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The behavior of three-dimensional semimetals under strong magnetic fields is a topic of recurring interest in
condensed matter physics. Recently, the advent of Weyl and Dirac semimetals has brought about an interesting
platform for potentially uncovering phases of matter that combine nontrivial band topology and interactions.
While electronic instabilities of such semimetals at strong magnetic fields have been explored theoretically and
experimentally, the role of electron-phonon interactions therein has been largely neglected. In this paper, we
study the interplay of electron-electron and electron-phonon interactions in a minimal two-node model of Weyl
semimetal. Using a Kadanoff-Wilson renormalization group approach, we analyze lattice (Peierls) instabilities
emerging from chiral and nonchiral Landau levels as a function of the magnetic field. We consider both the
adiabatic and nonadiabatic phonon regimes, in the presence or absence of improper symmetries that relate Weyl
nodes of opposite chirality. We find that (i) the Cooper channel, often neglected in recent studies, can prevent
purely electronic instabilities while enabling lattice instabilities that are not Bardeen-Cooper-Schrieffer-like;
(ii) breaking the improper symmetry that relates the two Weyl nodes suppresses the Cooper channel, thereby
increasing the critical temperature for the lattice instability; (iii) in the adiabatic phonon regime, lattice insta-
bilities can preempt purely electronic instabilities; and (iv) pseudoscalar phonons are more prone to undergo a
Peierls instability than scalar phonons. In short, our study emphasizes the importance of taking electron-phonon
interactions into account for a complete understanding of interacting phases of matter in Dirac and Weyl
semimetals at high magnetic fields.
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I. INTRODUCTION

Recently, the competing effects of electronic correlations
and strong spin-orbit coupling have generated considerable
interest in the condensed matter community [1–3]. Topolog-
ical materials [4–10] provide an excellent platform for the
potential realization of exotic electronic phases and novel
phenomena resulting from such an interplay.

A particular example is provided by Weyl semimetals
(WSMs) [11–13], which are topologically nontrivial gapless
systems featuring pairs of nondegenerate bands touching each
other at isolated points in the band structure, with a low-
energy description in terms of massless, linearly dispersing
Weyl fermions. Electronic interaction effects in these systems
have been extensively explored, using various approaches
[14–26].

More generally, the behavior of three-dimensional (3D)
semimetals under a large applied magnetic field has pre-
sented a problem of recurring interest for the community
[27–35]. For such systems, in the so-called quantum limit,
where the Fermi level intersects only the lowest Landau
band, the nesting of Fermi surfaces is greatly enhanced,
stabilizing field-induced symmetry-breaking phases, such as
density wave orders [27,31,34,35]. The quantum limit can
be achieved relatively easily in Dirac/WSMs, owing to their
low carrier density, and the extra valley or orbital degrees of
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freedom may further enrich the types of phases that can be
realized.

On the experimental side, high-field measurements of
Dirac/WSMs have also given rise to anomalous features
[36–40] that hint at the possibility of field-induced phase tran-
sitions in the quantum limit, thus contributing to the interest
in this area. Such anomalies are often attributed to interaction-
induced instabilities occurring at high fields [36,38,39]. In
addition, the high-field regime provides a setting that can be
useful for potentially isolating decisive experimental signa-
tures of Weyl fermions [39,41–46].

From a purely theoretical point of view, much of the
existing effort has been directed specifically toward examin-
ing the effect of electronic interactions in 3D semimetals at
high fields [34,47–53]. In this context, the appearance of a
chiral symmetry-breaking, fully gapped charge-density wave
(CDW) order, even for sufficiently weak repulsive electron-
electron interactions, for topological Dirac and WSMs has
been discussed in the literature [47,50–53]. Such studies have
employed both analytical and numerical approaches but have
generally focused their attention solely on the quantum limit.

On the other hand, while phonons in WSMs have gained
considerable attention [37,41,43,54–62] due to their inter-
play with the nontrivial electronic band topology, the role of
phonons in the magnetic-field-induced instabilities of Weyl
semimetals has barely been explored.

The need for including electron-phonon interactions in the-
oretical treatments of such systems has been raised in part by
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recent high-field measurements in the WSM TaAs [39], where
a strong increase in the ultrasonic attenuation at low tem-
peratures has been observed. Likewise, it has been recently
suggested that electron-phonon interactions can be important
for the field-induced ordered states reported in graphite [30]
and in the Dirac semimetal ZrTe5 [63,64], although the dis-
cussion on the presence or absence of order in ZrTe5 is still
ongoing [65–68].

In this paper, we aim to contribute along the preceding line
of research by studying possible instabilities of a WSM at
high magnetic fields through the interplay of electron-electron
and electron-phonon interactions. The primary objective is to
theoretically predict the high-field lattice instabilities for a
minimal (two-node) WSM model, as a function of the mag-
nitude and direction of the magnetic field, in the presence and
absence of improper symmetries relating the two Weyl nodes
and for both the adiabatic and nonadiabatic phonon regimes.

To that end, we adopt the Kadanoff-Wilson renormaliza-
tion group (RG) approach [69,70], which has the advantage of
treating different electronic and lattice instabilities on an equal
footing and allows us to include multiple energy scales with
ease. It follows from our analysis that electron-phonon inter-
actions tend to augment the CDW fluctuations in the system
and that, under certain conditions, lattice instabilities preempt
those of purely electronic origin. It is, therefore important to
take into account the effect of electron-phonon interactions
while studying potential instabilities in WSMs at high mag-
netic fields. Our analysis also evidences that particle-particle
scattering (aka the Cooper channel), which has been often
neglected before, plays an important role when the two Weyl
nodes are related by a mirror plane. Indeed, the Cooper chan-
nel interferes destructively with the particle-hole scattering
(aka the Peierls channel), thereby preventing purely electronic
instabilities while enabling lattice instabilities. Another im-
portant finding from our study is that breaking the mirror
symmetry (which can be done, for example, by rotating the ex-
ternal magnetic field) suppresses the Cooper channel, thereby
increasing the critical temperature for the lattice instability.

The paper is organized as follows. In Sec. II, we begin by
recalling the minimal model of two Weyl nodes in a quan-
tizing magnetic field and in the presence of electron-phonon
and electron-electron interactions. Then, we briefly review the
Kadanoff-Wilson RG method.

In Sec. III, we write the RG equations when the Fermi
level intersects only the chiral Landau levels. We derive the
condition for phonon softening from the renormalization of
the phonon part of the action and use it to obtain the Peierls
transition temperature in hitherto unexplored scenarios and
as a function of different tuning parameters. For instance,
we take into account the effect of an asymmetry in the po-
sition of the Weyl nodes of opposite chiralities, as well as
in their velocities. We also extend our analysis to the nona-
diabatic regime, where the bare phonon energy exceeds the
energy scale of the Peierls transition. We consider competing
logarithmic divergences in the Cooper and Peierls channels
whenever relevant, and find that the results are sensitively
dependent on the competition between the two contributions.

In Sec. IV, we describe the corresponding results for the
case when the Fermi level also intersects the first nonchiral
Landau level. Here, we distinguish between the behavior of

the scalar and pseudoscalar phonon modes, and we find that
the latter are qualitatively more prone to undergo an instabil-
ity.

In Sec. V, we briefly extrapolate our results to real WSMs
and comment on their applicability to Dirac semimetals. In
Sec. VI, we summarize our results and state the main con-
clusions. We also compare our paper with recent theories
[63,64] of lattice instabilities in ZrTe5 as well as with theories
of magnetic catalysis [48]. Finally, the Appendices contain
details of the RG calculation.

II. MODEL

For most of this paper, we limit ourselves to a minimal
model of two untilted Weyl nodes of opposite chirality. In
Sec. V, we discuss briefly how the results from our toy model
might extrapolate to models with various pairs of Weyl nodes,
with a tilt.

A. Free Weyl fermions in a magnetic field

We consider a WSM of spatial dimensions Lx × Ly × Lz

under a magnetic field B = Bẑ with periodic boundary condi-
tions in the z direction. The Landau levels originating from
a Weyl fermion of a given chirality τ (with τ = ±1) are
characterized by the following good quantum numbers: the
Landau-level index n(n ∈ Z, with n > 0 for conduction-band
Landau levels, n < 0 for valence-band Landau levels, n = 0
for the chiral Landau level), the guiding center X , and the
wave vector k along the direction of the external magnetic
field, measured from the position of the Weyl node. Note
that k is assumed to be bound by a cutoff, within which the
Weyl fermion approximation is valid. This cutoff is smaller
than the internodal distance. Below, we will often denote the
collection of good quantum numbers with the letter α, i.e.,
α = (n, X, k, τ ). In addition, we disregard the Zeeman effect,
whose effect in our model is limited to a shift in the Weyl
nodes’ location.

The eigenenergies are independent of X and given by

εnXkτ =
{
τb0 + εnkτ (n �= 0)
τb0 + h̄vτ τk (n = 0), (1)

where εnkτ = h̄vτ τ sign(n)
√

k2 + 2|n|/l2
B, vτ is the node-

dependent magnitude of the Dirac velocity (not to be confused
with the vnkτ coefficient below) and 2b0 is the energy shift
between the two nodes of opposite chirality. In the presence
of an improper symmetry that relates the two nodes (e.g., a
mirror plane), b0 = 0 and v+ = v−. Below we will study the
general case in which both b0 and v+ − v− may be nonzero.

The eigenspinors, written in the pseudospin basis {σ } =
{↑,↓} that describes the two degenerate bands at the Weyl
node in the absence of magnetic fields, are

〈r|�0Xkτ 〉 = ei(k+kτ )z

√
Lz

(
0

h0X (x, y)

)
(2)

for the chiral (n = 0) Landau level and

〈r|�nXkτ 〉 = ei(k+kτ )z

√
Lz

(
unkτ h|n|−1,X (x, y)
vnkτ h|n|,X (x, y)

)
(3)
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for the nonchiral (n �= 0) Landau levels, where kτ is the pro-
jection of the momentum of the Weyl node of chirality τ along
the magnetic field;

unkτ = 1√
2
τ sign(n)

√
1 + h̄vτ k

εnkτ

, (4)

vnkτ = 1√
2

√
1 − h̄vτ k

εnkτ

(5)

are position-independent coefficients of the Landau-level
spinors;

hnX (x, y) = (−1)n√
Ly

e−iXy/l2
Bϕn(x − X ), (6)

ϕn(x) =
(

1

π l2
B

)1/4 1√
2nn!

Hn

( x

lB

)
e−x2/2l2

B (7)

are Landau-level wave functions; and Hn(x) are the Hermite
polynomials. It is useful to note that

〈h|n|,X |h|n′|,X ′ 〉 ≡
∫

dxdy h∗
|n|X h|n′ |X ′ = δXX ′δ|n||n′|,

u2
nkτ + v2

nkτ = 1. (8)

Using the shorthand notation, the free fermion Hamiltonian
can be written as

H(0)
e =

∑
α

εαc†
αcα, (9)

where c†
α ≡ c†

nXkτ
is a (dimensionless) operator that creates an

electron in state |�nXkτ 〉.
For the moment, we neglect the single-particle hybridiza-

tion gap due to magnetic tunneling between chiral Landau
levels of opposite chirality. This gap can become measurable
at high magnetic fields [39,71], provided that (i) the magnetic
field is perpendicular to the wave vector that separates Weyl
nodes in momentum space and (ii) the magnetic length is
comparable to or shorter than the inverse of the distance in
momentum space that separates two Weyl nodes at zero field.
The hybridization gap depends strongly on the orientation of
the magnetic field and it is believed to be relatively negligible
when the magnetic field is parallel to the wave vector connect-
ing the two Weyl nodes [42,72,73]. In Sec. V, we will briefly
comment on the implications of the hybridization gap in our
theory.

