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The magnetotropic susceptibility is the thermodynamic coefficient associated with the rotational anisotropy
of the free energy in an external magnetic field and is closely related to the magnetic susceptibility. It emerges
naturally in frequency-shift measurements of oscillating mechanical cantilevers, which are becoming an increas-
ingly important tool in the quantitative study of the thermodynamics of modern condensed-matter systems. Here
we discuss the basic properties of the magnetotropic susceptibility as they relate to the experimental aspects
of frequency-shift measurements, as well as to the interpretation of those experiments in terms of the intrinsic
properties of the system under study.
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I. INTRODUCTION

High-Q mechanical oscillators have long been used in the
study of thermodynamic properties of condensed matter sys-
tems. In Refs. [1–8], for example, oscillations of a sample in a
magnetic field are used to study the thermodynamic behavior
of a vortex lattice. Recent advances in lithographic techniques
have expanded the use of high-Q mechanical oscillators in
studying condensed matter systems other than superconduc-
tors, such as spin liquids [9,10], correlated metals [11,12], and
unconventional superconductors [13]. In these experiments,
the physical properties of the sample are inferred from the
shift of the resonance frequency of the cantilever-sample as-
sembly. Qualitative insight into the behavior of the physical
systems in this broader scientific context requires a quantita-
tive interpretation of frequency shifts [10,12,13].

A frequency shift in a mechanical oscillator can be induced
by the oscillating linear motion of a sample in a nonuniform
magnetic field or by the oscillating rotational motion in a
uniform applied magnetic field. Small frequency shifts are
also accompanied by resonance width broadening associated
with relaxation phenomena in the sample coupled to either the
rotational- or linear-oscillating motion of the sample.

In this paper, we focus on the magnetotropic susceptibility
that captures the changes in the free energy of a magnetically
anisotropic sample associated with its rotation in a uniform
magnetic field. The frequency shift of the resonance of the
cantilever-sample assembly in a uniform external magnetic
field is captured entirely by the magnetotropic susceptibility
of the sample. Dynamic magnetotropic susceptibility captures
the relaxation phenomena coupled to the rotation of the sam-
ple in an applied magnetic field.

In Sec. II, we introduce the magnetotropic susceptibil-
ity in a rigorous manner, independent of the measurement
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technique. We define the magnetotropic susceptibility as a
thermodynamic correlation function. After that, we discuss
the dynamic, or frequency-dependent, magnetotropic sus-
ceptibility which encapsulates relaxation phenomena in the
sample induced by its rotation in an applied magnetic field.
Dynamic magnetotropic susceptibility is accessed directly in
the measurements of the width of the resonance of the can-
tilever.

In Sec. III, we discuss the emergence of the magnetotropic
susceptibility in frequency-shift measurements and how cer-
tain experimental aspects relate to the intrinsic properties of
the sample under study. Finally, in Sec. IV, we consider the
mechanics of the cantilever in the thin-plate approximation.
This section presents a self-contained discussion of the bend-
ing stiffness of the cantilever, which determines the sensitivity
of frequency shift measurements of the magnetotropic suscep-
tibility.

FIG. 1. The sample is rotated in an external magnetic field B
around axis n. The magnetotropic susceptibility kn is the curvature—
the second derivative—of the angular dependence of free energy in
the applied magnetic field. n indicates a slice of rotations by angle θn

around axis n.
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II. THE MAGNETOTROPIC SUSCEPTIBILITY

A. Definition and basic properties

The free energy of a magnetically anisotropic sample de-
pends on the direction of the magnetic field with respect to
the crystallographic directions of the sample. One can study a
“slice” of the overall angular dependence of the free energy,
F (θn, B), where the magnetic field B rotates around axis n
without change in its magnitude. The angular variable θn con-
sidered as a thermodynamic parameter defines the magnetic
torque, Tn(B):

dF (B) = Tn(B) dθn, Tn(B) = −M · (n×B). (1)

Magnetic torque is determined by the magnetization M =
−dF/dB induced by a small change in magnetic field
δdθnB = (n×B) dθn that is incurred by a small rotation dθn

around axis n (Fig. 1).
The diagonal thermodynamic coefficient [14] associated

with the thermodynamic parameter θn is the magnetotropic
susceptibility,

dTn(B) = kn(B) dθn,

kn(B) = (n×B) · (n×M) − (n×B) · χ̂ (B) · (n×B),

(2)

where χ̂μν (B) = −dMμ/dBν is the magnetic susceptibility
tensor. The two terms in the second line of Eqs. (2) have
a different physical character, which will become apparent
in the discussion of correlation functions in Secs. II D and
II E. The explicit dependence of the magnetic torque Tn(B) =
−M · (n×B) on the rotation of magnetic field produces the
first term in Eqs. (2), −M · (n×(n×B)). The implicit depen-
dence of torque on magnetic field through changes in the
magnetization produces the second term.

It will be convenient to rewrite Eqs. (2) in a matrix form
using generators of rotation in vector representation, i(Ŝμ)i j =
εμi j , satisfying the commutation relations [Ŝi, Ŝ j] = iεi jk Ŝk ,
where [Ŝi, Ŝ j] = Ŝi · Ŝ j − Ŝ j · Ŝi,

Ŝ1 = i

⎛
⎝0 0 0

0 0 −1
0 1 0

⎞
⎠, Ŝ2 = i

⎛
⎝ 0 0 1

0 0 0
−1 0 0

⎞
⎠,

Ŝ3 = i

⎛
⎝0 −1 0

1 0 0
0 0 0

⎞
⎠. (3)

Rotation of a vector represented by the cross product n×B in
Eqs. (2) can be represented equivalently by a matrix multipli-
cation:

δθnB = (n×B)dθ = (iN̂ · B)dθ,

iN̂ = −iŜμnμ =
⎡
⎣ 0 −nz ny

nz 0 −nx

−ny nx 0

⎤
⎦. (4)

In this representation, the magnetotropic susceptibility takes
the form

kn(B) = B · N̂ · N̂ · M − B · N̂ · χ̂ · N̂ · B . (5)

The magnetotropic susceptibility kn(B), as well as the mag-
netic torque Tn(B), describes only a slice of the complete
angular dependence of the free energy. For arbitrary rotation
slice n, magnetic torque is specified by a scalar product of
an axial vector T = M×B and vector n, via Tn(B) = Tμnμ.
Equations (2) and (5) define the magnetotropic susceptibility
kn(B) as a bilinear function of the components of the vector n.
The generalization of the torque vector T to the magnetotropic
susceptibility is a symmetric second-rank tensor kμν (B):

kn(B) =kμν (B)nνnμ. (6)

The magnetotropic susceptibility tensor kμν (B) encodes the
second angular derivative of the free energy for all slice
directions n, just like the torque vector T encodes its first
derivative. Tensor components of kμν (B) follow from Eqs. (4)
and (5), with subsequent symmetrization:

kμν (B) = 1
2 B · (Ŝμ · Ŝν + Ŝν · Ŝμ) · M

− 1
2 B · (Ŝμ · χ̂ · Ŝν + Ŝν · χ̂ · Ŝμ) · B . (7)

The first line can also be written as δμν (B · M) −
1/2(BμMν + BνMμ).

The product N̂ · B in Eq. (5) as well as the cross-product
(n×B) in Eqs. (2) vanish for n along the magnetic field B.
Therefore, both magnetic torque and magnetotropic suscepti-
bility vanish. This reflects the physical fact that rotations of
a sample around axis n along magnetic field B have no effect
on the magnetic part of the free energy. Therefore, the product
kμν (B)nμnν vanishes for n along B,

kμν (B)BμBν = 0, (8)

because (ŜμBμ) · B ≡ 0. This is analogous to the vanishing
of the scalar product of the torque vector and the magnetic
field, TμBμ ≡ 0. For torque, this identity means that the mag-
netic torque vector lives in a plane perpendicular to vector B.
Similarly, the six components of the symmetric magnetotropic
susceptibility tensor kμν (B) are constrained by one condition,
Eq. (8).

