or Dirac like nodes, and therefore topologically trivial, also
intersect εF. However, as previously discussed, there are no known
mechanisms that would explain the linear LMR based on
topologically trivial bands and associated Fermi surfaces. In
contrast, and as we discuss below, there are published predictions
correlating the linear LMR with the chiral anomaly among type-II
Dirac nodes28,30,68. Given the absence of an alternative explana-
tion, and the existence in a very clean system like Pd3In7 of several
Dirac type-II like nodes near εF, the only possible conclusion is to
attribute the linear LMR to the non-trivial topology of the
associated bands, despite not being located exactly at εF.
In effect, when the magnetic field has a nonzero component in

the direction of the electric field, as in Fig. 1a, the linear
dependence on the magnetic field, as well as the sign of the
positive and linear LMR can be understood purely due to chiral
anomaly28,30,68. It was initially anticipated that the chiral anomaly
contribution to the LMR is always negative and quadratic.

Fig. 6 Origin of the anomalous power law in the conventional magnetoresistivity. a Contour plot of the exponent n in the power-law
dependence of the magnetoresistivity on the magnetic field (μ0H), ρxx � ðμ0HÞn, evaluated after inverting Eq. (3) and for the ratio among
carrier mobilities μh/μe ranging from ~0 to 1. μh and μe stand for hole and electron mobilities, respectively. Here, μ0H0 ≈ 1/μe ≈ 0.8 T, which
corresponds to magnetic fields ranging from 0 to 32 T. b Calculated resistivity ρxx as a function of the external magnetic field for different
values of the ratio μh/μe. For panels (a) and (b), we chose nh/ne= 0.75. c Contour plot of n in the μ0H - nh/ne plane. It is clear that a marked
difference in carrier mobilities, when coupled to even a small imbalance in carrier densities, can favor n ≤ 1. d Calculated resistivity ρxx as a
function of the magnetic field for different values of the ratio nh/ne. For panels (c) and (d), we choose μh/μe= 0.50.
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However, it was shown that the magnetoresistivity can be linear as
well as positive for sufficient tilting of the Weyl cones in the
direction of the magnetic field28,30. The change in the sign of the
magnetoresistance, i.e., from negative to positive, results from a
finite intervalley scattering. In the Supplementary Information, we
explicitly show the emergence of positive linear magnetoresis-
tance for a model of tilted Weyl fermions, see, Supplementary
Discussion and Supplementary Fig. 13. Even though our calcula-
tion is restricted to Weyl cones with the tilting parameter less than
unity, we expect the qualitative features to remain the same even
for larger values of the tilt, as also shown in earlier works26. Here,
we emphasize that for the LMR configuration, there is no Lorentz
force acting on the charge carriers. Therefore, one cannot
calculate the LMR using the semiclassical approach of Eq. 3 which
yielded a power law inferior to 1 for the CMR. In the present case,
the natural mechanism that would yield linear longitudinal
magneto-resistivity, as observed by us, is the chiral anomaly
among type-II tilted Weyl nodes in broad agreement with
refs. 26,28,30. However, a precise comparison with these models
would require additional DFT calculations that consider the
Zeeman-effect as well as the spin-orbit coupling. The goal would
be to determine the precise k-space orientation of the vector(s)
connecting the field-induced type-II Weyl nodes, and their relative
orientation with respect to electric and magnetic fields.
It is frequently assumed that the Dirac/Weyl nodes should be

located at, or in the vicinity of εF, for the axial anomaly to affect
transport properties. However, this critical distance to εF is system
specific, and hence band-structure dependent. This mechanism
depends on the remnant texture of the Berry phase at εF, whose
sources/sinks are the Dirac/Weyl nodes, and on the exact
scattering mechanism(s) at εF within a given system. Without
detailed calculations, that are beyond the scope of this manu-
script, there is no reason to assume that a distance ΔE≃ 250 meV,
with respect to εF, for the type-II Dirac nodes of Pd3In7, should
preclude a role for the chiral anomaly. Furthermore, in lattice
models for Weyl semimetallic systems with Weyl nodes located
away from εF, several models predicted a pronounced role for the
axial anomaly, see for example, ref. 69. As for the linear
magnetoresistivity observed in Fig. 3d, over the entire range of
the angle ϕ, one must consider that the axial anomaly is predicted
to play a predominant role even when a very small component of
the electric field is aligned along the magnetic field69,70. These
models consider not only the role of the inter-valley scattering and
the tilting of the cones, but also the non-linearity of the electronic
bands away from the Dirac/Weyl nodes69,70. The angular range in
Fig. 3d encompasses two behavioral extremes ranging from linear
CMR (ϕ= 0∘) to linear LMR (ϕ= 90∘). Therefore, it is not surprising
that the superposition of both contributions still leads to linear
magnetoresistivity at intermediary angles.
We conclude by stating that our observations indicate that two