B. Electron-phonon interaction

The electron-phonon interaction in the band eigenstate ba-
sis is given by

Hep =
∑
αα′

∑
q, j

g̃ep
αα′, j (q)c†

αcα′ (a†
q, j + a−q, j ), (10)

where a†
q, j is a (dimensionless) operator that creates a phonon

mode j with momentum q, and

g̃ep
αα′, j (q) ≡ g̃ττ ′, j (q)〈�nX,k,τ |eiq·r|�n′X ′k′τ ′ 〉

= g̃ττ ′, j (q)δk′+kτ ′ ,k+kτ −qδX ′,X+qyl2
B
[unkτ un′k′τ ′ 〈h|n|−1,X |eiq⊥·r⊥|h|n′|−1,X ′ 〉 + vnkτvn′k′τ ′ 〈h|n|,X |eiq⊥·r⊥|h|n′|,X ′ 〉]

= g̃ττ ′, j (q)δk′+kτ ′ ,k+kτ −qδX ′,X+qyl2
B
eiqx (X+X ′ )/2[unkτ un′k′τ ′F|n|−1,|n′ |−1(q⊥) + vnkτvn′k′τ ′F|n|,|n′ |(q⊥)] (11)

is the electron-phonon matrix element (with dimensions of
energy) in the low-energy Hilbert space spanned by Weyl
fermions. For brevity, Eq. (11) has been written using the
eigenstates of the nonchiral Landau levels [Eq. (3)]. Yet, it can
be easily adapted to include chiral Landau levels via u0,k,τ →
0 and v0,k,τ → 1. In the numerical estimates performed below,
we will use [74,75]

g̃ττ ′, j (q)2 ∼ h̄d2
op, j

2ρVω0, j (q)
(12)

for long-wavelength optical phonons, where V is the crystal
volume, ρ is the atomic mass density, dop, j is the optical de-
formation potential (dimensions of energy divided by length),
and ω0, j (q) is the unperturbed phonon frequency for mode j.
For the case of long-wavelength acoustic phonons, we replace
dop, j → |q|dac, j , where dac, j is the acoustic deformation po-
tential (dimensions of energy).

In Eq. (11), we have defined the form factors [76,77]

Fnm(q⊥) ≡
√

min(n, m)!

max(n, m)!

(
(∓qy − iqx )lB√

2

)|n−m|

× L|n−m|
min(n,m)

(
q2

⊥l2
B

2

)
e−q2

⊥l2
B/4, (13)

where n, m are nonnegative integers, the + and − signs
correspond to the cases n > m and n < m, respectively, and
the functions Lα

n are the generalized Laguerre polynomials.
Also, we have used q = qẑ + q⊥, r = zẑ + r⊥. We note that
for long-wavelength phonons (q smaller than the internodal
distance), Eq. (11) vanishes unless τ = τ ′. In addition, in the
limit q⊥ → 0, Eq. (11) becomes

〈�nX,k,τ |eiqz|�n′X ′k′τ ′ 〉 = δk′+kτ ′ ,k+kτ −qδ|n|,|n′|δX,X ′ (un,k,τ un′,k′,τ ′

+ vn,k,τvn′,k′,τ ′ ). (14)

In Eq. (11), we have assumed (for simplicity) that the
electron-phonon coupling is diagonal in the pseudospin ba-
sis. Admittedly, for a generic nesting wave vector, there is
no symmetry-based reason that would preclude the electron-
phonon coupling from having pseudospin-dependent terms.
However, the pseudospin structure of the electron-phonon
coupling is not qualitatively crucial for our theory; what is
crucial is that the coupling between Fermi points connected
by the nesting wave vector be nonzero. Any pseudospin de-
pendence of such an electron-phonon interaction will simply
modify (by a numerical factor) the effective electron-phonon
coupling appearing in our expressions for the critical temper-
ature in Secs. III and IV.
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C. Electron-electron interaction

The electron-electron interaction in the band eigenstate
basis is given by

Hee � 1

2V
∑

q

∑
{α}

g̃α3α4
α1α2

(q)c†
α1

cα3 c†
α2

cα4 , (15)

where we have neglected umklapp processes,

g̃α3α4
α1α2

(q) ≡ V (q)
〈
�n1X1k1τ1

∣∣eiq·r∣∣�n4X4k4τ4

〉
× 〈

�n2X2k2τ2

∣∣e−iq·r∣∣�n3X3k3τ3

〉
(16)

is the Coulomb matrix element, V (q) = e2/(ε0ε∞q2) is the
Coulomb potential, and ε∞ is the cutoff-dependent contri-
bution from high-energy electrons (of energy exceeding the
ultraviolet RG cutoff) to dielectric screening. Screening ef-
fects originating from low-energy fermions will be discussed
below.

D. Partition function

In what follows, we will apply the RG approach [69] to the
Peierls instability of the above model. The starting point is the
functional integral representation of the partition function in
the presence of a magnetic field along z,

Z =
∫

Dψ†Dψ

∫
Dφ eS[ψ†,ψ,φ,h]/h̄, (17)

which is expressed in terms of a trace over the fermion (ψ (†) )
and phonon (φ) fields. Here, S stands for the action

S[ψ†, ψ, φ, h] = S(0)
e [ψ†, ψ] + See[ψ†, ψ] + S(0)

p [φ]

+ Sep[ψ†, ψ, φ] + Sh[ψ†, ψ, h], (18)

which comprises five parts. First, the free electron action is

S(0)
e [ψ†, ψ] =

∑
α

∑
ωn

(ih̄ωn + μ − εα )ψ†
α (ωn)ψα (ωn),

(19)
where ψα and ψ

†
α′ are Grassmann fields (with dimensions√

time), ωn = (2n + 1)πkBT/h̄ (n ∈ Z) are fermionic Mat-
subara frequencies at temperature T and μ is the chemical
potential. In Eq. (19), we have used the convention

ψα (t ) =
√

1

h̄β

∑
ωn

e−iωntψα (ωn), (20)

where β = 1/kBT . Second, the free phonon action is

S(0)
p [φ] = −

∑
q, j

∑
ωm

[
D0

j (q, ωm)
]−1|φ j (q, ωm)|2, (21)

where

D0
j (q, ωm) = [

ω2
m + ω0, j (q)2

]−1
(22)

is the free phonon propagator and ωm = 2πkBT m/h̄ (m ∈ Z)
are bosonic Matsubara frequencies, ω0, j (q) is the bare phonon
dispersion, and φ j (q, ωm) is the phonon displacement field for
mode j with wave vector q (with dimensions of

√
action ×

time). In second quantized form:

φ j (q, t ) → 1

2

√
h̄

ω0, j (q)
(aq, j (t )† + a−q, j (t )). (23)

Third, the action for the electron-phonon interaction is

Sep[ψ†, ψ, φ] = −
∫ h̄β

0
dtHep(t ) = −

√
πvF

βV
∑
ωn,ωm

∑
q, j

∑
α,α′

zαα′, jg
ep
αα′, j (q)ψ†

α (ωn + ωm)ψα′ (ωn)φ j (q, ωm), (24)

where zαα′, j stands as a renormalization factor of the electron-phonon coupling (zαα′, j = 1 at the bare level) and

gep
αα′, j (q) = 2

h̄

√
ω0, j (q)V

πvF
g̃ep

αα′, j (q) (25)

is the electron-phonon coupling with dimensions of velocity [g̃ep
αα′, j was defined in Eqs. (11) and (12)]. The action for electron-

electron interactions is

See[ψ†, ψ] = −
∫ h̄β

0
dtHee(t ) = −πvF

βV
∑

{α},{ωn}

∑
q

gα3α4
α1α2

(q)ψ†
α1

(
ωn1

)
ψ†

α2

(
ωn2

)
ψα3

(
ωn3

)
ψα4

(
ωn1 + ωn2 − ωn3

)
, (26)

where

gα3α4
α1α2

(q) = g̃α3α4
α1α2

(q)

2π h̄vF
(27)

is the electron-electron coupling parameter with dimensions of length squared [g̃α3α4
α1α2

was defined in Eq. (16)].
Finally, the source field contribution for susceptibilities is given by

Sh[ψ†, ψ, h] =
√

πvF

βV
∑

ν

∑
q,ωm

∑
σ,σ ′

zν;σ,σ ′ {O†
ν;σ,σ ′ (ωm)hν;σ,σ ′ (q, ωm) + Oν;σ,σ ′ (ωm)h∗

ν;σ,σ ′ (q, ωm)}, (28)
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where σ and σ ′ are pseudospin labels, hν;σ,σ ′ are the source
fields, and the composite fields for CDW (ν = CDW) and
Cooper pairing (ν = SC) take their respective forms

OCDW;σ,σ ′ (ωm) =
∑
α,α′

∑
ωn

f CDW
α,α′;σ,σ ′ψ

†
α (ωn + ωm)ψα′ (ωn)

(29)
and

OSC;σ,σ ′ (ωm) =
∑
α,α′

∑
ωn

f SC
α,α′;σ,σ ′ψα (ωn + ωm)ψα′ (ωn). (30)

Here, zν;σ,σ ′ stands for the renormalization factor for vertex
part of the susceptibility and f ν

α,α′;σ,σ ′ is the related form
factor (more on this below). For a CDW susceptibility that
is pseudospin independent, we take hCDW;σ,σ ′ ∝ δσ,σ ′ ; for
a pseudospin-singlet Cooper pairing susceptibility, we take
hSC;σ,σ ′ ∝ δσ,−σ ′ , and so on.

E. Method

Starting from Eq. (17), we perform successive partial inte-
grations of fermion fields located in the outer energy shell of
width �n(l )dl on both sides of the Fermi level. For each outer
shell integration, a complete trace over Matsubara frequen-
cies is carried out from which the temperature dependence
of the flow is obtained. Here, �n(l ) = �ne−l is the distance
in energy from the Fermi level to the outer shell at step l of
the integration (l > 0), 2�n is the initial bandwidth cutoff of
the Landau band n, and dl � 1 is the integration step. The
fermion fields in the outer shell are denoted as {ψ̄, ψ̄†}. The
recursive procedure is carried out perturbatively, keeping fixed
the inner (<) shell variables and using S(0)

e [ψ̄†, ψ̄] as the outer
shell free fermion part. This yields

Z ∼
∫

Dφ

∫
<

Dψ† Dψ eS[ψ†,ψ,φ,h]l /h̄

×
∫

Dψ̄†Dψ̄ eS[ψ†,ψ,ψ̄†,ψ̄,φ,h]dl /h̄

∝
∫

Dφ

∫
<

Dψ†Dψ eS[ψ†,ψ,φ,h]l+dl /h̄. (31)

Using the linked cluster theorem, the outer shell integration at
the one-loop level yields the recursion relations

S(0)
p [φ]l+dl = S(0)

p [φ]l + 1
2

〈
S2

ep

〉
dl

+ O(φ4), (32)

Sep[ψ†, ψ, φ]l+dl = Sep[ψ†, ψ, φ]l + 〈SepSee〉dl + . . . ,

(33)

See[ψ†, ψ]l+dl = See[ψ†, ψ]l + 1
2 〈S2

ee〉dl + . . . , (34)

Sh[ψ†, ψ, h]l+dl = Sh[ψ†, ψ, h]l + 〈ShSee〉dl + . . . , (35)

which are expressed in terms of free fermion averages 〈. . .〉dl

in the outer energy shell. Equation (32) gives the recursion
relation for the renormalization of the purely phonon part of
the action. At the harmonic φ2 level, it leads to the phonon
the self-energy correction δπ to the phonon propagator via
D−1

j,l = D−1
j,0 − π j,l , as shown in Fig. 1(a). For simplicity, we

neglect the hybridization between different phonon modes
induced by the electron-phonon coupling; this is a reasonable
approximation for phonon modes that are well-separated in

(a)

(b)

(c)

(d)

FIG. 1. Renormalization group flow equations for (a) the phonon
self-energy, (b) electron-phonon vertex part, (c) electron-electron
scattering amplitudes (full square), and (d) and source field vertex
for CDW (SC) susceptibility. The full and dotted thick (thin) loop
fermion lines refer to outer (inner) energy shell fermions near the
right and left Fermi points of the Landau band n (we consider |n| = 0
in Sec. III and |n| = 0, 1 in Sec. IV).

energy from the rest. Accordingly, π and D have a single
phonon mode index. At the one-loop level, we do not consider
electronic self-energy corrections to S(0)

e since for effective
momentum independent couplings these only affect the chem-
ical potential which can be rescaled back to its original value
at each step of the RG at fixed band filling. Equation (33),
depicted by Fig. 1(b), refers to the renormalization of the
electron-phonon vertex part zα,α′, j due to electron-electron
interactions and Eq. (34), depicted in Fig. 1(c), gives the recur-
sion relation for a combination of electron-electron couplings
gα3,α4

α1,α2
involved in the renormalization of zαα′, j and source field

vertex zν of Fig. 1(d).

III. PEIERLS INSTABILITY FROM CHIRAL
LANDAU LEVELS

We begin by considering the theory of the Peierls instabil-
ity in the quantum limit, where the Fermi energy intersects
only the chiral Landau levels.