In the linear regime, the magnetotropic susceptibility is
bilinear in the components of magnetic field B. The mag-
netization M = χ̂0 · B is linear in magnetic field and linear
magnetic susceptibility χ̂0 is independent of magnetic field.
Equation (5) reduces to

k0
n(B) = B · N̂ · [N̂, χ̂0] · B, (9)

and Eq. (7) to

k0
μν (B) = 1

2 B · (Ŝμ · [Ŝν, χ̂
0] + Ŝν · [Ŝμ, χ̂0]) · B . (10)

If we choose the axes x, y, z along the crystallographic direc-
tions a, b, c (Fig. 1)—or the principal directions of magnetic
susceptibility χ when the crystal symmetry is lower than
orthorhombic—then the linear magnetic susceptibility ten-
sor χ̂0 is diagonal χ̂0 = diag{χ0

xx, χ
0
yy, χ

0
zz}. The full linear
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magnetotropic tensor, Eq. (10), in this basis has the form

k0
μν (B) =

⎛
⎜⎜⎜⎝

(
B2

y − B2
z

)(
χ0

yy − χ0
zz

) −BxBy
(
χ0

xx/2 + χ0
yy/2 − χ0

zz

) −BxBz
(
χ0

xx/2 − χ0
yy + χ0

zz/2
)

−BxBy
(
χ0

xx/2 + χ0
yy/2 − χ0

zz

) (
B2

x − B2
z

)(
χ0

xx − χ0
zz

)
ByBz

(
χ0

xx − χ0
yy/2 − χ0

zz/2
)

−BxBz
(
χ0

xx/2 − χ0
yy + χ0

zz/2
)

ByBz
(
χ0

xx − χ0
yy/2 − χ0

zz/2
) (

B2
x − B2

y

)(
χ0

xx − χ0
yy

)

⎞
⎟⎟⎟⎠. (11)

Note that only two combinations of the components of
the linear magnetic susceptibility in this expression are lin-
early independent. Therefore, the linear magnetotropic tensor
k0
μν (B) determines two (out of three) independent components

of linear magnetic susceptibility, consistent with the more
general discussion around Eq. (8).

For example, a slice of rotations around the n = ŷ axis
(parallel to b) is described with N̂ = −Ŝ2 in Eq. (9):

k0
ŷ (B) = B · Ŝ2 · [Ŝ2, χ̂

0] · B

= B ·
⎡
⎣χ0

xx − χ0
zz 0 0

0 0 0
0 0 −(

χ0
xx − χ0

zz

)
⎤
⎦ · B . (12)

Note the vanishing eigenvalue corresponding to direction ŷ. In
components,

k0
ŷ (B) = (

B2
c − B2

a

) (
χ0

c − χ0
a

) = B2
ac

(
χ0

c − χ0
a

)
cos 2θ,

(13)

where Bac = (B2
a + B2

c )1/2 is the component of magnetic field
B in the ac plane and θ is the angle between Bac and the c axis,
(Ba, Bc) = Bac(sin θ, cos θ ). The linear magnetotropic coeffi-
cient kŷ(B) has the same angular dependence in the ac plane as
the free energy in the linear regime, F 0(B) = (1/2)χ0

i jBiB j =
−(1/4)(χ0

c − χ0
a )B2

ac cos 2θ . The magnetotropic susceptibil-
ity does not vanish for applied magnetic fields along
crystallographic directions. Equation (13) also shows that the
magnetotropic susceptibility is positive for magnetic field
along the easy axis, where the free energy is near its local
minimum.

For completeness, we can also consider the magnetotropic
susceptibility of a polycrystalline sample. The free energy of
a polycrystalline sample is isotropic, F (B) = Fiso(|B|), where
Fiso(|B|) is the average of the anisotropic free energy over all
crystal lattice orientations. The magnetotropic susceptibility
of a polycrystal is determined by the angular derivatives of
Fiso(|B|) and therefore is zero. When considering Eqs. (2)
or (5) in a polycrystalline sample, the vanishing of the mag-
netotropic susceptibility is not immediately clear because it
arises as a cancellation between the first and second terms.
Such cancellation is obvious in the linear regime, Eq. (9),
where one has to replace the linear magnetic susceptibility
χ̂0 with its polycrystalline average, proportional to the unit
matrix.

In the nonlinear regime, the character of the first and
second terms in Eqs. (2) and (5) is quite different and the
cancellation is not evident. It is instructive, though, to track
the cancellation starting from a nonlinear magnetization and a
nonlinear magnetic susceptibility,

M = −dF

dB
= − 1

B

dF

dB
B, (14)

χμν = dMμ

dBν

=
(

1

B

d (M/B)

dB

)
BμBν + M

B
δμν, (15)

where B = |B| and M = |M|. The first term in Eq. (15) is
proportional to the projector matrix in the direction of the
magnetic field. Therefore, the nonlinear magnetic susceptibil-
ity χμν of a polycrystalline sample is a uniaxial tensor with
magnetic field as a symmetry axis. This projector part of the
magnetic susceptibility is projected out when substituted into
Eqs. (2), and, therefore, does not affect the magnetotropic
susceptibility. The second term in Eq. (15) is isotropic. When
substituted into Eqs. (2), it cancels with the first term in
Eqs. (2).

It will be shown in Sec. II E that the relaxation phenom-
ena induced by the rotation in an applied magnetic field are
captured by the imaginary part of the dynamic (frequency de-
pendent) magnetotropic susceptibility. In the polycrystalline
sample, these dissipative phenomena are induced indepen-
dently in each single-crystal grain and their total effect on the
dynamic magnetotropic susceptibility does not add up to zero.
Therefore, the polycrystalline sample has a nonzero imaginary
part of the dynamic magnetotropic susceptibility (Sec. II E)
and, by analyticity, a nonzero real part at finite frequency.

B. Example: An isolated spin 1/2

As a simple example, here we briefly discuss the mag-
netotropic susceptibility of an isolated spin 1/2 with an
anisotropic g factor, described with Hamiltonian

H0 = μBB · ĝ · (σ/2), (16)

where σ = {σ j} are three Pauli matrices and ĝ = gi j is a sym-
metric g-factor tensor. The free energy can be calculated in a
closed form,

e− F (B)
T = Tr e− H0

T ,

F (B) = f (a) = −T ln

(
2 cosh

√
a

2T

)
, (17)

a = μ2
B B · ĝ · ĝ� · B,

where Tr · · · stands for a trace of 2 x 2 matrices and T is tem-
perature measured in energy units. In the basis a, b, c where
the g-factor tensor ĝ is diagonal, a = μ2

B (g2
aaB2

a + g2
bbB2

b +
g2

ccB2
c ), the torque Tn, and the magnetotropic susceptibility kn

are

Tn = df (a)

dθ
= df (a)

da
×da

dθ
,

kn = d2 f (a)

dθ2
= d2 f (a)

da2
×

(
da

dθ

)2

+ df (a)

da
×d2a

dθ2
, (18)
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FIG. 2. The magnetotropic susceptibility calculated for an iso-
lated spin 1/2 with an anisotropic g factor, ga,b = 2, gc = 1. The
rotation axis is along the b axis of the crystal lattice. (a) Field scans
up to 100 T. Magnetic field is along the a axis. (b) Angular scans at
20 K. Easy axis is along the ab plane. The hard axis is along the c
axis.

where the angular derivatives of magnetic field vector are
evaluated using Eqs. (4). We have

da

dθ
= μ2

BB · [ĝ · ĝ�, iN̂] · B,

d2a

dθ2
= μ2

BB · [[ĝ · ĝ�, iN̂], iN̂] · B . (19)

Alternatively, one can use Eqs. (1) and (2) with the magnetiza-
tion and magnetic susceptibility of an isolated spin 1/2 given
by

M = −df (a)

da
× da

dB
= μ2

B
df (a)

da
×(−2 ĝ · ĝ� · B),

χ̂μν = dMμ

dBν

= μ2
B

df (a)

da
( − 2 ĝ · ĝ�)μν

− d2 f (a)/da2

(df (a)/da)2 MμMν . (20)

Figure 2 shows the angular and magneticfield dependence of
the magnetotropic susceptibility of an isolated spin-1/2 with
an anisotropic g factor. As discussed in Sec. III B, for a 0.1
nanomole-sized sample of a spin-1/2 system, the shift of the
frequency of the fundamental resonance mode at 50 kHz of a
180 nJ bending stiffness cantilever is a few kilohertz at 50 K
and 50 T [Fig. 2(a)], much larger than the resonance width of
a fraction of a hertz. The frequency shifts of a millihertz and
smaller are readily measured by standard locking techniques.

A noninteracting spin-1/2 system provides the simplest
example of a scale-invariant behavior—the scale and the char-
acter of the magnetic-field dependence are determined by
the temperature alone. In particular, at high magnetic fields,
μBB � kBT , the free energy is a linear function of the applied
magnetic field. Consequently, the magnetotropic susceptibil-
ity is also linear in field in this high-field regime. Figure 2
shows that all field sweeps approach the same B-linear line at
high magnetic fields, with smaller temperatures reaching it at
smaller fields, and higher temperatures at higher fields.

We note that, despite being an idealized example, real spin-
1/2 systems might exhibit a behavior similar in magnitude and
character to that shown in Fig. 2 at temperatures and magnetic
fields larger than the exchange energy scale in the system,
hence the choice of the temperature range in Fig. 2.

C. Magnetotropic susceptibility as a thermodynamic coefficient

Magnetotropic susceptibility is a thermodynamic coeffi-
cient, the second derivative of the free energy. As such, its
behavior across the thermodynamic phase boundaries is con-
strained by general thermodynamic considerations [14]. For
example, rotation of the sample in the applied magnetic field
is described with a matrix of thermodynamic coefficients,(

dS
dTn

)
=

( C
T ξn

ξn kn

)(
dT
dθn

)
, (21)

where ξn = dS/dθn = dTn/dT is the rotational analog of
magnetocaloric coefficients.