mechanisms affect the magneto-transport of Pd3In7, i.e., the i)
axial anomaly among field-induced type-II Weyl nodes, and ii) a
multi-band effect arising from an uncompensated metal subjected
to a pronounced, and angle-dependent, scattering rate on its
Fermi surface. The observation of linear LMR in two crystal-
lographic distinct compounds, i.e., cubic Pd3In7 and orthorhombic
WTe265, indicates that it is intrinsically associated to the type-II
Dirac nodes in their electronic dispersion. Anisotropy in the
scattering rate might result from a large and anisotropic Zeeman
effect, or, the large and anisotropic Landé g-factor of Pd3In7. Or, it
might be intrinsic to systems lacking Lorentz invariance, as is the
case for type-II Weyl/Dirac systems, implying that our observations
might be generic and extendable to other systems. Even though
linear LMR and sublinear CMR, have been previously and
independently observed in Weyl semimetals, their simultaneous
observation in a single system is the distinct hallmark of this work.

METHODS
Sample synthesis
High quality single crystals of Pd3In7 were synthesized via an In-
flux method, where elemental Pd and In, with an atomic ratio
14:86, were loaded in a Al2O3 crucible and sealed in an evacuated
fused silica ampule. The tube was heated to 750 ∘C and held there
for 48 h. Then, it was cooled to 600 ∘C at a rate of 4 ∘C/h and
afterwards slowly cooled to 400 ∘C at a rate of 0.5 ∘C/h. At this
point, the tube was centrifuged and the as-harvested single
crystals were etched in diluted HCl to remove residual metal from
their surface. The result was the synthesis of shiny crystals with
dimensions up to 2 mm.

Sample characterization
The chemical composition of the crystals was determined using
single-crystal x-ray diffraction (SCXRD) spectroscopy. Face index-
ing of the single crystal was performed at room-temperature using
a Rigaku-Oxford Diffraction Synergy-S single-crystal diffractometer
equipped with a HyPix detector and a monochromated Mo-Kα
radiation source (λ = 0.71073 Å). The data set was recorded as a
series of ω-scans at 0.5∘ step width. The unit cell determination
and face indexing were performed with the CrysAlis software
package71.

Magnetotransport measurements
For the magnetotransport measurements a Physical Property
Measurement System (PPMS) in combination with a rotating
probe was used under magnetic fields up to μ0H = 9 T and
temperatures as low as T= 1.8 K to perform a four-terminal
resistivity measurements. Additional magnetotransport measure-
ments, as well as the angular dependence of the dHvA effect
using a piezoresitive microcantilever, were performed under
continuous magnetic fields up to μ0H = 41.5 T in a resistive
Bitter magnet at the National High Magnetic Field Laboratory. The
magnet was coupled to a 3He cryostat allowing us to perform
measurements at temperatures as low as T= 0.35 K.

Electronic band structure calculations
The first-principles (DFT) calculations were preformed using the
projector augmented-wave (PAW) potentials72 implemented in
the Vienna Ab initio Simulation Package (VASP) code73–75. The
calculations were performed in the absence and presence of the
spin-orbit coupling (SOC) within the generalized gradient
approximation (GGA) developed by Perdew, Burke, and Enzerhof
(PBE)76. The energy cutoff for the plane-wave expansion is set to
350 eV. The electronic DOS was calculated using 15 × 15 × 15
k–point grids in the Monkhorst–Pack scheme77. The Fermi surface
was rendered using XCRYSDEN78. The frequencies of the Fermi
surface were calculated using the Skeaf platform79.

DATA AVAILABILITY
Relevant data supporting the key findings of this study are available within the article
and the Supplementary Information file. All raw data generated during the current
study are available from the corresponding authors upon request.

CODE AVAILABILITY
Relevant code for data analysis, data plotting, and band structure calculations are
commercially sourced, e.g., the VASP code. Code used to calculated the
magnetoresistivity as a function carrier densities and/or mobilities, or to calculate
the magnetoresistivity as a function of magnetic field for a Weyl system characterized
by tilted Dirac/Weyl cones, and inter-valley scattering, is available from the authors
upon request.
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