A. Electron-phonon and electron-electron couplings

Figure 2 shows the low-energy electronic structure in the
quantum limit. The distance between the two Fermi points
along the direction of the magnetic field is denoted as 2kF =
kF+ − kF− (see Fig. 2). According to this definition, the Fermi
wave vector depends on the distance between the Weyl nodes
(note that a different definition for kF will be used when
we treat nonchiral Landau levels in Sec. IV). We take the
magnitudes of the Dirac velocities to be vτ = vF for τ = 1
and vτ = vF + δv for τ = −1, where δv � −vF (the latter
condition is due to the fact that the two nodes have opposite
chirality).

Assuming that the total carrier density per unit volume ne

is independent of the magnetic field, the B dependence of kF

in the quantum limit is obtained from

2kF = ∣∣4π2l2
Bne + b

∣∣, (36)

where b = |k+ − k−| is the momentum separation between
the two Weyl nodes along the direction of the magnetic field.
Here, ne is defined by counting the number of electronic states
between kτ and the Fermi energy for each node τ and then
summing over the two nodes. For an overall electron-doped
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FIG. 2. Landau-level spectrum of two Weyl nodes of opposite
chirality [Eq. (1)] in the quantum limit, where the Fermi energy εF

intersects only chiral Landau levels. The parameter values in Eq. (1)
are v+ = vF , v− = 1.5vF , b0 = 0.1h̄vF /lB. The distance between the
two Fermi points is denoted as 2kF = kF+ − kF−, where kF+ and kF−
are the Fermi wave vectors measured from the center of the Brillouin
zone (along the direction of the magnetic field). The locations of
the Weyl nodes, k+ and k−, are also indicated and measured from
the center of the Brillouin zone (along the direction of the magnetic
field).

system (ne > 0), 2kF > b and kF decreases with B. For an
overall hole-doped system (ne < 0), min(kF ) = 0. Regardless
of the doping, 2kF → b as B → ∞. Thus, at very high mag-
netic field, kF can be made small by orienting the magnetic
field perpendicular to the direction of separation between the
two nodes (because b = 0 in that case).

We will be interested in phonons whose wave vectors con-
nect the two Fermi points, as these are subject to a Peierls
instability. We believe such internodal electron-phonon scat-
tering is generically allowed, despite assertions to the contrary
in the literature [56]. Indeed, from a group theory point of
view, there is no selection rule that forbids electron-phonon
scattering between nodes of opposite chirality. In other words,
because the little group of Weyl nodes located at arbitrary
points in the Brillouin zone comprises only the identity opera-
tion, generic phonon modes of the crystal can scatter electrons
between two nodes of opposite chirality.

From Eq. (11), the bare electron-phonon matrix element
for the chiral Landau level can be written as

gep
αα′, j = gττ ′, j〈�0X,k,τ |eiq·r|�0X ′k′τ ′ 〉

= gττ ′, jδk′+kτ ′ ,k+kτ −qδX ′,X+qyl2
B

× eiqx (X+X ′ )/2e−q2
⊥l2

B/4, (37)

where gττ ′, j is related to g̃ττ ′, j in Eq. (12) via the relation
Eq. (25). When q⊥lB � 1, the electron-phonon matrix element
is exponentially suppressed. For a phonon wave vector con-
necting the two Fermi points, we set τ = −τ ′ in Eq. (37).
Hereafter, we label gτ,−τ, j ≡ gx, j and we neglect the momen-
tum dependence of gx, j . The latter approximation is justified
because we will be interested in phonon momenta close to
2kF ẑ and, in such vicinity, the q dependence of gx, j will be
smooth and qualitatively unimportant for our theory.

The matrix elements for the vertex part of electronic CDW
and SC susceptibilities lead to the form factors entering in
Eqs. (29) and (30),

f CDW
αα′;σ,σ ′ = δσ,↓δσ ′,↓δk′+kτ ′ ,k+kτ −qδX ′,X+qyl2

B

× eiqx (X+X ′ )/2e−q2
⊥l2

B/4, (38)

f SC
αα′;σ,σ ′ = δσ,↓δσ ′,↓δk′+kτ ′ ,−k−kτ −qδX ′,−X+qyl2

B

× eiqx (X+X ′ )/2e−[q2
x +(qy−2X/l2

B )2]l2
B/4, (39)

where we have used the fact that the n = 0 Landau levels are
pseudospin polarized [recall Eq. (2)]. This allows us to omit
the σ and σ ′ labels from the CDW and SC renormalization
factors, denoting them simply as zCDW and zSC.

Similarly, the Coulomb matrix elements for the electron-
electron interactions [see Eqs. (16) and (27)] read

gα3α4
α1α2

(q) = V (q)

2π h̄vF
eiqx (X1+X4 )/2e−iqx (X2+X3 )/2e−q2

⊥l2
B/2

× δX4,X1+qyl2
B
δX3,X2−qyl2

B

× δk4+kτ4 ,k1+kτ1 −qδk3+kτ3 ,k2+kτ2 +q. (40)

In what follows, we separate gα3α4
α1α2

in two parts, which are
the most important marginal couplings involved in the lattice
instabilities. The first part is the long-wavelength part, known
as the forward Coulomb scattering. For this scattering, the
momentum transfer q is small compared to the internodal
distance. Thus, we take τ1 = τ4 and τ2 = τ3 in Eq. (40).
Moreover, the divergence of the Coulomb potential at q → 0
is removed by replacing

V (q) → lim
q→0

V (q)/ε(q, 0) ≡ g2π h̄vF , (41)

where

ε(q, ω) = 1 − V (q)�(q, ω) (42)

is the contribution of Weyl fermions to the dielectric function,

�(q, ω) = 1

V
∑
α,α′

|〈�α|eiq·r|�α′ 〉|2 fα − fα′

Eα − Eα′ + h̄ω + i0

(43)
is the electronic polarization function in the random phase
approximation (RPA) and fα is the Fermi distribution. The
reason for using static screening in Eq. (41) is that frequency
dependence is irrelevant in the RG sense. Then, keeping only
the chiral Landau-level contribution to the zero-temperature
polarization function [43], which is justified for a UV cutoff
�0 that does not exceed the distance in energy between the
n = 0 and n = 1 Landau levels, we get

g2 = 2π l2
B

vF + δv

vF + δv/2
. (44)

We emphasize that this RPA expression for g2 is only the
bare or initial value of the coupling in the RG flow, i.e., g2 ≡
g2(l = 0). We can rewrite Eq. (44) as g2π h̄vF = e2/(ε∞q2

TF),
where

q2
TF = e2

ε∞
ν(εF ) (45)
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is the square of the Thomas-Fermi screening wave vector and

ν(εF ) = 1

4π2l2
Bh̄vF

2 + δv/vF

1 + δv/vF
(46)

is the density of states at the Fermi level. For |δv|/vF �
1, (qTFlB)2 is equal to an effective fine structure constant
e2/(2π2h̄vF ε∞), which is smaller than unity in typical WSMs.
Thus, we expect qTFlB � 1 in common Weyl semimetals in the
quantum limit.

The second part of gα3α4
α1α2

is the short-wavelength part,
known as the backward Coulomb scattering. Here, the mo-
mentum transfer q connects the two nodes of opposite
chirality. Thus, we take τ1 = −τ4, τ2 = −τ3, τ4 = −τ3 in
Eq. (40) and we replace

V (q) → V (2kF ẑ + q⊥). (47)

Then, we define

g1 = 1

π h̄vF

∫ 1/lB
0 dq⊥ q⊥V (2kF ẑ + q⊥)∫ 1/lB

0 dq⊥ q⊥

= e2l2
B

π h̄vF ε∞
ln

(
1 + 1

4k2
F l2

B

)
. (48)

Like for g2 in Eq. (44), the value of g1 in Eq. (48) is only the
initial (bare) value of the coupling in the RG flow.

Two remarks are in order here. First, our expression for the
bare g1 is unscreened. This is well justified when kF lB � 1.
In such regime, (2kF )2 � q2

TF and the nonlogarithmic part of
the RPA screening (coming from the fast electrons) is quali-
tatively unimportant. Regarding the logarithmically divergent
part of the RPA screening at q = 2kF , it is not to be included in
the bare g1 but rather it is treated below in the course of the RG
flow. Second, the averaging over the transverse momentum
q⊥ with a cutoff 1/lB in Eq. (48) is motivated by simplicity
(so the effective electron-electron coupling is independent of
wave vector) and by the fact that the Coulomb matrix element
in Eq. (40) is exponentially suppressed for q⊥lB � 1. This av-
eraging procedure is justified provided that kF lB is not small.
When kF lB → 0, the backward Coulomb scattering becomes
singular and this singularity has to be treated on an equal
footing as the one in the forward Coulomb scattering. The
study of the regime kF lB � 1 goes beyond the scope of our
paper.

The relative strength between short- and long-range
Coulomb interactions plays an important role in the Peierls
instability. As we show below, a larger value of g1/g2 results
in a lower critical temperature for the Peierls instability. From
Eqs. (44) and (48), the ratio between the bare couplings is

g1

g2
= e2

2π2h̄vF ε∞

1 + δv/2vF

1 + δv/vF
ln

(
1 + 1

4k2
F l2

B

)
, (49)

which depends on the magnetic field explicitly via lB and
implicitly via kF . When kF lB � 1, we have g1/g2 ∼ q2

TF/k2
F

(note that kF lB � 1 is not incompatible with being in the
quantum limit, provided that the Weyl nodes are well-
separated in momentum space). When kF lB � 1, g1/g2 ∼
(qTFlB)2 ln[1 + 1/(2kF lB)2] increases with B. In summary, for
a weakly interacting WSM (small fine structure constant), one

expects g1/g2 � 1. However, for more strongly interacting
systems with kF lB � 1, it is possible that g1 � g2.

B. RG equations for the adiabatic Peierls instability

The outer shell corrections entering the RG recursive re-
lations [Eqs. (32)–(34)] and calculated in Appendix A are
all evaluated in the limit of small q⊥ up to the cutoff 1/lB,
above which all the couplings are exponentially suppressed
[see Eqs. (37) and (40)]. Within the magnetic length scale lB,
the couplings can then be considered as essentially local in the
transverse directions, which yield 1D-like loop corrections for
the flow equations.

From Eq. (33) and the results of Appendix A, the RG
transformation for the internode electron-phonon vertex part
zτ,−τ [which renormalizes the bare coupling gx, j introduced
below Eq. (37)] is purely electronic and independent of the
phonon mode j; it leads to the scaling equation

d

dl
ln zτ,−τ = α0

2
(g2 − g1)λP, (50)

where

α0 = 1

2π l2
B(1 + δv/2vF )

(51)

is a factor that originates from the three-dimensionality of
the system, and λP(l, T, δv) is the loop cutoff function of the
Peierls scattering channel resulting from an exact summation
over intermediate Matsubara fermion frequencies [0 � λP �
1, see Eq. (A7)].

The flow of the electron-phonon vertex then depends on the
combination of electron-electron couplings g2 − g1 governed
by Eq. (34). The derivations in Appendix A at the one-loop
level lead to the scaling equations

dg1

dl
= −1

2
g2

1α0λP + g2g1α0(λP + λC ), (52)

dg2

dl
= 1

2
g2

1α0λC + 1

2
g2

2α0(λP + λC ), (53)

which can be merged to give

d (g2 − g1)

dl
= 1

2
α0(g2 − g1)2(λP + λC ) (54)

as a relevant combination of couplings in presence of ef-
fectively spinless fermions shown in Fig. 1(c). In our local
transverse scheme for the couplings, this equation is similar
to the one obtained by Yakovenko for the problem of 3D
electron gas in the presence of strong magnetic field [28].
Here λC (l, T,�, δv) is the loop cutoff function of the Cooper
scattering channel, as obtained from the summation over Mat-
subara fermion frequencies [−1 � λC � 0, see Eq. (A24)].
This λC is opposite in sign to λP and it is also cut off by the
energy scale

� ≡ h̄vF (kF+ + kF−) (55)

associated to mirror symmetry-breaking. In the RG Eqs. (50),
(52), and (54), the variables g1, g2, λC , and λP vary with l (they
are not to be confused with their bare values). In what follows,
we shall proceed to the integration of the flow equations as a
function of l . At sufficiently large l , the functions λP,C will cut
off the flow, providing, in turn, either a T or a � dependence to
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various quantities depending whether kBT < � or kBT > �.
From the T dependence, for instance, one can then extract the
temperature scale of various instabilities of the model.

When the two Weyl nodes are related by an improper
symmetry operation that remains unbroken in the presence of
the external magnetic field, we get � = 0. Such is the case, for
instance, if at zero magnetic field the two nodes were related
to one another by a mirror plane and the applied magnetic
field is oriented perpendicular to that plane. If the magnetic
field is tilted away from the normal to the mirror plane, one
generically has � �= 0. Thus, the energy scale � is partially
tunable with the magnitude and orientation of the magnetic
field. Of course, if the two nodes are unrelated by an improper
symmetry at zero magnetic field, then � �= 0 irrespective of
the magnetic field.