Thermodynamic coefficients experience a discontinuous
jump across the boundary of a continuous (second-order)
phase transition. The magnitudes of the jumps in thermody-
namic coefficients are related to one another via the Ehrenfest
relations, which express the continuity of the thermodynamic
potentials (first derivatives) across the boundary of a con-
tinuous phase transition. Equation (21) relates the jump in
the magnetotropic susceptibility to the jump in the heat ca-
pacity via 	kn = −	C/Tc×(dTc/dθn)2. Here (dTc/dθn) is
the change in the transition temperature when the sample is
rotated in the applied magnetic field at a fixed temperature.
The sign of the jump 	kn in the magnetotropic susceptibil-
ity across the phase boundary is fixed by thermodynamics.
Similar to elastic moduli or magnetic susceptibility, the mag-
netotropic susceptibility decreases as we enter into a lower
symmetry phase [10].

D. Magnetotropic susceptibility as a thermodynamic response

In this section, we discuss the magnetotropic susceptibility
in relation to microscopic degrees of freedom in the system,
i.e., as a correlation function. This section also sets up the dis-
cussion in the next section (Sec. II E), where we will introduce
dynamics.

The angular dependence of the free energy F (	θ ) is gen-
erated by the term in the Hamiltonian H1(	θ ) that depends on
the direction of magnetic field,

e−βF (	θ ) = Tr e−β(H0+H1(	θ )), (22)

where β = 1/T is the inverse temperature (throughout this
section, the temperature is measured in energy units). In these
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units, kB = 1). Tr · · · stands for the sum of expectation values
over a complete set of states of the Hamiltonian, Tr · · · =∑

n〈n| · · · |n〉. Here H1(	θ ) is defined in such a way that
H1(	θ = 0) = 0. The free energy can be expanded in powers
of 	θ as

F (	θ ) = F0 + F1	θ + F2 	θ2/2 . (23)

The magnetotropic susceptibility is equal to F2.
We want to express F2 directly in terms of thermodynamic

averages of the operators H0 and H1(	θ ). Because operators
H0 and H1(	θ ) do not commute, the Taylor expansion of the
matrix exponent in Eq. (22) in powers of H1(	θ ) has to be
carried out by way of the identity eA+B = limn→∞(eA/neB/n)n

generated by the interaction representation [15]. Using the fact
that exp{−βF0} = Tr exp{−βH0}, we can write

e−βF1	θ−β(F2/2)	θ2

= [Tr eβH0 ][Tr e−β(H0+H1 )]

= 1 + 〈−βH1〉 + 〈〈(−βH1), (−βH1)〉〉 + · · · , (24)

where 〈 A 〉 = Tr [exp{−βH0}A]/Tr [exp{−βH0}] is the ther-
modynamic average and 〈〈A , B〉〉 is the average of the
(imaginary) time-ordered correlation function defined as

〈〈A , B〉〉 = 2T 2
∫ β

0

∫ β

0
dτ1dτ2 θ (τ1 − τ2) 〈 A(τ1)B(τ2) 〉,

(25)

where θ (τ1 − τ2) = 1 for τ1 > τ2 and 0 otherwise and A(τ ) =
exp{τH0}A exp{−τH0} is the (imaginary) time evolution of
operator A under the action of H0. Because the thermody-
namic average 〈 A(τ1)B(τ2) 〉 depends only on the difference
τ1 − τ2, the double integral in Eq. (25) can converted into a
single integral:

〈〈A , B〉〉 = 2T
∫ β

0
dτ (1 − T τ ) 〈 A(τ )B(0) 〉. (26)

This equivalent form of 〈〈A , B〉〉 can be used in numeric
calculations based on Eq. (24).

F1 and F2 in Eq. (24) define the torque and magnetotropic
susceptibility. To identify them, we exponentiate the second
line in Eq. (24) and keep terms that are linear and quadratic in
H1,

e−βF1	θ−β(F2/2)	θ2

= e〈 −βH1 〉+〈〈 (−βH1 ), (−βH1 ) 〉〉−〈 −βH1 〉2/2+···, (27)

where the last term in the second line is there to cancel the
square of the first term in the expansion of the exponent.
Magnetic torque and magnetotropic susceptibility can now be
read off from Eq. (27),

Tn =
〈

dH

dθn

〉
,

kn =
〈

d2H

dθ2
n

〉
+ 1

T

〈
dH

dθn

〉2

− 1

T

〈〈
dH

dθn
,

dH

dθn

〉〉
. (28)

We have omitted the subscript in H1 because dH1/dθn =
dH/dθn.

As an example, we consider a collection of spin-1/2 spins
with an anisotropic g-factor and exchange interactions, de-
scribed by the Hamiltonian,

H0 = μBB · ĝ ·
∑

n

(σn/2) + 1

4

∑
〈n,m〉

σn · Ĵnm · σm, (29)

where n, m represent different lattice sites and 1/2σn is the
spin operator on site n. Only the first (g-factor) term depends
explicitly on the external magnetic field,

H1(θn) = −(δθnB) · M, M = −μB ĝ ·
∑

n

σn/2, (30)

where M is the magnetization operator. We need to expand
δθnB to second order in the rotation angle 	θ :

δθnB = 	θ (iN̂ ) · B + 	θ2

2
(iN̂ ) · (iN̂ ) · B . (31)

We have

dH

dθ
= Tμnμ = −B · (iŜμnμ) · M = (M×B)μ · nμ, (32)

where Tμ is the torque operator, and

d2H

dθ2
= − B · (iŜμnμ) · (iŜνnν ) · M . (33)

Substituting these into Eq. (28), we obtain

Tμ = 〈Tμ〉 = −B · (iŜμ) · 〈M 〉, (34)

kμν = 1

2
B · (Ŝμ · Ŝν + Ŝν · Ŝμ) · 〈M〉

+ 1

T
〈Tμ〉〈Tν〉 − 1

T
〈〈Tμ , Tν〉〉. (35)

The first line in kμν is equal to the first line in Eq. (7). Because
the torque operator is T = −M · (n×B), Eq. (32), the second
line has the same structure as the microscopic correlation
function for magnetic susceptibility:

χμν = 1

T
〈Mμ〉〈Mν〉 − 1

T
〈〈Mμ , Mν〉〉. (36)

Substituting Eq. (32) into Eq. (35) and using Eq. (36), one can
see that the second line in Eq. (35) is equal to −(n×B) · χ̂ ·
(n×B), the second term in Eqs. (2).

Equation (35) applies more generally, beyond the specific
example it was derived for. The magnetotropic susceptibil-
ity has two qualitatively different parts as will become clear
in the discussion of dynamic magnetotropic susceptibility in
Sec. II E. The linear-in-magnetization part in Eq. (35) origi-
nates from the fact that the magnetic torque operator depends
explicitly on the external magnetic field, described by the
second derivative term d2H/dθ2 in Eqs. (32), (28), and (33). It
does not describe the actual response of the system to rotation
in the applied field. Instead, it captures the redefinition of the
torque operator in the rotated reference frame. The second
term in Eq. (35) describes the proper response function part
of the magnetotropic susceptibility given by the torque-torque
correlation function, as required by fluctuation-dissipation
analysis [16,17].
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E. Rotation-in-field-induced relaxation phenomena captured
in the frequency-dependent magnetotropic susceptibility

Given the nature of the experimental setup in which mag-
netotropic susceptibility arises (Sec. III), we now discuss the
dynamic—frequency-dependent—magnetotropic susceptibil-
ity kn(B, ω). It captures the relaxation phenomena coupled
to the rotation of the sample in an applied magnetic field.
The time-dispersed magnetotropic susceptibility kn(t − t ′)
describes time-delayed response of the torque 	Tn(B) to ro-
tation of the sample in applied magnetic field:

	Tn(B, t ) =
∫ t

−∞
dt ′ kn(B, t − t ′) 	θn(t ′). (37)

Its Fourier transform defines the dynamic magnetotropic sus-
ceptibility kn(B, ω) = ∫ ∞

0 dt exp(iωt )kn(B, t ).
Kubo analysis [15] starting from Eq. (37) suggests that the

dynamic response kn(ω) is equal to the dynamic torque-torque
correlation function, kn(ω) = ∫ ∞

0 dt exp(iωt )〈Tn(t )Tn(0)〉.
This is because the torque operator is conjugate to the an-
gle variable 	θn in the microscopic Hamiltonian, Eq. (32),
and therefore, determines the time-evolution of the torque
under time-dependent 	θ (t ). This is similar to the micro-
scopic interpretation of the dynamic magnetic susceptibility
as a correlation function of magnetization operators. This
argument captures the entire imaginary part of the dynamic
magnetotropic susceptibility kn(B, ω) as well as that part of
the real part of kn(B, ω) that is related to the imaginary
part by Kramers-Kronig (analyticity) requirements. In partic-
ular, it shows that the dynamic magnetotropic susceptibility
kn(ω) is identical in its analytic properties to the dynamic
magnetic susceptibility χ (ω) and contains the same physical
information. Direct calculation of the dynamic torque-torque
correlation function results in

Imkn(ω) = −(n×B) · Imχ̂ (ω) · (n×B). (38)

However, without Im, Eq. (38) does not produce a correct
relation between kn and χ̂ in the static limit ω = 0 given by
Eqs. (2). This is because the time-dispersed magnetotropic
susceptibility kn(t − t ′) contains an instantaneous part, pro-
portional to delta function δ(t − t ′) associated with the direct
dependence of the magnetic torque on magnetic field, Eqs. (1).

The instantaneous part in kn(t − t ′) produces a frequency-
independent real function on the real axis of frequency in
kn(ω). Such a constant function has zero imaginary part ev-
erywhere in the complex plane. The instantaneous term in
the magnetic torque originates in the explicit dependence of
magnetic torque operator Tn(B) = −M · (n×B) on applied
magnetic field B. This term is reactive—it is not associated
with the time evolution of torque under the action of time-
dependent Hamiltonian, as captured by the Kubo argument.
The complete relation between the dynamic magnetic suscep-
tibility χ̂ and magnetotropic susceptibility kn is given by

kn(B, ω) = (n×B) · (n×M)

− (n×B) · χ̂ (B, ω) · (n×B). (39)

The first term here is not associated with relaxation or disper-
sion phenomena in the sample. It is a mere redefinition of the
torque operator in the rotated frame of reference. The second

term has the structure of dynamic correlation function [15] of
magnetic torque operators, Tn(B) = −M · (n×B).

III. THE MAGNETOTROPIC SUSCEPTIBILITY IN
FREQUENCY-SHIFT MEASUREMENTS

A. The frequency shift of an oscillating
cantilever-sample assembly

The magnetotropic susceptibility emerges naturally in fre-
quency shift measurements of oscillating cantilever-sample
assembly in a uniform applied magnetic field [1–13]. In these
measurements, the sample is attached at the free end of a
cantilever. The oscillation amplitude is read out by a piezome-
chanical transducer [1–11] or by laser optics [12,13]. When
driven near its nth mechanical resonance mode at frequency
ωn, the cantilever behaves as a simple harmonic oscillator with
mechanical energy

E = In

2

(
d	θ

dt

)2

+ Sn

2
	θ2, (40)

where 	θ is the bending angle at the free end of the cantilever.
This defines the effective bending stiffness Sn and the effective
moment of inertia In of a cantilever near its nth resonance
mode. Sn and In depend on the resonance mode n as well as on
the geometry and the construction of the cantilever (Sec. IV).
The resonance frequency ωn of the cantilever is determined by
the bending stiffness Sn and the effective moment of inertia In

as ωn = √
Sn/In.

For a thin cantilever driven near the fundamental “flap-
ping” mode (Sec. IV, Fig. 3),

S0 = 1.63
γ

L
= 0.136

wh3Y

L
, I0 = 0.132 ρwhL3,

ω0 =
√

S0

I0
= 1.02

h

L2

√
Y

ρ
, (41)

where Y is the Young’s modulus of the cantilever, ρ is its
density, w is the width, L is its length, and h is its thickness.
γ is the arc stiffness of the cantilever discussed in Sec. IV.

In the experiments where the displacement of the cantilever
is detected optically [12,13], it might be convenient to define
the energy of the cantilever in terms of the displacement 	X
at the tip of the cantilever rather than the rotation angle 	θ ,

E = mn

2

(
d	X

dt

)2

+ cn

2
	X 2, (42)

where mn is the effective nth mode mass coefficient, and cn

is the effective nth mode spring constant. For an oscillating
cantilever, 	X and 	θ are proportional to each other, with
a mode-dependent coefficient (Fig. 3). For the fundamental
mode:

	X = 0.73L 	θ. (43)

For higher-n modes, the coefficient of proportionality is
given in Eq. (95). The spring constant of the fundamen-
tal mode, c0 = S0/(0.73L)2 = 3.06 γ /L3 = 0.255 Y wh3/L3

[13], is obtained by comparing Eqs. (40) and (42). The effec-
tive mass coefficient m0 of the fundamental mode in Eq. (42)
is given by m0 = I0/(0.73L)2 = 0.248 mL where mL is the
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FIG. 3. Resonating cantilever. (a) Schematic of an oscillating
cantilever. The angle of 	θ at the tip of the cantilever (z = L) is
equal to the gradient of the displacement, 	θ = ∇ζ (z). (b) Cross
section of the cantilever. The blue dashed line indicates a neutral
surface. The purple arrow indicates the magnitude of σzz that changes
signs across the neutral surface. The orange line indicates the radius
of curvature 1/r(z) = ∇2ζ (z). The green arrow indicates the cross-
sectional torque in the cantilever, Eq. (80). (c) Plot of the shape of
the cantilever in fundamental (blue) and the next two modes of the
cantilever, Eqs. (93) and (94).

mass of the cantilever. In Sec. III C, we discuss calibrating
the arc stiffness γ of the cantilever in static measurements.
The bending stiffness Sn and spring constant cn are then deter-
mined by the arc stiffness γ .

When a sample is attached at the tip of the cantilever,
the angular dependence of the energy of the cantilever-
sample assembly acquires a small additional magnetic field-
dependent potential energy, originating from the magnetically
anisotropic free energy of the sample:

δEsample = T (B) 	θ + k(B)
	θ2

2
. (44)

The effect of the 	θ -linear term is to shift the equilibrium
value of 	θ away from zero, by an amount proportional to
the torque T (B) on the sample. The effect of the 	θ -bilinear
term is to shift the frequency of the mechanical resonance
of the cantilever, determined now by the combined effect
of the bending stiffness Sn of the cantilever and the magne-
totropic susceptibility k(B) of the sample—both describe the
quadratic-in-	θ change in energy in Eq. (40). For arbitrary
magnitude of the magnetotropic susceptibility of the sample,

the frequency shift 	ω is determined by

(ω0 + 	ω)2 = k(B) + Sn

In
. (45)

When the magnetotropic susceptibility of the sample is small
compared to the bending stiffness of the cantilever, k(B) �
Sn, the frequency shift 	ω is small compared to ω0, and we
can expand

	ω

ω0
≈ k(B)

2Sn
, k(B) � Sn. (46)

The magnetotropic susceptibility of the sample is proportional
to the shift of the resonance frequency of the cantilever-
sample assembly in magnetic field.

Equation (45) assumes that the mass of the sample, mS,
is much smaller than the mass of the cantilever, mL. When
considering the finite mass of the sample, an additional kinetic
energy term is introduced in Eqs. (40) and (44), expressed
as mS/2×(d	X/dt )2. This term is equivalent to an increase
in the effective moment of inertia, In. For instance, for the
fundamental mode, I0 becomes I0 + mS(0.73L)2. It is impor-
tant to note that when this change in the effective moment of
inertia is small, it does not affect the relative frequency shift
in Eqs. (46).

B. Examples

To illustrate the quantitative aspects of the resonance
frequency-shift measurements, we consider two studies: an
interacting system of spin 1/2′s in RuCl3 [10] and quantum
fluxes in a superconducting ring [13].

The silicon cantilever in Ref. [10] measures 3.4 µm in
thickness, 60 µm in width, and 300 µm in length. From
Eq. (41), the bending stiffness is 180 nJ and the frequency
of the fundamental resonance mode is close to 50 kHz. At
cryogenic temperatures in low-pressure exchange gas, the
cantilever has a Q factor of around 3×104 (Sec. III D) and
a resonance width of a few hertz.

Below 5 K, RuCl3 is characterized by an anisotropic
magnetic susceptibility, χa − χc = of 0.06 J/mol-f.u.T2, or
0.01 μB/T per Ru spin. The RuCl3 sample in Ref. [10]
measures 50×70×2 µm3 with a mass of 20 nanogram or
0.1 nanomole-f.u. molar mass, has magnetic susceptibility of
6 pJ/T2. In 1 T magnetic field along the a axis, the magne-
totropic susceptibility of the sample is 6 pJ, from Eq. (13).
This shifts the resonance frequency of the 180 nJ-stiffness
cantilever by 0.8 Hz [Eqs. (46)], comparable with the reso-
nance width. Such frequency shifts are well within detection
limits. The frequency shift changes signs, −0.8 Hz, when the
same magnetic field is applied along the c axis, as long as
we stay in the linear regime at this field along the c axis.
The frequency shift increases quadratically with the magnetic
field, Eq. (13), as long as we stay in the linear regime.