When q = 2kF ẑ, the RG transformation for the phonon
propagator of mode j leads to the phonon self-energy correc-
tions δπ j shown in Fig. 1(a) and in Eq. (32). In the adiabatic
case, these corrections are purely electronic in character. At
the one-loop level at step �, one has

D−1
j,l = D−1

j,0 − π j,lω
2
m + ω2

0, j (q)
[
1 − α0

2
g′2

x, jχ (l )
]
, (56)

where g′
x, j ≡ gx, j/ω0, j and

χ (l ) =
∫ l

0
z2
τ,−τ (l ′)λPdl ′ (57)

is the CDW susceptibility of the electron system along ẑ and
near 2kF .

Equation (56) describes the softening of phonons due
to their coupling to Weyl fermions. The vanishing of the
term inside the square bracket sets the temperature scale for
the Peierls instability. For pedagogical reasons, we compare
Eq. (56) with the standard RPA expression for the renor-
malized phonon frequency (see, e.g., Refs. [43,75]). The
connection emerges if we set the bare g2 to zero and if we ne-
glect λC in our RG equations. Under those conditions, Eq. (57)
becomes

χ (l ) =
∫ l

0 λPdl ′

1 + α0g1

2

∫ l
0 λPdl ′

, (58)

where g1 here is the bare coupling for the backward Coulomb
scattering. If we substitute Eq. (58) in Eq. (56), we recover the
usual RPA result for the renormalized phonon frequency, with
α0
∫ l

0 λPdl ′/2 playing the role of the electronic polarization

bubble and 1 + g1α0
∫ l

0 λPdl ′/2 describing the contribution
from low-energy electrons to the dielectric function. Thus,
we learn that the widely used RPA expressions are valid
only when the forward Coulomb scattering and the scattering
amplitude in the Cooper channel are negligible. Yet, as we see
below, both g2 and λC play an important role in the Peierls
instabilities of WSMs at high magnetic fields.

1. Adiabatic regime with mirror symmetry

Let us suppose that the two Weyl nodes of opposite chi-
rality are related by a mirror plane at zero magnetic field.
This is a common circumstance in a variety of real WSMs.
In the presence of a magnetic field, mirror symmetry is pre-
served provided that the field is oriented perpendicular to the

mirror plane. Then, one has � = 0, δv = 0, and λP(l, T ) =
−λC (l, T ), the latter of which become cut off only by the
temperature. It follows that interference between both (Peierls
and Cooper) scattering channels is maximum, so

dg1

dl
= −α0

2
g2

1λP,
dg2

dl
= α0

2
g2

1λC = dg1

dl
. (59)

The solution for g1(l ) at low temperature (where λP ≈ 1) is
given by

g1(l ) = g1

1 + 1
2α0g1l

, (60)

indicating that repulsive backward scattering decays with l
and is marginally irrelevant. From Eqs. (59) or (54), we see
that for the mirror symmetric situation, g1 − g2 is an invariant
of the RG flow. This is a consequence of the fact that, since
fermions in chiral Landau levels are effectively spinless, the g1

term can be transformed by exchange to a g2 process, which
conserves particles on each node and satisfies electron-hole
symmetry at � = 0 [78].

The invariant combination g2(l ) − g1(l ) = g2 − g1 re-
mains marginal and nonuniversal. One can then write the
solution for the electron-phonon vertex part [Eq. (50)] as

zτ,−τ = e
1
2 γ
∫ l

0 λP (l ′ )dl ′ , (61)

where

γ = α0(g2 − g1) (62)

is a nonuniversal power-law exponent dependent on Coulomb
interactions and the magnetic field. At q = 2kF ẑ, λP = 1 up
to the temperature cutoff value

lT ≡ ln(�0/kBT ), (63)

and λP � 0 for l > lT . Then, from Eq. (56), the vanishing
of the renormalized phonon frequency in the static (ωm = 0)
limit leads to the Peierls critical temperature scale for the j
mode:

T j
c,0 = �0

kB

(
α0g′2

x, j

2γ + α0g′2
x, j

)1/γ

. (64)

In practice, the Peierls instability is set by the mode j for
which T j

c,0 is maximum. The power-law dependence for the
critical temperature originates from the competition between
the Peierls and the Cooper scattering channels and differs
qualitatively from the exponential, BCS-like forms proposed
in earlier mean-field treatments [36,53,64]. The latter studies
implicitly ignored the possibility of a Cooper channel contri-
bution. We emphasize that the Cooper channel is important
even though the two Weyl nodes are not time-reversed part-
ners of one another; the reason is that the mirror plane relating
the two Weyl nodes passes from the � point, so the two nodes
have opposite momenta along the direction of the magnetic
field. It is as though the presence of the magnetic field ren-
dered an effectively 1D problem with the k → −k symmetry
that is required for a full Cooper channel contribution.

Let us comment on some qualitative aspects of Eq. (64).
When g2 > g1, Peierls instability occurs at any nonzero
value of g′2

x and CDW correlations of the electron system

195113-8



THEORY OF PHONON INSTABILITIES IN WEYL … PHYSICAL REVIEW B 105, 195113 (2022)

FIG. 3. (a) Estimate of the Peierls transition temperature in the
adiabatic phonon approximation as a function of the magnetic field,
with mirror symmetry (solid lines) and without mirror symmetry
(dashed lines) for �0 = 50 meV (considering a field-dependent cut-
off does not introduce qualitative changes to our results). For the
curves with the dashed lines, we take � = 5 meV as the mirror
symmetry-breaking energy scale. Only the magnetic field values for
which the system is in the quantum limit are displayed. Two different
values of ε∞ are considered: 30 (blue and green curves) and 80
(orange and red curves). The transition temperature Tc is enhanced
by mirror-symmetry breaking. Also, the transition temperature is
higher for larger ε∞. (b) The electron-electron interaction parameter
γ [Eq. (62)] as a function of the magnetic field for two different
values of ε∞. (c) kF lB as a function of the magnetic field. The
parameter values are indicated in the main text.

enhance the Peierls temperature with respect to the BCS-
like limit kBT j

c,0 = �0 exp[−2/(α0g′2
x, j )], which we recover

when electron-electron interactions are vanishingly small
(γ → 0+). When g2 < g1 (i.e., γ < 0), a Peierls instabil-
ity can still occur but only if the electron-phonon coupling
strength exceeds a threshold value (α0g′2

x, j > −2γ ). In this
sense, the phonon softening is qualitatively weaker if g1 > g2

than if g1 < g2. As mentioned above, g1 > g2 takes place if
qTF > max(kF , 1/lB). The fact that the screening due to the
short-range (2kF ) part of the Coulomb interaction tends to
suppress the Peierls instability when qTF > kF is consistent
with the literature in quasi-1D organic conductors at zero
magnetic field [79].

Next, we carry out a numerical estimate of Eq. (64) (see
Fig. 3 for the variation of T j

c,0 as a function of the field value
B). Combining Eqs. (12) and (25), we have

α0g′2
x, j � eBd2

j

π2vρ h̄2ω0, j (q)2
. (65)

We consider optical phonons with d j = 5 eV/Å and
h̄ω0, j (q) = 10 meV. We also take ρ = 104 kg/m3, vτ =
105 m/s, b = 0.01Å−1, and ne = 5 × 1017 cm−3. We take two
possible values for ε∞, 30 and 80.

In Fig. 3, the dependence of T j
c,0 on B is nonmonotonic. For

low-to-moderate magnetic fields, g1/g2 � 1 and hence γ � 1
(far from the BCS-like regime). In this regime, γ � α0g′2

x, j

and kBT j
c,0/�0 � α0g′2

x, j/2 grows linearly with B. As the mag-
netic field is made stronger, g1/g2 increases and, as a result,

γ decreases. At high enough magnetic field, this eventually
leads to a suppression of Tc due to g1. The magnitude of
the maximum critical temperature depends sensitively on the
parameters of the model. For instance, if dj = 2 eV/Å, every-
thing else being equal, the maximum of T j

c,0 is suppressed by
almost an order of magnitude. For a given material, higher
carrier density implies a higher value of the maximal T j

c,0. In

Fig. 3, the maximum of T j
c,0 attains ∼1% of the cutoff energy

scale �0. The value for �0 is roughly set by the distance in
energy between the Fermi level and the bottom of the n = 1
nonchiral Landau level band. We estimate �0 ∼ h̄vF /lB �
20 meV for the quantum limit, which is inferior to the values
used in recent literature [36]. Based on these numbers, we
conclude that the emergence of a measurable Peierls instabil-
ity in a mirror-symmetric WSM at high magnetic field is far
from obvious. We must emphasize, however, that while these
numbers are reasonable across a wide family of materials, re-
liable numerical estimates for Tc in individual WSM materials
are beyond the scope of our paper. For one thing, the value of
the electron-phonon coupling is not known reliably in these
materials. Likewise, the presence of multiple pairs of nodes
in several real WSMs introduces additional complications in
making quantitative predictions about field-induced instabili-
ties (see Sec.V for further comments in this regard).

2. Adiabatic regime with broken mirror symmetry

We now consider the more general case with broken
mirror symmetry. Nonzero δv and � = h̄vF (kF+ + kF−) are
inevitable if the two Weyl nodes of opposite chirality are un-
related by an improper symmetry. In the instance in which the
two nodes are related by a mirror plane at zero magnetic field,
such mirror symmetry can be effectively broken by orienting
the magnetic field away from the normal to the mirror plane.
In such a case, � can be large [of the order of h̄vF (k+ + k−)]
when the magnetic field is parallel to the mirror plane.

From Eq. (54), the solution for g2(l ) − g1(l ) can be ob-
tained:

g2(l ) − g1(l ) = g2 − g1

1 − 1
2α0(g2 − g1)

∫ l
0 (λP + λC )dl ′

. (66)

A finite δv alone does not affect the logarithmic singularity
of the scattering channels, but leads to a density of states
renormalization by the factor (1 + δv/2vF )−1, which we have
included in the definition for α0 (Eq. 51). In contrast, � acts as
a pair breaking perturbation for the logarithmic singularity of
the Cooper scattering channel, which is thereby suppressed
at sufficiently low energy. Electron-hole symmetry at 2kF

(nesting), however, is preserved and the related logarithmic
singularity in the Peierls channel therefore remains essentially
unaffected at all l < lT .

From Eq. (A24), one can distinguish three regimes for
the cutoff functions λC and λP as a function of l . First, at
l < l� = ln(�0/�), the influence of � is small and one still
has λC ≈ −λP = −1. Therefore, the flow Eqs. (59)–(61) re-
main valid together with the expression for the Peierls critical
temperature [Eq. (64)], with the proviso that kBT j

c,0 > �.
The second regime, where l > l�, becomes applicable if

� exceeds the Peierls transition temperature for the mirror-
symmetric case [Eq. (64)]. In this regime, the Cooper loop
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is cut off by � and becomes vanishingly small (λC ≈ 0).
Accordingly, the expression for T j

c,0 is modified. The flow
of interactions [Eq. (66)] for λP ≈ 1 up to lT will develop a
simple pole singularity at the characteristic temperature

T ∗
0 = �

kB
e−2/α0(g2−g1 ), (67)

which corresponds to the scale of an intrinsic instability of the
electron gas against a (0, 0, 2kF ) CDW formation. This can be
checked by looking at the vertex part zCDW for the electronic
CDW susceptibility. From Eqs. (28), (35), and (38), its flow
equation reads

d

dl
ln zCDW = α0

2
(g2 − g1)λP, (68)

which unsurprisingly coincides with Eq. (50) for zτ,−τ . Using
Eq. (66), one has

zCDW(l ) = zCDW(�)[
1 − 1

2α0(g2 − g1)(l − l�)
] , (69)

where zCDW(�) = zτ,−τ (�), as given by Eq. (61) when evalu-
ated at l = l�. The expression for zCDW(lT ) and thus the CDW
susceptibility Eq. (57) develops a simple pole singularity at
T ∗

0 .
However, in the presence of a nonzero electron-phonon

coupling, this instability is preempted by the Peierls transi-
tion. According to Eq. (66), the phonon softening condition
[Eq. (56)] then gives a Peierls transition temperature,

T j
c,0 = �

kB
exp

(
− 2 − α0g′2

x, jχ (�)