At even higher magnetic fields, beyond the energy of the
effective spin-exchange interaction and the thermal energy,
kBT , the spin-1/2 system in RuCl3 becomes scale-invariant,
i.e., the free energy is a function of external energy scales
only. This implies that the free energy and magnetotropic
susceptibility are linear functions of magnetic field at low
temperatures and large magnetic fields (Sec. II B) [10].
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A 0.1 nanomole-f.u. system of noninteracting spin-1/2′s
with a g-factor anisotropy of 2 (Fig. 2) has the magnetotropic
susceptibility of 10 nJ at 10 K and 25 T, and at 50 K and
50 T. For the cantilever of 180 nJ bending stiffness, the mag-
netotropic susceptibility of 10 nJ would result in a frequency
shift close to 3 kHz. Frequency shifts of similar magnitude
were observed in RuCl3 sample of similar molar mass [10].

The finite mass of the cantilever, 150 ng, results in a maxi-
mum gravitational frequency shift of 10 mHz [Eq. (63)], small
compared to the frequency shift associated with magnetic
anisotropy of the sample.

The second example is the study of quantum jumps of
magnetic flux in a small superconducting ring, reported in
Ref. [13]. In this paper, a much thinner silicon cantilever was
employed, with dimensions of 0.1 µm thickness, 3 µm width,
and 80 µm length. The bending stiffness of such cantilever
is 1 pJ and the resonance frequency 20 kHz, as determined
by Eq. (41). The observed resonance frequency is somewhat
lower at 16 kHz, possibly due to the added inertia of the
sample mass of 50 pg. The spring constant measured in Ref.
[13] is 3.6 ×10−4 N/m, which corresponds to an effective
bending stiffness of 1.2 pJ for the fundamental mode, close to
our estimate (see Sec. III C for the relation between the two).
The observed Q factor of 6.5 ×104 corresponds to a resonance
width of 0.3 Hz.

We can estimate the energy change that accompanies a
single quantum flux entering the superconducting ring as
	fluxE � −�0�ext/d [18]. Here, �0 is the flux quantum,
�ext is the flux of the external magnetic field crossing the
superconducting ring, and d is the diameter of the ring. The
angular dependence of 	fluxE (θ ), is the same as the angu-
lar dependence of �ext at a fixed external magnetic field,
proportional to cos θ . Between the jumps, the magneto-static
energy of the superconducting ring changes quadratically with
field with a coefficient proportional to cos 2θ . This estimate
does not account for the impact of a finite (and anisotropic)
penetration depth or the finite difference between the ring’s
inner and outer diameters. We note that 	fluxE is negative, in
accordance with Le Chatelier’s principle. This requires that
the frequency must jump up as one extra flux enters the ring,
consistent with the measurements [13].

Given the 1 µm diameter of the superconducting ring,
the jump in magnetotropic susceptibility, calculated using
Eqs. (2), 	k = d2	fluxE (θ )/dθ2, is 	fluxk = +�0�ext/d =
1×10−4 pJ when the external field component perpendicular
to the loop is 10 G. For a cantilever of bending stiffness 1
pJ and a resonance frequency of 20 kHz, such a jump in
the magnetotropic susceptibility of the superconducting ring
corresponds to a frequency shift of 1 Hz, comparable to the
resonance width of 0.3 Hz [13]. If, instead, we used the
thicker cantilever from the first example, the frequency shift
corresponding to the flux jump would be 1.5 ×10−5 Hz.

The mass of the cantilever is 50 pg, which results in a
maximum gravitational frequency shift of 0.1 Hz [Eq. (63)],
comparable to the resonance shift in the flux jump. Con-
sequently, in this measurement, the angular dependence of
the frequency shift has a smooth, field-independent back-
ground of a magnitude comparable to that of the flux-jump
shifts, both having the same angular dependence ∝ cos θ . The

gravitational shift, associated with the sample mass of roughly
50 pg as in Ref. [13], has a similar magnitude and the same
angular dependence [Eq. (65)].

At cryogenic temperatures in vacuum, the resonance width
is determined by the thermoelastic friction in the cantilever
(Sec. III D) and the energy dissipation within the supercon-
ducting ring. We can estimate the thermoelastic friction in the
cantilever using Eqs. (50) and (51). The heat diffusion time
τh across the cantilever’s thickness h is 3(h/c)2/τe, where
τe is the mean free time of phonons in silicon at cryogenic
temperatures. Assuming τh of about 10 ps, the resonance
frequency of 20 kHz, and a thermodynamic factor in Eq. (51)
of 1% [14], the estimated thermoelastic friction limit on the
Q factor is around 109. For the thicker lever in Ref. [10], the
thermoelastic friction puts a stricter limit on the Q factor, of a
few times 106. The observed Q factor of 6.5 ×104 suggests
that the thermoelastic friction is not the limiting factor on
the resonance width. The observed resonance width of 0.3 Hz
might originate from a small viscous friction in the surround-
ing exchange gas, in which case the resonance width would
be independent of magnetic field.

Alternatively, the resonance width could originate from
the energy dissipation in the superconducting ring oscillating
in an external magnetic field via the imaginary part of the
magnetotropic susceptibility of the superconducting ring in
Eq. (48). In this scenario, the resonance width will depend on
an applied magnetic field. If the resonance width 	� orig-
inates in the dissipative phenomena in the superconducting
ring, an accompanying shift in resonance, 	 f , of comparable
magnitude is expected, i.e., 	 f � 	�. This is because the
measured response f (ω) in Eq. (48) is an analytic function
limited by causality (Kramers-Kronig relations). It would be
interesting to see how much of the observed frequency shift
is associated with the dissipation in the superconducting ring
associated with the flux jump.

C. Arc stiffness of the cantilever in the static measurements

The effective bending stiffness S0, or the effective spring
constant c0, can be inferred from the frequency shift in uni-
form gravity or uniform magnetic field gradient (Sec. III F).
They can also be measured by applying a static force or static
torque at the tip of the cantilever, or by using the weight of
the cantilever as a source of force. In each of these measure-
ments, one can determine arc stiffness γ of the cantilever and,
through it, the effective bending stiffness S0, Eq. (100) or the
spring constant c0, Eq. (42).

Applying a static torque T at the free end of the cantilever
creates a uniform cross-sectional torque, Eq. (80) (Fig. 3)
along the cantilever, T (z) = T , and, therefore, uniform curva-
ture ∇2ζ (z). The bending shape of the cantilever is a parabola
ζ (z) = T/γ×z2/2 for which 	X = (1/2)L 	θ . The bending
angle at the free end of the cantilever is 	θ = 2	X/L =
T L/γ .

Applying a static force F along the x axis (Fig. 3) at the free
end of the cantilever, creates the linear-in-z cross-sectional
torque, T (z) = F (L − z). The bending shape of the cantilever
is a cubic parabola, ζ (z) = FL/γ × (3 − z/L) z2/6, for which
	X = (2/3)L	θ . The displacement at the free end of the
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cantilever is 	X = 1/3 × FL3/γ and, therefore, the spring
constant c = F/	X is c = 3γ /L3.

If the weight of the cantilever in Earth’s gravity is
the source of static force, the cross-sectional torque is
T (z) = mLgcos θ × (L − z)2/2L, where θ is the angle be-
tween the cantilever and the direction of the force of gravity.
The displacement is ζ (z) = mLgL3/γ × cos θ × [ 6 (z/L)2 −
4 (z/L)3 + (z/L)4 ] / 24, with 	X = (3/4)L 	θ . The dis-
placement at the free end of the cantilever is 	X =
1/8 × mLgL3/γ × cos θ .

D. Effects of friction in the sample and in the cantilever
and the resonance width

The width of the resonance is determined by those re-
laxation phenomena in the sample and the cantilever that
are coupled effectively to the rotation of the sample and the
cantilever in the applied magnetic field. It is important for
this discussion that the measurement of the mechanical oscil-
lations of the cantilever produces a response function with the
same analytic properties as the magnetotropic susceptibility
of the sample.

For the sake of this discussion, it suffices to model the am-
plitude readout in these experiments to be proportional to the
rotation angle 	θ (t ) at the tip of the cantilever. For example,
in optical-readout setups [12,13] the readout is proportional
to the displacement 	X (t ) at the free end of the cantilever. In
piezoreadout setups, (e.g., Ref. [10]), the measured signal is
proportional to the stress induced by the lever at the attach-
ment end of the cantilever, which, in turn, is proportional to
the cross-sectional torque T (z = 0) at the attached end of the
cantilever [see Eq. (80) for details]. All these are proportional
to each other for small displacements of the cantilever.

Therefore, quite generally, the measured response is pro-
portional to the mechanical response f (ω) = ∫ ∞

0 d (t − t ′)
exp(iω(t − t ′))	θ (t ) 	θ (t ′). Near the mechanical resonance,
Eqs. (40) and (46), ω2

n = [Sn(ω) + k(ω)]/In the response
function f (ω) has a broadened Lorentzian form

f (ω) ∝ 1

ω2 − [Sn(ω) + k(ω)]/In
= 1

ω2 − ω2
0 + iω0�

. (47)

The relaxation phenomena in the sample and in the cantilever
shift the poles of the response function f (ω) of the cantilever
below the real axis, ±ω0 − i�/2, where � is the width of
the resonance. The width of the resonance, �, is determined
by the imaginary part of ω2

0 = [S0(ω) + k(ω)]/I0. For the
fundamental mode:

� = − 1

I0ω0
[ImS0(ω0) + Imk(ω0)]. (48)

The partial resonance width produced by relaxation phenom-
ena in the sample is proportional to the imaginary part of
the dynamic magnetotropic susceptibility k(ω0) discussed in
Sec. II E.