γ
[
1 − 1

2α0χ (�)g′2
x, j

]+ α0z2
τ,−τ (�)g′2

x, j

)
,

(70)
where χ (�) is the contribution to the CDW electronic sus-
ceptibility Eq. (57) up to l�. These correlations enhance
the transition temperature with respect to the case with-
out electron-phonon interactions. We remind the reader that
Eq. (70) holds only if kBT j

c,0 � �; in the opposite regime, one
can ignore mirror symmetry breaking and use Eq. (64). We
also note that T j

c,0 exceeds the temperature scale T ∗
0 of the

purely electronic instability, with T j
c,0 → T ∗

0 when gx, j → 0.
Finally, the third regime takes place when � > �0, i.e.,

when mirror symmetry is strongly broken. In this case, l� →
0 and the Peierls transition temperature is still given by
Eq. (70), but with χ (�) → 0 in the exponent and � → �0

in front of the exponential, i.e.,

T j
c,0 = �0

kB
exp

(
− 2

γ + α0g′2
x, j

)
. (71)

Figure 3(a) shows the evolution of the transition temper-
ature as a function of the applied magnetic field for �0 =
50 meV (considering a field-dependent cutoff does not in-
troduce qualitative changes to our results) and � = 5 meV
(assumed for simplicity to be field independent) for the same
parameters as the in the mirror-symmetric case. Interestingly,
the transition temperature is significantly enhanced when mir-
ror symmetry is broken. As shown by Eq. (69), the presence
at finite l of a simple pole singularity magnifies the CDW
response of the electron system with respect to the power law

Eq. (61) for � = 0. This is responsible for such an enhance-
ment in T j

c,0.
In sum, there is a qualitative difference for the Peierls in-

stabilities of the chiral Landau levels depending on whether or
not they are related by an improper symmetry. In the presence
of mirror symmetry, the instability vanishes in the absence of
electron-phonon interaction. This is because of the destructive
interference between the Cooper and the Peierls channels.
When the mirror symmetry is broken, the Cooper channel is
suppressed and this opens the possibility for having a purely
electronic instability even when the electron-phonon coupling
is negligible. However, the presence of electron-phonon cou-
pling makes the instability more pronounced, and thus a lattice
instability preempts the purely electronic instability.

C. Nonadiabatic Peierls instability

Thus far, our results were obtained in the so-called adia-
batic regime, where h̄ω0, j (2kF ẑ) � kBT j

c,0 and the electronic
degrees of freedom are faster than the phonons. In this case,
the effective electron-electron interaction induced by the ex-
change of phonons is strongly retarded and its contribution
to higher order vertex corrections in the phonon self-energy
[Eq. (56)], which would result from the contraction of the gen-
erated anharmonic terms in the phonon action, is negligible.
This leaves us with the diagram in Fig. 1(a) of the adiabatic
approximation, in which vertex corrections are purely elec-
tronic in character.

However, it is apparent from the numerical estimates
of Fig. 3 that the scenario h̄ω0, j (2kF ẑ) � kBT j

c,0 can be
commonly realized in practice in WSMs. This defines the
nonadiabatic regime where phonon-mediated interactions be-
tween electrons tend to be nonretarded. Such interactions
make a significant contribution to the electronic vertex in
Figs. 1(b) and 1(c) and contribute to the phonon self-energy
depicted in Fig. 1(a). It follows that the criterion of insta-
bility against the formation of a superstructure, as derived in
Eq. (56) for phonons, no longer holds and must be modified.
Therefore, at energy scales below h̄ω0, j (2kF ẑ), we focus on
the electronic degrees of freedom and derive the condition for
the instability of the electron system against the formation of
a 2kF ẑ CDW, using Eqs. (52) and (53).

We shall tackle this problem using a two-cutoff RG ap-
proach [80]. First, we integrate the flow equations of the
previous section in the adiabatic sector, where �0(l ) � h̄ω̄0,
here defined for simplicity as the minimum energy of the set
of phonon modes {h̄ω0, j}. The scaled cutoff energy reaches
the characteristic phonon energy at l∗, i.e., �0(l∗) ≡ h̄ω̄0. For
l > l∗, all phonon modes enter the nonadiabatic regime and

we carry out the partial trace integration
∫

Dφ e(S(0)
p,l∗ +Sep,l∗ )/h̄

over phonon degrees of freedom in the partition function
[Eq. (31)]. By dropping anharmonic terms generated by the
RG transformation, the integration is Gaussian and yields at-
tractive, phonon-mediated interactions between electrons. The
backscattering amplitude mediated by phonons takes the form

g1 = −1

2
z2
τ,−τ (l∗)

∑
j

D j,l∗ (0, 2kF ẑ)g2
x, j . (72)
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This coupling can be considered as essentially nonretarded,
i.e., independent of frequency. As such, its amplitude will
simply add to the purely repulsive g1(l∗) part obtained
from Eq. (60), so the initial condition at l∗ for Eqs. (59)
becomes g∗

1 = g1(l∗) + g1. With sizable electronic vertex
corrections zτ,−τ (l∗) and Peierls fluctuations, which imply
a large D j,l∗ (0, 2kF ẑ), the likelihood for a total attractive
backscattering amplitude g∗

1 is high.
The integration of phonon modes at small q will also give

rise to an effective attractive forward scattering amplitude,

g2 = −1

2

∑
j

D j,0(0, qẑ ∼ 0)gτ,τ, jg−τ,−τ, j, (73)

which will add to g2(l∗) to give g∗
2 = g2(l∗) + g2 as the

boundary condition for the forward scattering at l∗. However,
in the absence of electronic enhancement (zτ,τ = 1) and a
lack of q ∼ 0 phonon softening, this attractive contribution
is expected to be small, so g∗

2 remains repulsive.
Given these corrections to the electronic interactions, we

will investigate the possibility for an electronic instability in
the WSM model in the nonadiabatic regime.

1. Nonadiabatic regime with mirror symmetry

We first consider the possibility for instabilities when the
two Weyl nodes are related by perfect mirror symmetry (� =
0, δv = 0). In these conditions, g1 and g2 at l > l∗ are still
governed by the flow of Eq. (54), for which the interference
between the Cooper and the Peierls scattering channels is
maximum (λC = −λP = −1). The invariant g2(l ) − g1(l ) =
g∗

2 − g∗
1 is now fixed by the boundary conditions at l∗. There-

fore, the vertex part Eq. (68) of the 2kF CDW susceptibility at
l > l∗ takes the scaling form

zCDW(l ) = zCDW(l∗)eγ ∗(l−l∗ )/2, (74)

where γ ∗ = α0(g∗
2 − g∗

1) and zCDW(l∗) corresponds to the
same expression given in Eq. (61). The 2kF ẑ CDW suscepti-
bility, Eq. (57), when evaluated at the temperature cutoff value
lT , has the power-law form

χ (T ) = χ (l∗) + z2
CDW(l∗)

γ ∗

((
h̄ω̄0

kBT

)γ ∗

− 1

)
, (75)

where χ (l∗) is the contribution to the susceptibility Eq. (57)
up to l∗. In the nonadiabatic regime, the chiral mirror sym-
metric Landau level thus evolves toward a Luttinger liquid
behavior with no instability at finite temperature.

As a function of phonon frequency, it follows that the
system will cross over from a classical 2kF ẑ Peierls super-
structure at small h̄ω̄0 � kBT j

c,0 to a Luttinger liquid at high

phonon frequency h̄ω̄0 � kBT j
c,0. Such a quantum-classical

crossover is reminiscent of the one encountered in the model
of spinless electrons coupled to optical phonons in one di-
mension. The zero-temperature Peierls state is known to be
suppressed by quantum lattice fluctuations at large phonon
frequency [80,81]. Regarding the strength of correlations, at-
tractive corrections coming from phonons yield γ ∗ > γ at any
field values, so CDW correlations are enhanced by phonons in
the nonadiabatic domain.

One may also wonder whether other types of correlations,
such as the superconducting ones, may become singular in the
nonadiabatic domain. It turns out that the phonon renormal-
ization of g∗

1 to the attractive sector will make this possibility
unlikely. This is especially the case for the equal-pseudospin
Cooper pairing susceptibility. From Eqs. (28), (30), and (35),
its vertex part obeys the flow equation of Fig. 1(e), namely,

d ln zSC

dl
= −α0

2
(g1 − g2)λC . (76)

Its solution takes the scaling form zSC ∼ eγSCl∗/2eγ ∗
SC(l−l∗ )/2 but

with a negative power-law exponent γ ∗
SC = −γ ∗ that strongly

suppresses superconducting correlations in the nonadiabatic
domain.

2. Nonadiabatic regime with broken mirror symmetry

In the absence of mirror symmetry (� �= 0 and δv �= 0),
one can distinguish two regimes of nonadiabaticity. The first
one is characterized by l∗ < l�, i.e., h̄ω̄0 > �. In this regime,
the nonadiabatic conditions described in Sec. III C 1 come
first, where the Peierls scale T j

c,0 becomes irrelevant and Lut-
tinger liquid conditions for electrons prevail in the interval
l� > l > l∗. Within our sharp cutoff boundary approach, the
logarithmic singularity of the Cooper scattering channel is
suppressed at l > l�, where λC ≈ 0, and the couplings in
Eq. (66) develop a simple pole singularity,

g2(l ) − g1(l ) = g∗
2 − g∗

1

1 − 1
2α0(g∗

2 − g∗
1)(l − l�)

, (77)

where g∗
1,2 = g1,2(l∗) + g1,2 are evaluated at l∗. The sin-

gularity influences, in turn, the vertex part of the CDW
susceptibility,

zτ,−τ (l ) = zτ,−τ (l�)

1 − 1
2α0(g∗

2 − g∗
1)(l − l�)

, (78)

where zτ,−τ (l�) is given by Eq. (74). The Luttinger liquid is
therefore unstable against the formation of a CDW state. Us-
ing lT = ln(�0/kBT ), the temperature scale of the instability
is given by

T ∗
0 = �

kB
e−2/α0(g∗

2−g∗
1 ). (79)

Next, we examine the second regime, where l∗ > l�,
i.e., h̄ω̄0 < �. In this regime, symmetry-breaking effects
described in Sec. III B 2 first set in before the onset of nonadi-
abatic regime at l∗. In this case, the combination of couplings
at l > l∗ shows a simple pole structure:

g2(l ) − g1(l ) = g∗
2 − g∗

1

1 − 1
2α0(g∗

2 − g∗
1)(l − l∗)

. (80)

Here g∗
2 − g∗

1 is given by the solution of Eq. (66), first up to
l� and then to l∗ where the phonon-induced contributions g1,2

are added to g1,2(l∗). According to Eq. (50), the vertex part of
the CDW susceptibility will have the form

zτ,−τ (l ) = zτ,−τ (l∗)

1 − 1
2α0(g∗

2 − g∗
1)(l − l∗)

, (81)
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where zτ,−τ (l∗) is given by Eq. (69). The temperature scale of
the instability against the CDW superstructure becomes

T ∗
0 = h̄ω̄0

kB
e−2/α0(g∗

2−g∗
1 ). (82)

One can conclude that mirror symmetry breaking with finite
� invariably makes the Luttinger liquid of the nonadiabatic
regime unstable against the formation of a CDW state.

The nonadiabatic regime has also been addressed in
Ref. [49], albeit for a different model of semimetal with spin-
polarized electron and hole bands in the quantum limit. In that
paper, an attractive electron-electron interaction mediated by a
screened electron-phonon coupling have been considered and
phases such as an excitonic insulator, charge Wigner crystal,
and CDW have been predicted using a parquet RG analysis.

IV. PEIERLS INSTABILITY FROM NONCHIRAL
LANDAU LEVELS

In this section, we consider the case in which the Fermi
level crosses not only the chiral Landau levels but also the
|n| = 1 nonchiral Landau levels. For now, we will be in-
terested in the Peierls instability that results from electronic
transitions taking place inside the |n| = 1 Landau level. In the
end of the section, we will compare this instability to the one
taking place in the n = 0 Landau level. We will neglect the
possibility of instabilities arising from transitions connecting
chiral and nonchiral Landau levels. For such transitions, the
form factors in Eq. (13) vanish when q is parallel to the
magnetic field.

A. Electron-phonon and electron-electron couplings

We begin by assuming that the two Weyl nodes of opposite
chirality are related by a mirror plane. Then we linearize
the dispersion for the |n| = 1 Landau levels in the vicinity
of the Fermi points. Within the subspace of |n| = 1 Lan-
dau levels, several different phonon wave vectors ±qi (i =
1, 2, 3, 4) connect different Fermi points (see Fig. 4). The
wave vectors at which instabilities are more likely are ±q1,
±q2 and ±q4 = ±(2q1 + q2) because they connect electronic
branches that are perfectly nested. On the one hand, the theory
of phonon instabilities at ±q2 and ±q4, which connect nodes
of opposite chirality, is very similar to the one discussed in
the preceding subsection for chiral Landau levels. The only
significant difference is that the ultraviolet cutoff appearing
in the expression for the Peierls transition temperature is now
given by �1, instead of �0, and that the matrix elements of the
different couplings are multiplied by a factor λ defined below
in Eq. (84). On the other hand, the instability at wave vector
±q1, which connects two |n| = 1 branches at the same Weyl
node, presents some conceptual novelties. Thus, hereafter we
concentrate on this wave vector, whose magnitude we denote
as 2kF . The maximum value of kF we consider is

√
2/lB (be-

yond this value, the Fermi level intersects the |n| = 2 Landau
levels).

Let us label L (left) and R (right) the two Fermi points
separated by q1 in a node of a given chirality τ . The electron-
phonon matrix element connecting L to R reads

gph
LR,τ (q) = gep

τ 〈�n,X,L,τ |eiq·r|�n,X ′,R,τ 〉
� λ gep

τ δq,−2kF δX ′,X+qyl2
B
eiqx (X+X ′ )/2e−q2

⊥l2
B/4, (83)

FIG. 4. Landau-level spectrum of two Weyl nodes of opposite
chirality near the quantum limit, where k|| refers to the component
of the momentum along the direction parallel to the magnetic field.
The Fermi energy εF intersects the first nonchiral Landau level on
each node (n = 1 for the positive chirality node and n = −1 for the
negative chirality node). The wave vectors q1, q2, q3 = q1 + q2, and
q4 = 2q1 + q2 connect different Fermi points within the |n| = 1 set
of Landau levels. The energy �1 corresponds to the distance from
the bottom of the |n| = 1 Landau levels to εF ; it plays the role of an
ultraviolet cutoff. In this figure, it is assumed that the two nodes of
opposite chirality are related by a mirror plane. Otherwise, the vector
q1 would have a different length for the two nodes.

where we have used n = 1 (n = −1) for τ = 1 (τ = −1) and
we have defined

λ = 1√
(kF lB)2/2 + 1

. (84)

One can similarly obtain an expression for gph
RL,τ (q); the only

difference with respect to Eq. (83) is that δq,−2kF is replaced
by δq,2kF . In the derivation of Eq. (83), we have approximated
exp(−q2

⊥l2
B/4)[1 + O(q2

⊥l2
B)] � exp(−q2

⊥l2
B/4). This approx-

imation is motivated by the fact that, for q⊥lB � 1, the
electron-phonon matrix element is exponentially suppressed.

Comparing Eq. (83) with Eq. (37), we recognize that
the electron-phonon matrix elements for chiral and nonchiral
Landau levels differ by a factor λ. This difference emerges
from the pseudospin textures of the respective Landau levels.
For chiral Landau levels, the expectation value of the pseu-
dospin is either perfectly aligned or antialigned with the z axis
(depending on the sign on B), irrespective of the wave vector
and the chirality [cf. Eq. (2)]. Hence, the overlap factor for the
spinors of the two chiral Landau levels of opposite chirality
is unity. In contrast, for the |n| = 1 level, the expectation
value of the pseudospin rotates in momentum space: it points
along x at the bottom of the |n| = 1 band, and gradually tilts
toward z as k departs from the energy minimum [cf. Eq. (3)].
Moreover, the left- and right-moving branches in a nonchiral
Landau level have opposite orientations of the pseudospin
along z. This leads to an overlap factor λ < 1 between the
branches connected by the wave vector q1. The overlap factor
is gradually suppressed for larger q1lB.

In practice, q1 = 2kF is a very small fraction of the Bril-
louin zone. Therefore, the q dependence of gep

τ in Eq. (83)
can be neglected and its transformation properties under sym-
metry operations can be determined from the irreducible
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representations at zero wave vector. In the presence of mirror
symmetry, one may have q = 0 phonons whose deformation
potentials are even or odd under the mirror operation. We
denote these phonons as scalar and pseudoscalar, respectively.
In reality, scalar and pseudoscalar phonons are invariant under
all proper symmetry operations; however, for our model of
two Weyl nodes, only the mirror operation is relevant. Conse-
quently, we have

gep
1 = gep

−1 ≡ gs (scalar phonons),

gep
1 = −gep

−1 ≡ gps (pseudoscalar phonons). (85)

The Coulomb matrix elements can be calculated in
the same way as for the chiral Landau levels. The long-
wavelength (q � 0) part of the Coulomb interaction [coun-
terpart of Eq. (44)] is now given by

g2 = 2π l2
B

1 + 2
√

1 + 2
k2

F l2
B

, (86)

which incorporates the static screening from electrons in the
|n| = 0 and |n| = 1 levels at zero temperature (we assume
�1 � kBT ).

Likewise, the short-wavelength (q � q1 = 2kF ) part cor-
responding to interbranch momentum transfer within a node
reads

g1 = e2λ2l2
B

π h̄vF ε∞
ln

(
1 + 1

4k2
F l2

B

)
, (87)

where we have averaged over q⊥ like in Eq. (48), assuming
that kF lB is not small. Note that this expression is identical to
that of the previous section, except for the λ2 factor coming
from the momentum-space pseudospin texture of the nonchi-
ral Landau levels. Then,

g1

g2
= e2

π2h̄vF ε∞
λ′ ln

(
1 + 1

4k2
F l2

B

)
,

λ′ ≡ 1

2 + k2
F l2

B

(
1 + 2

√
1 + 2

k2
F l2

B

)
. (88)

Once again, compared to the discussion of Sec. III on chiral
Landau levels, a dimensionless factor λ′ appears in the ratio
g1/g2 for nonchiral Landau levels.

B. RG equations and phonon spectrum

Like in Sec. III, the outer shell corrections entering the RG
recursive relations [Eqs. (32)–(34)] are all evaluated in the
limit of small q⊥ up to the cutoff 1/lB, above which all the
couplings are exponentially suppressed. Within the magnetic
length scale lB, the couplings can then be considered as essen-
tially local in the transverse directions, which yield 1D-like
loop corrections for the flow equations. From the results of
Appendix B, the RG transformations for the electron-phonon
vertices z j of Fig. 1(b), corresponding to scalar ( j = s) and
pseudoscalar ( j = ps) modes, are given by

d

dl
ln z j = γ j (l )

2
λP, (89)

where

γs(l ) = α1(g2(l ) − 2g1(l )),

γps(l ) = α1g2(l ), (90)

and α1 = 1/(2π l2
B). Here the cutoff function λP of the Peierls

loop for the nonchiral Landau is given by Eq. (B5) of Ap-
pendix B. Remarkably, the RG flow and the corresponding
phonon softening for the pseudoscalar phonons is indepen-
dent of the coupling g1. As explained in Appendix B, this is
only true for the case where the two Weyl nodes are related by
mirror symmetry. The physical meaning behind the difference
in scalar and pseudoscalar phonon modes originates from the
fact that the latter do not create any net charge fluctuations and
hence they are not screened by g1. In other words, g1 couples
to total charge fluctuations, which are absent in the case of
pseudoscalar phonons. In contrast, g2 (which is associated to
vertex corrections) couples to all phonons.

As for the electron-electron interactions, the results of Ap-
pendix B lead to the following RG equations:

dg1

dl
= (− g2

1 + g1g2
)
α1λP,

dg2

dl
= g2

2

2
α1λP. (91)

Unlike in Sec. III, the one-loop corrections to both the cou-
plings g1 and g2 arise from the Peierls channel alone. The
contribution from the Cooper channel, neglected here, is no
longer logarithmically divergent because the two electronic
branches connected by q1 are not symmetric with respect to
the center of the Brillouin zone. The last diagram of Fig. 1(c)
is therefore (approximately) absent.

The solutions of Eqs. (91) can be written as

γ j (l ) = γ j

1 − γ j

2

∫ l
0 λPdl ′

, (92)

where γ j is the bare (l = 0) value of γ j (l ). In the absence of a
logarithmically singular Cooper channel, there is no invariant
combination of couplings in the course of the RG flow. While
γps(l ) is marginally relevant, γs(l ) may be marginally irrele-
vant or relevant depending upon the relative values of g2(l )
and 2g1(l ).

Using Eq. (92), Eq. (89) can be solved to yield

z j = 1

1 − γ j

2

∫ l
0 λPdl ′

. (93)

Thus, the simple poles in the electron-electron couplings
translate into corresponding poles in the electron-phonon ver-
tices zs and zps, which essentially demonstrates the coupling
of different CDW correlations to the scalar and pseudoscalar
phonon modes. The charge density wave emerging at the
instability of pseudoscalar phonons is special in that the total
charge density is uniform, while the difference in the charge
density between the two Weyl nodes of opposite chirality
oscillates in space with a period of π/kF .

The self-energy corrections for the scalar and pseudoscalar
phonon propagators shown in Fig. 1(a) are given by

D−1
l = D−1

0 − πl = ω2
m + ω2

0, j (q)
[
1 − α1g′2

j χ j (l )
]
, (94)
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where ω0, j is the bare frequency for the scalar ( j = s) and
pseudoscalar ( j = ps) phonons, g′2

j = g2
jλ

2/ω2
0, j , and

χ j (l ) =
∫ l

0
z2

j (l
′)λPdl ′ (95)

refers to the corresponding electronic susceptibility involved
in the phonon softening. Since we are interested in q = 2kF ẑ,
we take λP ≈ 1 for l < lT = ln(�1/kBT ) and λP � 0 for l >

lT in Eq. (95).
Equation (94) allows us to study the adiabatic phonon soft-

ening caused by electrons. When α1g′2
j χ j (lT ) = 1 at ωm = 0,

the system undergoes a Peierls instability. The transition tem-
perature for the instability at 2kF ẑ is given by

T j
c,1 = �1 exp

(
− 2

2α1g′2
j + γ j

)
( j = s, ps), (96)

where the subscript 1 is a reminder that the instability consid-
ered here emerges from within the |n| = 1 nonchiral Landau
levels and their coupling to phonons. The Peierls transition
temperature is of the BCS (exponential) form, in agreement
with the phenomenological expression used in Ref. [40], al-
though renormalized by electron-electron interactions. This is
unlike in the chiral Landau levels related by a mirror plane (or
by another improper symmetry), where the Cooper scattering
channel is present and, consequently, a power-law behavior of
the transition temperature is realized.

We note that Eq. (96) is valid only when 2α1g′2
j + γ j > 0.

If 2α1g′2
j + γ j < 0, T j

c,1 = 0 and there is no Peierls instability.
For scalar phonons, γs becomes negative at high magnetic
fields, which leads to 2α1g′2

s + γs < 0. In contrast, for pseu-
doscalar phonons, γps is positive regardless of the magnetic
field (because g2 > 0) and therefore 2α1g′2

ps + γps is always
positive. Thus, pseudoscalar phonons remain susceptible to a
Peierls instability even when the scalar phonons are not.

The qualitative difference in the softening between scalar
and pseudoscalar phonons was first noticed in Ref. [43], in the
context of the RPA. This approximation amounts to neglecting
the bare value of g2 in Eqs. (89) and (91). Under such a
condition, our theory would predict

χs(l ) =
∫ l

0 λPdl ′

1 + g1α1
∫ l

0 λPdl ′
,

χps(l ) =
∫ l

0
λPdl ′. (97)

Hence, the Peierls instability (the divergence of χ (l ) at l →
∞, which takes place when λP � 1) would be suppressed for
scalar phonons due to RPA screening but not for pseudoscalar
phonons. According to Eqs. (97) and (94), pseudoscalar
phonons would undergo a Peierls instability for an infinites-
imally weak electron-phonon coupling, while it would take
a minimum strength of electron-phonon coupling to have a
Peierls instability of scalar phonons. This statement is in
agreement with the results of Ref. [43]. However, our more
complete theory, which goes beyond RPA, adds nuance to
such results. For instance, the g2 contribution ignored in the
RPA helps the Peierls instability of scalar phonons, which
can now take place for infinitesimally weak electron-phonon
interactions, provided that g2 > 2g1 [as shown in Eq. (96)].