We note that Eq. (47) implies that relaxation phenomena in
the sample result not only in resonance width broadening pro-
portional to the imaginary part of magnetotropic susceptibility
Imk(ω0) but also in a finite frequency shift 	ω ∝ Rek(ω0)
associated with Imk(ω0) via Kramers-Kronig (analyticity)
relations. This dynamic frequency shift becomes especially

important in experiments where the frequency shifts are
smaller than resonance width [13].

Equation (47) can also be used as a starting point for
discussion of the frequency shift and resonance width broad-
ening in a polycrystal. The thermodynamic part of the
magnetotropic susceptibility vanishes in a polycrystal. The
magnetotropic susceptibility in the polycrystal is determined
entirely by the relaxation phenomena in the sample. For
a polycrystal, the entire frequency shift in Eq. (47) is re-
lated to the resonance width broadening by Kramers-Kronig
relations [15].

We now discuss the relaxation phenomena in the cantilever
captured in the imaginary part of the dynamic bending stiff-
ness S(ω). In complete analogy to the discussion in Sec. II E,
in the presence of slow relaxation phenomena in the can-
tilever, its mechanical response of the cantilever (e.g., stress)
is no longer an instantaneous function of the bending angle
	θ (t ). In particular, one cannot, strictly speaking, define an
instantaneous effective energy Eq. (40). This situation is de-
scribed by introducing a variable 	� = dE/d	θ , which is
thermodynamically conjugate to the bending angle 	θ at the
free end of the cantilever. Equation (40) defines the instanta-
neous response of � to the bending angle 	θ in the absence
of relaxation phenomena, �(t ) = S	θ (t ). Dynamic bending
stiffness S(ω) defines the time-dispersed, noninstantaneous,
relation between 	�(t ) and 	θ (t ′):

	�(t ) =
∫ t

−∞
dt ′ S(t − t ′) 	θ (t ′). (49)

Dynamic bending stiffness S(ω) is the Fourier transform of its
time-dispersed counterpart: S(ω) = ∫ ∞

0 dt exp(iωt )S(t ).
Relaxation phenomena in the cantilever include ther-

moelastic friction [19,20] and the viscous friction in the
surrounding exchange gas [21,22]. The motion of the can-
tilever in the surrounding He gas or liquid leads to viscous
friction. For a 100×50 µm2 cantilever oscillating at 10 kHz,
the Reynold’s number is small, ∼0.5 in air and ∼5 in liq-
uid He-4 at 2 K [23]. Therefore, we can use the Stokes
formula for the viscous force. The ratio of the resonance
width to the resonance frequency can be estimated as the
ratio of the energy dissipated per cycle to the energy stored,
�/ f = (6πηR f u2)/(S0(u/L)2) = 6πη

√
wL f L2/S, where u

is the amplitude of oscillations. For a 300×60 µm2 cantilever,
the viscous resonance width is about 30 Hz in the air at room
temperature and atmospheric pressure and about 3 Hz in liquid
He-4 at 2 K [23].

Regardless, the Q factor of the cantilever is intrinsically
limited by internal thermoelastic friction [19,20]. Bending of
the cantilever induces nonuniform strain across the thickness
of the cantilever, which, via thermal expansion coefficients,
induces a temperature gradient across the thickness of the
cantilever, δT ∝ x. Irreversible relaxation of the temperature
gradient via heat diffusion across the thickness of the
cantilever results in entropy production and, therefore, energy
dissipation. The effect of such thermoelastic friction on
the dynamic bending stiffness S(ω) can be captured [via
Eq. (100)] by the dynamic (frequency dependent) Young
modulus, Y (ω) = YT + (YS − YT )A(ω), where YS and YT

are adiabatic and isothermal values of Young’s modulus,
respectively, and A(ω) is a dimensionless factor normalized

035111-9



SHEKHTER, MCDONALD, RAMSHAW, AND MODIC PHYSICAL REVIEW B 108, 035111 (2023)

as A(ω = 0) = 0 and A(ω = ∞) = 1. The value of
(YS − YT )/YT is about 1% at room temperature and smaller at
lower temperatures [14]. For a thin cantilever,

A(ω) = 48
∑

kn=(2n+1)π

1

k4
n

−iωτh

−iωτh + k2
n

= 1 − 12

−iωτh
+ 24

(
√−iωτh)3

tanh

√−iωτh

2
, (50)

where τh is the heat diffusion time across the thickness of the
cantilever, 1/τh = D/h2. Here D = κ/CV is the heat diffusion
coefficient. The Q factor:

Q−1 = −YS − YT

YT
ImA(ω) . (51)

We can estimate τh as 3(h/c)2/τe where τe is the mean-
free time of phonons in the cantilever and h/c is the time it
takes for sound to traverse the thickness of the cantilever. For
thin cantilevers, ωτh is small and Eq. (50) behaves as A(ω) =
−iωτh/10. The Q factor of a 1-micron-thick silicon cantilever
with a resonant frequency of 100 kHz and phonon mean free
path of 10 microns at cryogenic temperatures is limited by
107.

E. Adiabatic evolution of freely oscillating cantilever

The frequency shift can be detected using lock-in tech-
niques [3,6,9,10,12,13]. In some experiments, such as in
pulsed magnetic fields, it is more straightforward to observe
the free oscillation of the cantilever in the time-dependent
magnetic field [10]. Here we discuss some general properties
of the oscillating cantilever relevant to such measurements.
The free evolution of the cantilever in a slowly changing
environment is described by

d2	θ

dt2
+ ω0(t )2	θ = 0, (52)

where the time dependence of the spring-constant parameter,

ω0(t )2 = [S + k(t )]/I, (53)

is determined by the slow evolution of the magnetotropic
susceptibility k(t ) = k(B(t ) in an external magnetic field
B(t ). When the magnetic field changes slowly, the oscil-
lation frequency of the cantilever adiabatically follows the
instantaneous value of ω0(t )—the instantaneously observed
oscillation frequency is equal to the parameter ω0(t ) in
Eq. (52):

	θ (t ) = A(t )eiϕ(t ), ϕ(t ) =
∫ t

ω0(t ′)dt ′ . (54)

The quantitative measure of the slowness of ω0(t ) is the adi-
abaticity parameter α = d (ω−1

0 )/dt defined as the fractional
change of frequency in one oscillation period [24].

While the observed frequency of the cantilever follows
adiabatically the instantaneous value ω0(t ) determined by the
magnetic field B(t ) and the magnetic response of the sample,
the amplitude A(t ) of the oscillation decays. In a typical setup,
the source of amplitude decay is energy dissipation in the
surrounding exchange gas, in the components of the setup

susceptible to irreversible deformations, as well as, and pos-
sibly dominantly so at low temperatures, energy dissipation
associated with thermoelastic friction and solid viscosity in
the cantilever itself (Sec. III D).

The amplitude of oscillations of the cantilever evolves re-
versibly (as well as irreversibly, due to energy dissipation) in a
time-dependent magnetic field. This is because the cantilever-
sample assembly in an external magnetic field is not a closed
mechanical system. The mechanical energy of the sample-
cantilever assembly changes by the amount of work done by
the magnetic field on the sample. In the adiabatic regime,
this reversible energy exchange is captured by the weak time
dependence of the adiabatic invariant,

J = E (t )

ω0(t )
, (55)

which does not change when the spring constant parameter
ω0(t )2 varies slowly in time [24]. Here E (t ) = I ω0(t )2A(t )2

is the average mechanical energy of the cantilever. There-
fore, the oscillation amplitude of the cantilever will change
reversibly according to

A(t )2 ∝ 1/ω(t ), (56)

in addition to the irreversible changes associated with energy
dissipation.

F. Frequency shift in Earth’s gravity

Piezoresistive cantilevers can be calibrated by measuring
their bending in Earth’s gravity. Similarly, the oscillating can-
tilever exhibits a characteristic resonance frequency shift in
Earth’s gravity. The reason for such a frequency shift is that
each segment of the cantilever performs a pendulum motion in
the external gravitational field. Left to itself, the length of the
rope—or, in this case, the radius Rn of the circle containing the
oscillating trajectory of the segment of the cantilever—would
determine the frequency of swinging oscillations. Instead,
because the segments are coupled to each other by much
stronger elastic forces, the swinging in a gravitational field
leads to a small frequency shift proportional to the ratio of
gravitational energy mLgL and the bending stiffness, Eq. (63).