FIG. 5. (a) Peierls transition temperature for scalar and pseu-
doscalar phonons at the nesting wave vector q1 (see Fig. 4). The
parameter values are the same as in Fig. 3. Only the magnetic-field
range in which the Fermi level intersects the n = 0 and |n| = 1 Lan-
dau levels is shown. Also, we limit the data to q1lB > 1. For a given
strength of electron-phonon interactions, the transition temperature
for pseudoscalar phonons is enhanced with respect to that of scalar
phonons; the two converge to one another when ε∞ is large. (b) The
bare value of γ j as a function of the magnetic field. For the scalar
phonon, γs = g2 − 2g1 changes signs at sufficiently high magnetic
fields, eventually eliminating the Peierls instability. For the pseu-
doscalar phonon, γps = g2 always remains positive. We note that the
numerical values for γ j are much smaller than in the quantum limit
(Fig. 3) because g2 is relatively reduced by the additional screening
coming from the |n| = 1 Landau levels. As a a result, the critical
temperatures in this figure are much lower than the ones expected in
Fig. 3.

In Eq. (96), the cutoff energy scale �1 decreases as the
strength of the applied magnetic field increases (unlike �0 in
the preceding section), ultimately vanishing at the threshold
of the quantum limit. The exact functional dependence can be
calculated analytically. When �1 is vanishingly small, there is
no Peierls transition in the nonchiral Landau level.

Figure 5 provides a numerical estimate of T s
c,1 and T ps

c,1. For
equal magnitudes of electron-phonon coupling, the transition
temperature for pseudoscalar phonons is higher than that of
scalar phonons, because γps > γs. This difference can be very
significant when g1/g2 is not small, i.e., at stronger magnetic
fields, for reasons mentioned above. Therefore, we conclude
that pseudoscalar phonons are more prone than scalar phonons
to Peierls instabilities.

For the same parameter values as in Sec. III, the transition
temperature for the Peierls instability at wave vector q1 is very
low (sub-Kelvin). This is so for three reasons: (i) when the
Fermi level intersects only n = 0 and |n| = 1 Landau levels,
the cutoff �1 can be no larger than (2 − √

2)h̄v/lB; (ii) g2

is smaller than in the quantum limit due to the additional
screening coming from the partially occupied |n| = 1 Landau
levels [compare Eqs. (86) and (44)]; and (iii) as the magnetic
field is made stronger, �1 and g2 both decrease, while g1/g2

increases.
In view of the preceding paragraph, a Peierls transition

that originates exclusively from |n| = 1 Landau levels at wave
vector q1 appears difficult to observe. For a given Fermi
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energy, the instability will often be dominated by the nesting
wave vector connecting nodes of opposite chiralities, mainly
because g1 is smaller for the larger (internode) nesting wave
vectors. An exception may take place if g1 > g2 for both n =
0 and |n| = 1 bands. In that case, for a weak enough electron-
phonon interaction strength, there would be no instability
originating from the chiral Landau levels [recall Eq. (64)].
There could be, however, an instability originating from the
|n| = 1 levels for (and only for) pseudoscalar phonons, al-
though at very low temperature.

We conclude this section by discussing the cases of broken
mirror symmetry and nonadiabaticity. Let us suppose that the
mirror symmetry is broken (which can be done by rotating
the direction of the magnetic field). In this case, the wave
vector q1 is different (by δkF ) in the two nodes of opposite
chirality. If the energy scale h̄vF δkF is small compared to the
critical temperature obtained from Eq. (96), then the effect of
the mirror-breaking perturbation on the Peierls instability is
unimportant. If, to the contrary, h̄vF δkF is large, only one node
will contribute to the Peierls instability. In this case, the Peierls
transition temperature will still be of exponential form, like in
Eq. (96). However, there is no longer a qualitative distinction
between the softening of scalar and pseudoscalar phonons.
In fact, a single phonon mode will couple to electrons via a
combination of scalar and pseudoscalar coupling. The corre-
sponding transition temperature is given by

Tc = �1 exp

(
− 2

α1g′2
1 + γ1

)
, (98)

where γ1 = α1(g2 − g1), and (g2, g1, g′
1) refer to the electron-

electron and electron-phonon couplings defined for a single
nonchiral Landau level. While Eq. (98) has the same form as
Eq. (71), it is quantitatively much lower, mainly because g2 is
suppressed when the |n| = 1 bands are populated and hence
contribute to screening.

Next, we briefly discuss the nonadiabatic regime of insta-
bilities for nonchiral Landau levels. In the two-cutoff scaling
scheme, when for some given magnetic field interval, �1(l ) is
scaled down to �1(l∗) = h̄ω0, j < �1, the adiabatic softening
condition [Eq. (94)] no longer holds and must be replaced by
the flow equations shown in Eqs. (91). In these, the conditions
at l∗ for nonretarded couplings become g∗

1,2 = g1,2(l∗) + g1,2,
where g1,2 are the attractive phonon-induced backward- and
forward-scattering amplitudes. These can be obtained from
Eqs. (72) and (73) after the substitution of the appropri-
ate electron-phonon coupling matrix element [Eqs. (85) and
(83)], of the renormalized phonon propagator [Eq. (94)] and
of vertex parts z j (l∗) [Eq. (93)] at l∗. Note that when the
applied magnetic field is sufficiently large and �1 < h̄ω0, j ,
the electron-phonon system is entirely nonadiabatic so l∗ = 0.

It follows from Eqs. (91) and (89) that, for λP ≈ 1, the
combinations of couplings

γ j (l ) = γ ∗
j

1 − γ ∗
j

2 (l − l∗)
(99)

and the electron-phonon vertex parts

z j (l ) = z j (l∗)

1 − γ ∗
j

2 (l − l∗)
(100)

both develop a simple pole structure. Here γ ∗
ps = α1g∗

2 and
γ ∗

s = α1(g∗
2 − 2g∗

1), whereas the expressions for z j (l∗) are
given by Eq. (93) at l∗. As a function of temperature, we
obtain the characteristic scale

T ∗
1, j = �1, j

kB
e−2/γ ∗

j (101)

for an instability of the electron system against a 2kF ẑ CDW,
which is distinct for the scalar ( j = s) and pseudoscalar ( j =
ps) cases. Here the cutoff energy is �1, j = min{h̄ω0, j,�1},
where �1 is field dependent. Therefore, at a given applied
magnetic field, nonadiabatic corrections, which predomi-
nantly screen g1 to the attractive sector, will enhance (reduce)
the critical temperature [Eq. (96)] for scalar (pseudoscalar)
phonons. The corresponding transition temperature for broken
mirror symmetry between the two Weyl nodes, where we
effectively consider a single nonchiral Landau level for our
analysis, is given by

T ∗
1 = �1

kB
e−2/γ ∗

1 , (102)

where γ ∗
1 = α1(g∗

2 − g∗
1).

V. APPLICATION TO REAL MATERIALS

Thus far, we have considered a toy model for two Weyl
nodes of opposite chirality, with untilted Weyl cones. In this
section, we extrapolate our results to more realistic situations.
This extrapolation is nontrivial, due to at least three aspects.

First, in the absence of magnetic fields, the Fermi surfaces
of several real WSM are nonspherical around the Weyl nodes
and, moreover, host topologically trivial hole bands away
from the nodes. This goes well beyond the simple model that
we have considered at zero magnetic field. Fortunately, in the
strong magnetic field regime that we are interested in, the
topologically trivial hole pockets are pushed away from the
Fermi energy and the bands at the Fermi level become simpler
and rather universal: 1D (though highly degenerate) chiral
Landau and nonchiral Landau levels. Admittedly, our model
neglects the curvature of the chiral Landau level. Neverthe-
less, the main effect of such curvature in our theory (namely, a
magnetic-field-dependence of the Fermi velocity in the chiral
LL) is qualitatively unimportant.

Second, one common element of real WSMs, which we
have ignored throughout the paper, is the tilt of the Weyl
cones. It turns out that such a tilt does not change the main
results of our theory because the Peierls scattering amplitude
(and also the Cooper scattering amplitude, in the presence of
mirror symmetry) retains its logarithmic divergence; this can
be checked by an explicit calculation.

Third, real WSMs most often host multiple pairs of Weyl
nodes. This has various implications for our theory, which are
worth elaborating on for the remainder of this section. For
example, TaAs and related materials (NbAs, TaP, NbP) dis-
play two symmetry-inequivalent multiplets of Weyl nodes (8
W1 nodes and 16 W2 nodes). The eight symmetry-equivalent
W1 nodes are located on the kz = 0 plane of the Brillouin
zone (see Fig. 6). The 16 symmetry-equivalent W2 nodes are
distributed into two planes (kz = ±k0), which are related to
one another by time-reversal. Because the Fermi energy of the
W1 nodes is significantly greater than that of the W2 nodes,
the quantum limit is first attained in the latter.

195113-15



KUNDU, BOURBONNAIS, AND GARATE PHYSICAL REVIEW B 105, 195113 (2022)

FIG. 6. kz = 0 plane of the Brillouin zone in TaAs. Eight Weyl
nodes are shown (blue and red correspond to opposite chiralities).
The grey dashed lines denote the mirror planes.

In the absence of a magnetic field, TaAs belongs to point
group C4v . Weyl nodes of opposite chirality in Fig. 6 are
related to one another by a mirror plane. At zero field, none
of the long-wavelength phonons in TaAs are pseudoscalar
[82,83].

Let us suppose that the magnetic field is applied along z.
Then, all mirror planes are broken but the rotational symme-
try is preserved. The eight W1 nodes of Fig. 6 can then be
subdivided into four symmetry-related nodes of positive chi-
rality and another four symmetry-equivalent nodes of negative
chirality. The 16 W2 nodes can be similarly subdivided.

In the quantum limit, the possible phonon instabilities
occur for wave vectors connecting Weyl nodes of opposite
chirality. Indeed, since chiral Landau levels of the same chi-
rality have the same dispersion along the direction of B, it
follows that the nesting condition necessary for the logarith-
mic singularity of the Peierls and Cooper channels is not
satisfied for phonon wave vectors connecting two nodes of the
same chirality. For a wave vector in the xy plane connecting
two nodes of opposite chirality, two pairs of chiral Landau
levels (in the case of W1 nodes) or four pairs of chiral Landau
levels (in the case of W2 nodes) contribute to the instability.
For the remaining pairs, the phonon wave vector does not
connect the two nodes of opposite chirality.

If we neglect the Coulomb scattering between different
pairs of nodes, then our theory of Sec. III B 2 for the Peierls
transition temperature can be applied, with some modifica-
tions, to the case of multiple pairs of nodes. Specifically, we
note the following points: (i) since B||ẑ breaks all mirrors, the
Peierls transition temperature will be of the BCS form; (ii) the
coupling g2 will be reduced by a factor of N , where N is the
number of pairs of Weyl nodes contributing to the screening
of the Coulomb interaction; and (iii) the effective electron-
phonon parameter g2

x, j will be enhanced by a factor N ′, where
N ′ is the number of pairs of Weyl nodes that are connected by
the same nesting wave vector. While (ii) leads to a depletion
of the transition temperature, (iii) implies an increase. Hence,
the transition temperature for multiple pairs of Weyl nodes can
be either higher or lower than the transition temperature for a
single pair of Weyl nodes, depending on whether the dominant
contribution comes from electron-electron or electron-phonon
interactions. It must also be mentioned that, in the case of

multiple pairs of nodes, there could be additional types of
instabilities that are not present in the single-pair model.

One aspect of having the magnetic field along the z axis
is that the field is perpendicular to the separation between all
the Weyl nodes in a constant kz plane. Therefore, significant
single-particle hybridization gaps between chiral Landau lev-
els of opposite chirality are expected at high fields. When the
size of these gaps exceeds the Peierls transition temperature
computed for gapless chiral Landau levels, we expect that the
instability will be suppressed.

Next, let us suppose that the magnetic field is applied along
the x direction and let us consider a nesting wave vector q
along x as well. The single-particle hybridization between
chiral Landau levels is relatively unimportant in this config-
uration because the magnetic field is parallel to the vector
separating the two Weyl nodes that contribute to the Peierls
instability. Such a field reduces the symmetry of the crystal
from C4v to C1h. As a result [84], the E phonons of TaAs
doubly degenerate in the absence of a magnetic field and split
into nondegenerate scalar (A′) and pseudoscalar (A′′) phonons.
According to Eq. (96), we would expect to see a more sig-
nificant softening for the A′′ phonon than for the A′ phonon
in the regime in which both n = 0 and |n| = 1 Landau levels
intersect the Fermi energy. One caveat is that the hybridization
between A′ and A′′ phonons, neglected in our theory, may be
significant due to the near degeneracy of these modes.

In the quantum limit with B = Bx̂, the results from Sec. III
indicate that the B dependence of the Peierls transition tem-
perature would be qualitatively different for q||x̂ and q||ŷ
phonons [compare, e.g., Eqs. (64) and (70)], because the
former phonons would couple two Weyl nodes related by a
mirror plane and the latter phonons would couple Weyl nodes
not related by a symmetry.