To describe this in better detail, we note that as each short
segment on the cantilever moves perpendicular to the plane of
the cantilever [ζn(z, t ), along x in Fig. 3], it also moves along
the length of the cantilever [�‖

n(z, t ), along z in Fig. 3] by a
much smaller amount:

�‖
n(z) ≈ − ζn(z)2

2Rn(z)
. (57)

Geometrically, the curve {ζn(z), ζn(z)2/2Rn(z)} describes a
small arc of a circle of radius Rn(z) with the center on the
z axis. Because the strain εzz vanishes on the neutral surface,
Eq. (74), an arbitrary deformation of a thin cantilever leaves
the length of a neutral surface unchanged. This property of
neutral surface determines the effective rope radius Rn(z) in
Eq. (57) for arbitrary ζ (z). Specifically, we label each point by
its distance s to the attachment point along the neutral surface
of the bent cantilever, 0 < s < L, and can describe the bent
shape of the cantilever parametrically with {x(s), z(s)}, sub-
ject to constraint (dx/ds)2 + (dz/ds)2 = 1. The displacement
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�‖
n(z) along the z-axis segment of the cantilever can be repre-

sented as

�‖(s) = z(s) − s =
∫ s

0
ds′

(
dz(s′)

ds′ − 1

)

=
∫ s

0
ds′

⎛
⎝

√
1 −

(
∂ζ (s′)
∂s′

)2

− 1

⎞
⎠. (58)

Expanding �‖ for small ζ (s) gives equation Eq. (57) with
effective rope radius

1

Rn(z)
= 1

ζn(z)2

∫ z

0
dz′(∇ζn(z′))2, (59)

where we have relaxed the distinction between z and s. For the
fundamental mode, the rope radius R0(z)/z increases approx-
imately linearly from 0.75 at the base of the cantilever, z = 0,
to 0.86 at the free end, z = L:

R0(L) = 0.86L. (60)

Together, Eqs. (57), (59), (93), and (94) define the gravita-
tional energy of the cantilever, bilinear-in-	θ ,

δEgravity
cantilever = μgcos θ×

∫ L

0
dz �‖(z)

= mLgcos θ×bnL×	θ2

2
, (61)

where mL = ρAL is the total mass of the cantilever and gcos θ

is the component of the Earth’s gravity along the length of the
cantilever. The numeric mode-dependent factor bn is

bn =
∫ L

0

dz

L

(
1 − z

L

)
(∇ζn(z))2. (62)

The gravitational shift of the fundamental mode, b0 ≈ 0.21, is
[see Eqs. (44) and (46) for comparison]:(

	ω0

ω0

)
L

= 0.21
mLgL

2S0
cos θ. (63)

The sample attached at the end of the cantilever itself
moves on a small arc of a circle of radius R(L), Eq. (59). The
bilinear-in-	θ gravitational energy is

δEgravity
Sample = mSgcos θ×Rn(L)×	θ2

2
. (64)

For the fundamental mode, Eq. (60):(
	ω0

ω0

)
S

= 0.86
mSgL

2S0
cos θ. (65)

G. Effects of nonuniform magnetic field

A nonuniform magnetic field can shift the resonance
frequency of the cantilever through several mechanisms. Un-
less the experiment is specifically designed to observe these
effects, the resonance shifts resulting from a nonuniform
magnetic field are much smaller than the frequency shifts as-
sociated with sample rotation in the magnetic field. Typically,
they are smaller by a factor proportional to the first or second
power of the ratio of the cantilever’s length to the size of

the coil generating the applied magnetic field (which deter-
mines the size of the gradients of magnetic field). Here we
provide a brief semiquantitative discussion of the frequency
shifts associated with spatial gradients and spatial curvatures
of magnetic field.

Small changes in the free energy of the sample in a nonuni-
form magnetic field,

dF = −M · dB, (66)

originate from the finite extent 	X of the trajectory of the
sample at the free end of the cantilever [Eq. (43) for the
fundamental mode] along the x axis (Fig. 3) as well as the
pendulumlike motion of the sample along the z axis, Eq. (57).
The frequency shifts associated with these two orthogonal
motions have different characters.

The field gradient along the length of the cantilever acts on
the sample in the same way as a force of gravity, Eq. (64).
The sample experiences a uniform force along the length of
the cantilever:

Fz = −dF

dz
= M · dB

dz
. (67)

The associated frequency shift is obtained from Eq. (65)
by replacing mSgcos θ with M · dB/dz. For example, the
gravitational frequency shift of a sample with 1 μB/f.u. mag-
netization and an atomic number of 100/f.u. is about 100
times smaller than the frequency shift in magnetic field gra-
dient of 0.1 T/cm.

The inhomogeneity of magnetic field along the x axis in-
troduces a parabolic potential that depends on both gradients
and spatial curvature of the inhomogeneous magnetic field,

	F = 	X 2

2

(
− Mμ

d2Bμ

dx2
− χ̂μν

dBν

dx

dBμ

dx

)
, (68)

where χ̂μν = dMμ/dBν is the magnetic susceptibility. Equa-
tion (68) produces a small 	X 2 term in Eq. (42) and, through
Eq. (43), a small 	θ2 term in Eq. (40). For the fundamental
mode, the associated frequency shift is given by Eqs. (46) with
parenthesis factor in Eq. (68) replacing the magnetotropic
susceptibility.

For a cantilever, where oscillations rotate as well as dis-
place the sample simultaneously, Eq. (95), the frequency shift
associated with the spatially nonuniform magnetic field is
suppressed compared to rotational shift, Eqs. (46), by a factor
of the square of the ratio of the size of the cantilever to the size
of the magnet. We note, however, that the two shifts have dif-
ferent angular dependence as well as different dependence on
components of the magnetization and magnetic susceptibility.

IV. MECHANICS OF AN OSCILLATING CANTILEVER

A. Thin cantilever and arc stiffness

For completeness, we discuss here the mechanics of a thin
cantilever [25]. Throughout this discussion, we shall assume
that the thickness of the cantilever is much smaller than ei-
ther of its lateral dimensions, h � L,w (Fig. 3). In such a
thin-plate approximation, the bent state of the cantilever is
described completely by the x-axis displacement of the can-
tilever at a distance z from the point of attachment, ζ (z). The
mechanical energy of the cantilever is a bilinear function of
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the displacement ζ (z):

Etot = μ

2

∫ L

0
dz

(
∂ζ (z, t )

∂t

)2

+ γ

2

∫ L

0
dz

(
d2ζ (z, t )

dz2

)2

.

(69)

The mechanical energy of the cantilever determines the res-
onant frequencies and the effective bending stiffnesses. The
first term in Eq. (69) is the kinetic energy of the oscillating
cantilever, proportional to the square of the velocity of each
segment of the cantilever, μv(z)/2 = μ[dζ (z)/dt]2/2. Here
μ is the mass of the lever per unit length, μ = ρA where
A = wh is the cross-sectional area of the cantilever, w is the
width of the cantilever, and h is its thickness. ρ is the density
of the cantilever.

The second term in Eq. (69) is the elastic energy, propor-
tional to the second derivative—curvature—of ζ (z) for each
segment of the cantilever, 1/r(z) = ∂2ζ (z)/∂z2, where r(z) is
the local radius of curvature at z.

The arc stiffness γ in Eq. (69) determines the elastic energy
of the cantilever for arbitrary ζ (z). The arc stiffness γ is
itself determined by the elastic deformation inside the can-
tilever. For small deformations of a thin cantilever, only one
component, σzz, of the stress tensor is nonzero, and it alone
determines γ . This is because the perpendicular component
of the elastic stress on the free surface of the cantilever is
zero, which requires that all stress components except σzz must
vanish there. For a thin cantilever, this implies that all stress
components, with the exception of σzz, are zero, not only on
the surface but also inside the cantilever [25].

The stress σzz is a linear function of the distance to the neu-
tral surface and vanishes on it, σzz = b(z)x, where x runs from
−h/2 to h/2 (Fig. 3). For a thin cantilever, the neutral surface
is in the middle of the cross-sectional area. b(z) can be found
from elastic equations that connect the strains [described via
ζ (z)] to the stresses. Assuming that the cantilever is cut out of
a cubic crystal parallel to its crystallographic directions, the
elastic equations are

σxx + σyy + σzz = (c11 + 2c12)×(εxx + εyy + εzz ),

σxx − σyy = (c11 − c12)×(εxx − εyy),

σxx + σyy − 2σzz = (c11 − c12)×(εxx + εyy − 2εzz ),

σi �= j = c66 εi �= j . (70)

Here, only one, σzz, component of a stress tensor is nonzero.
Therefore, only compressional strains are nonzero:

εzz = 1

Y
σzz, εxx = εyy = −σεzz = −σ

Y
σzz. (71)

where σ is the Poisson’s ratio and Y is the Young’s modulus
of the cubic crystal:

Y = (c11 − c12)(c11 + 2c12)

c11 + c12
, σ = c12

c11 + c12
. (72)

Equations (71) show that the strains εxx, εyy, and εzz are all
linear in x because σzz(x) = b(z)x is linear in x. The linear-in-x
strain εzz = x/r(z) implies that the shape of the bent cantilever
is an arc of a thin annulus. This is because under such defor-
mation, each vertical line z = const will deform into radial
segments and each horizontal line x = const will deform into

an arc of a circle, with the same center as the arc of the neutral
surface (Fig. 3). r(z) is the radius of curvature of a neutral
surface (Fig. 3),

1

r(z)
= ∇2ζ , (73)

where ∇ = ∂/∂z denotes the derivative with respect to z. This
establishes the connection between the strain and the bent
shape of the cantilever:

εzz(x, z) = x ∇2ζ (z). (74)

Elastic equations, Eqs. (71), in turn, require that the coefficient
b(z) in the stress σzz(x, z) = b(z)x is equal to b(z) = Y/r(z) =
Y ∇2ζ (z) and therefore:

σzz(x, z) = x Y ∇2ζ (z). (75)

The arc stiffness γ in Eq. (69) determines the elastic en-
ergy of the cantilever per unit length. We can integrate the
elastic energy of the cantilever in a small volume, dE =
(1/2)εi jσi jdV ,

	E

	V
= 1

2
εzzσzz = 1

2Y
σ 2

zz = Y

2
(∇2ζ )2x2, (76)

over the cross-sectional area to obtain the elastic energy of the
cantilever per unit length,

	E

	z
= γ

2
(∇2ζ )2, (77)

which defines the arc stiffness,

γ = Y wh〈x2〉 = Y wh3/12, (78)

in terms of geometric and mechanical parameters of the can-
tilever (Fig. 3). Here 〈x2〉 = (1/h)

∫
x2dx is the average x2

over the cross-section of the cantilever. 〈x2〉wh is the geo-
metric moment of inertia of the cross-sectional area of the
cantilever [25]. For a thin lever, 〈x2〉 = h2/12.

The boundary conditions for the equations of motion fol-
low from an expression for the mechanical energy of a
nonuniform cantilever for which w(z), Y (z), ρ(z), and h(z)
vary along its length,

Etot = 1

2

∫ L

0
dz μ(z)

(
dζ (z, t )

dt

)2

+ 1

2

∫ L

0
dz γ (z)

(
d2ζ (z, t )

dz2

)2

, (79)

where μ(z) = w(z)h(z)ρ(z) and γ (z) = Y (z)w(z)h(z)3/12.
For example, if the cantilever consists of two unequal uniform
segments such that w(z) and/or h(z) have a sharp step, the
equations of motion require the continuity of ζ (z), ∇ζ (z),
γ (z)∇2ζ (z), and γ (z)∇3ζ (z) across the step.

When the cantilever is bent locally into an arc of curvature
∇2ζ (z), a finite cross-sectional torque T (z) is developed in
its cross section (Fig. 3). The cross-sectional torque T (z) is
equal to the change in elastic energy of the cantilever, Eq. (69),
when local curvature of the cantilever is varied, δ(dE/dz) =
T (z)δ(∇2ζ ). Equation (69) gives T (z) = γ∇2ζ (z). Therefore,
the arc stiffness γ in Eq. (69) has the meaning of the coeffi-
cient of proportionality between cross-sectional torque T (z)
and the local curvature of the cantilever. The same result is
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found by direct integration of the stress σzz(x) in Eq. (75) over
the cross-sectional area of the cantilever,

T (z) =
∫

xσzz(x)dA = γ∇2ζ (z), (80)

where arc stiffness γ is given by Eq. (78).

B. Oscillating cantilever

The motion of the cantilever near one of its mechanical res-
onances is determined by the equations of motion for ζ (z, t ),

d2ζ (z, t )

dt2
+ γ

μ
∇4ζ (z, t ) = 0, (81)

which follow from the energy functional in Eq. (69) [24]. Near
the resonance, the cantilever oscillates at a single frequency ω,

ζ (z, t ) = ζn(z)eiωnt , (82)

determined by one of the eigenvalues of the Bilaplacian

∇4ζn(z) = κ4
n

L4
ζn(z) , ω2

n = κ4
n

L4

γ

μ
, (83)

subject to the boundary conditions of the cantilever. For a
cantilever clamped at one end, z = 0, and free at the other,
z = L:

∇2ζn(L) = 0, ∇3ζn(L) = 0, ∇ζn(0) = 0, ζn(0) = 0. (84)

The Bilaplacian in Eq. (83) is solved with

ζn(z) = A cos
κnz

L
+ B sin

κnz

L
+ C cosh

κnz

L
+ D sinh

κnz

L
,

(85)

where A, B,C, D are constant factors determined by the
boundary conditions:

− A cos κn − B sin κn + C cosh κn + D sinh κn = 0,

A sin κn − B cos κn + C sinh κn + D cosh κn = 0,

B + D = 0,

A + C = 0. (86)

The eigenvalues κn of the Bilaplacian are determined by the
condition that the matrix in Eqs. (86) has zero determinant,

Det

⎛
⎜⎜⎝

− cos κn − sin κn cosh κn sinh κn

sin κn − cos κn sinh κn cosh κn

0 1 0 1
1 0 1 0

⎞
⎟⎟⎠ = 0, (87)

which simplifies to

1 + cos κn cosh κn = 0. (88)

Finally, we obtain

κ0 ≈ 0.597π, κn=1,2,... ≈ (n + 1/2)π. (89)

The set of resonant frequencies of the cantilever is now deter-
mined via Eqs. (83):

ωn = κ2
n

L2

√
γ

μ
. (90)

The frequency of the lowest frequency (fundamental) mode
of a thin cantilever with a uniform cross-section is given by
combining Eqs. (83), (89), and (78),

ω0 = 1.02
h

L2

√
Y

ρ
, (91)

where the numerical factor (0.597π )2/
√

12 ≈ 1.02.
The bending shape of the cantilever near the resonance

ζn(z) is found from Eqs. (86),

A = −C = cosh κn + cos κn,

B = −D = sin κn − sinh κn, (92)

and Eq. (85):

ζn(z) = L Nn

[
(cosh κn + cos κn)

(
cosh

κnz

L
− cos

κnz

L

)

− (sinh κn − sin κn)

(
sinh

κnz

L
− sin

κnz

L

)]
. (93)

The normalization factor Nn can be chosen to fix the bending
angle 	θ (t ) = ∇ζ (z = L, t ) at the free end of the cantilever,
z = L. We parametrize the motion of the cantilever near the
resonance as ζn(z, t ) = ζn(z)	θ (t ), where ζn(z) is normalized
to have a unit slope at the free end, ∇ζn(z = L) = 1, and
	θ (t ) oscillates at the resonance frequency, 	θ (t ) = 	θeiωnt :

Nn = 1

2κn
× 1

cosh κn sin κn + cos κn sinh κn
. (94)

The displacement 	Xn = ζn(L) and the angle 	θn = ∇ζn(L)
at the free end of the cantilever are proportional to each other:

	Xn = 1

κn(cot κn + coth κn)
L 	θn. (95)

This gives 	X0 = 0.73L 	θ0 for the fundamental mode,
n = 0, and 0.21, 0.13, . . . for n = 1, 2, . . ..

C. The effective bending stiffness Sn in the vicinity
of a resonance

Together, Eqs. (93), (94), and (69) describe the kinetic
and potential energy of the cantilever near the nth resonance
mode in terms of the rotation angle at the tip of the cantilever,
	θ (t ) = 	θeiωnt :

E = In

2

(
∂	θ

∂t

)2

+ Sn

2
	θ2. (96)

Sn and In are evaluated by substituting the shape of the can-
tilever in the nth resonance mode, Eqs. (93) and (94), into the
kinetic and elastic energy terms in Eq. (69) and expressing
both as bilinear functions of the angle 	θ . Calculating the
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kinetic energy in Eq. (69),(
∂	θ

∂t

)2 ∫ L

0
dzζn(z)2 = L3

(
an

κ3
n

) (
∂	θ

∂t

)2

, (97)

where an=0,1,2,... = {0.870, 1.13, 1.97, . . .} is a mode-
dependent numeric factor defined by the average square
of the displacement of the cantilever,

an = κ3
n

L3

∫ L

0
dz(ζn(z))2, (98)

with ζn(z) from Eq. (93) and normalization factor Nn from
Eq. (94), where 	θ is set to unity. We obtain the parameter In

in Eq. (96),

In = an

κ3
n

×μL3 = an

κ3
n

×ρwhL3. (99)

The integral in the elastic energy in Eq. (69) can be reduced
to the one in Eq. (98) using equations of motion, Eq. (81), and

we obtain

Sn = anκn×γ

L
= anκn×Y wh3

12L
. (100)

Equations (99) and (100), through their definition in Eq. (96),
produce the correct resonance frequency, Eq. (90).
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