To close this section, we note that our theory is also ap-
plicable to a Dirac semimetal, under the condition that the
Zeeman splitting can transform it into a WSM.

VI. SUMMARY AND CONCLUSIONS

To summarize, we have developed a theory of phonon
instabilities for a simple model of WSMs with two Weyl
nodes of opposite chiralities in the presence of a large ap-
plied magnetic field and electron-electron interactions, using
a Kadanoff-Wilson RG approach. In this section, we begin by
reviewing the main results collected in Table I.

We have focused on two different parameter regimes for
the applied magnetic field B: the quantum limit, where the
Fermi energy intersects only the chiral (n = 0) Landau levels,
and the near-quantum limit, where the Fermi level also crosses
one nonchiral (n = 1) Landau level on each node. We have
assumed that the hybridization gap coming from the single-
particle magnetic tunneling is smaller than the Fermi energy,
so the system is a metal in the noninteracting limit.

In the quantum limit, the instabilities take place for nesting
wave vectors connecting n = 0 Landau levels of opposite
chirality. We have first considered the situation where the
two Weyl nodes of opposite chirality are related by a mirror
plane and the field is oriented perpendicular to this plane.
In this case, the Peierls transition temperature Tc obeys a
power-law dependence on B [Eq. (64)], which originates from
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TABLE I. Summary of the main results. First column: In the quantum limit, only the chiral Landau levels intersect the Fermi energy. In the
near-quantum limit, the chiral and the first nonchiral Landau levels intersect the Fermi energy. Second column: The adiabatic (nonadiabatic)
phonon regime is realized when kBTc > h̄ω0 (kBTc < h̄ω0), where Tc is the critical temperature for the lattice instability and ω0 is the bare
phonon frequency. Third column: When present, mirror symmetry relates the two nodes of opposite chirality. Mirror symmetry may be broken
intrinsically (due to lattice structure) or extrinsically (due to the application of a magnetic field that is not perpendicular to the preexisting
mirror plane). The mirror symmetry-breaking energy scale � is defined in Eq. (55). Fourth column: The magnetic-field dependence of Tc for
the lattice instability can be exponential or power law. For the near-quantum regime, we consider instabilities at nesting wave vectors that
connect electronic states of the same chirality. The power-law behavior in Tc originates from the interference between the Peierls and Cooper
channels. In the near-quantum regime with mirror symmetry, ”pseudoscalar > scalar” stands for the fact that the instability is qualitatively
more likely to occur for pseudoscalar phonons than for scalar phonons because the former do not generate net charge fluctuations and are thus
not screened by Coulomb interactions.

Magnetic field regime Phonon regime Mirror symmetry Field dependence of transition temperature

Quantum limit Adiabatic Yes Power law [Eq. (64)]
No Exponential [Eq. (70)]

Nonadiabatic Yes No instability (Luttinger liquid)
No Exponential [Eq. (79) for � < h̄ω0 and Eq. (82) for � > h̄ω0]

Near-quantum limit Adiabatic Yes Exponential [Eq. (96)]. Pseudoscalar > scalar
No Exponential [Eq. (98)]

Nonadiabatic Yes Exponential [Eq. (101)]. Pseudoscalar > scalar
No Exponential [Eq. (102)]

the destructive interference between the Peierls and Cooper
scattering channels. The Cooper channel is important even
though the two Weyl nodes are not time-reversed partners
of one another, provided that the two nodes have opposite
momenta along the direction of the magnetic field. The Peierls
transition in this situation depends crucially on the electron-
phonon coupling, that is to say we find no instabilities in
the absence of electron-phonon interactions. Moreover, the
dependence of Tc on B can be nonmonotonic (Fig. 3).

Again in the quantum limit, when the two Weyl nodes of
opposite chirality are not related by symmetry, the Cooper
channel is suppressed due to the asymmetry in the positions
of the Weyl nodes in momentum space. On the other hand,
the Peierls channel remains unaffected because of the per-
fect nesting. This opens the possibility of having a purely
electronic instability. However, in the presence of a nonzero
electron-phonon coupling, this instability is preempted by
an instability of the lattice, with a BCS-like expression for
Tc [Eq. (70)]. In a material that is mirror symmetric in the
absence of a magnetic field, such symmetry can be broken in a
controllable fashion by rotating the magnetic field away from
the normal to the mirror plane. One can therefore gradually
turn from Eqs. (64) to (70); the crossover takes place when the
energy scale associated to mirror symmetry breaking exceeds
the Tc in Eq. (64).

Still in the quantum limit, we have investigated the
nonadiabatic regime, where the bare phonon energy exceeds
the value of Tc obtained in the adiabatic regime. In this
regime, if the two Weyl nodes are related by mirror symmetry,
Luttinger liquid behavior is predicted, with no instability at
finite temperature. On the other hand, if mirror symmetry is
broken, the aforementioned Luttinger liquid state becomes
unstable against the formation of a CDW order [with Tc given
by Eq. (79) or (82), depending on whether the energy scale
for mirror symmetry-breaking exceeds or not the bare phonon
energy].

Next, we have considered lower magnetic fields. In contrast
to the quantum limit, here lattice instabilities can also emerge

at nesting wave vectors that connect two Fermi points of
n = 1 Landau levels within the same chirality. In the next
two paragraphs, we focus on such instabilities emerging from
n = 1 Landau levels.

For the adiabatic phonon regime, we obtain a Peierls insta-
bility for n = 1 Landau levels with a Tc of the BCS form; Tc

decreases as B increases (Fig. 5). Here, the Cooper channel is
suppressed because the Fermi points connected by the nesting
wave vector are not symmetric with respect to the � point.
When mirror symmetry is present, a qualitative difference ap-
pears between the behaviors of pseudoscalar phonons (whose
deformation potentials have equal magnitudes and opposite
signs on Weyl nodes of opposite chirality) and scalar phonons
(whose deformation potentials have equal magnitudes and
equal signs on Weyl nodes of opposite chirality). Because
pseudoscalar phonons do not generate net charge fluctuations,
they are less screened than scalar phonons by Coulomb inter-
actions and are accordingly more prone to undergo a Peierls
instability.

In the nonadiabatic regime with mirror symmetry, we ob-
tain a characteristic scale for an instability of the electron
system against a CDW order, which is distinct for scalar
and pseudoscalar phonons [Eq. (101)]. When the mirror sym-
metry relating the Weyl nodes is broken, there is no longer
a qualitative difference between the softening of scalar and
pseudoscalar phonons [Eq. (98)].

If we extrapolate our results to lower fields, where the
Fermi level intersects multiple nonchiral Landau levels, we
anticipate that the leading instability will occur at the nest-
ing wave vector connecting chiral Landau levels of opposite
chirality. Such instability will, however, take place at sig-
nificantly lower temperatures than the corresponding one in
the quantum limit, mainly because of the contribution of
the nonchiral Landau levels to the screening of the forward
Coulomb scattering.

This completes the summary of our paper. The main
messages are the following: (1) it is important to take
electron-phonon interactions into account, along with
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electronic interaction effects, for a complete understanding
of interacting phases of matter of WSMs at high fields;
(2) electron-phonon interactions tend to augment the CDW
fluctuations in the system and, whenever a Peierls transition is
possible, lead to an enhancement of the corresponding transi-
tion temperature; (3) the Cooper channel plays an important
role when the the two nodes are related by a mirror plane,
and can prevent purely electronic instabilities while enabling
non-BCS-like lattice instabilities; (4) breaking mirror sym-
metry increases Tc for the Peierls transition by suppressing
the Cooper channel; and (5) Tc is expected to be higher for
instabilities emerging from chiral (as opposed to nonchiral)
Landau levels.

For the remainder of this section, we compare our theory
to existing literature. First, the importance of electron-phonon
interactions in the putative CDW-ordered state in the Dirac
semimetal ZrTe5 at high magnetic field has been suggested
in a recent theoretical study [64]. The authors of this paper
use a mean-field approach to compare the threshold magnetic
field for the order parameter, calculated using electron-phonon
and electron-electron interactions alone, whereas we perform
a detailed analysis of the Peierls transition resulting from
the interplay of these two effects to compare their relative
importance for the transition. Moreover, Ref. [64] neglects the
Cooper channel contribution, which, as we have shown, can
qualitatively change the behavior of the transition through its
interference with the Peierls channel.

Second, Ref. [63] developed an RG theory for a metal-
insulator transition in the quantum limit of a Dirac material,
treating electron-electron interactions, electron-phonon inter-
actions and disorder on an equal footing. The authors of Ref.
[63] do not consider forward scattering and vertex corrections
and do not take into account the Cooper channel contribu-
tions, all of which play a role in our final expression for the
Peierls transition temperature. Moreover, Ref. [63] considers
phonon-induced electronic interactions as the starting point,
which would correspond to the nonadiabatic regime in our
analysis. We, in turn, do not consider the effect of disorder.
These differences make it difficult to directly compare the
results of Ref. [63] with ours.

Third, the lattice instabilities studied in our paper differ
in a number of ways from the ones that are well-known in
quasi-1D conductors [85]. The nonadiabatic regime is less
likely to be relevant in the latter because they are soft materials
with low-frequency phonons and a relatively high value for
the tight-binding electron-phonon matrix element. Also, the
cutoff band energy entering the Peierls transition temperature
is significantly larger compared to the values found for WSM.
Moreover, in quasi-1D conductors, the low-energy electron
bands are symmetric with respect to the � point. This is
not the case for Weyl fermion bands in WSMs, which can
affect the importance of the Cooper channel depending on
the orientation of the magnetic field. Finally, there is no spin
degeneracy in WSM, contrary to quasi-1D conductors. In
these, the possibility of a density-wave instability for electrons
induced by an applied magnetic field is known to exist, but
is restricted to the spin sector in the form of a field-induced
spin-density wave state [86].

Fourth, we compare our work to the literature on magnetic
catalysis, which has been long-studied in high-energy physics

and has recently received attention in the context of Weyl
and Dirac semimetals [48]. Magnetic catalysis consists of a
dynamical generation of a Dirac mass in an interacting system
of initially massless Dirac (or Weyl) fermions subjected to a
strong magnetic field. Our work can be regarded as a theory
of magnetic catalysis in two-node WSMs, in the presence of
both electron-electron and electron-phonon interactions.

If we turn off electron-phonon interactions in our theory,
we can compare our results to earlier works in the literature
of magnetic catalysis. While Ref. [48] mainly reviews the
mean-field approach, consistent results have been reported
in RG approaches that are closer in spirit to our work (see,
e.g., Refs. [87,88]). In the latter RG approaches, an effective
electron-electron interaction parameter g flows to strong cou-
pling provided that the bare value of g is positive, thereby
producing the dynamical generation of a Dirac mass. The
dynamical mass is BCS-like. The flow equation for g in those
theories coincides with our flow Eq. (54) for g2 − g1 (i.e., the
difference between forward and backward Coulomb scatter-
ing), but only provided that the Cooper channel contribution
is negligible.

While the neglect of the Cooper channel may be justified
in models with multiple fermion flavors, we have shown that
the Cooper channel contribution is important in the quantum
limit of two-node WSMs if the nodes are related by a crystal
symmetry. In that situation, the Cooper channel interferes
destructively with the Peierls channel, thereby leading to an
effective electron-electron coupling g2 − g1 that no longer
flows to strong coupling. In other words, the Cooper channel
contribution precludes the emergence of magnetic cataly-
sis in the absence of electron-phonon interactions. When
electron-phonon interactions are included, we find the mag-
netic catalysis re-emerges in the form of a Peierls instability,
but with a critical temperature that is no longer BCS-like.

In our theory, the contribution from the Cooper channel
becomes suppressed when the two Weyl nodes are not related
by a crystal symmetry. In this case, only the Peierls channel
remains intact and g2 − g1 flows to strong coupling provided
that the bare value of g2 − g1 is positive, like predicted in the
RG treatments of magnetic catalysis. Yet, even in this case,
our theory offers the following result: the purely electronic
instability resulting from the divergence of g2 − g1 is pre-
empted by a lattice instability because the electron-phonon
vertex diverges before g2 − g1 does.

To conclude, we mention that possible avenues for future
work include a generalization of our theory to semimetals with
multiple pairs of nodes and its application to study electronic
and lattice instabilities in other interesting semimetals such as
graphite, bismuth, and chiral multifold fermion systems.
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APPENDIX A: DERIVATION OF RENORMALIZATION GROUP EQUATIONS IN THE QUANTUM LIMIT

In this Appendix, we derive the recursion relations for the phonon self-energy, the electron-phonon coupling, and the electron-
electron couplings, up to one-loop order. We focus on the case in which the Fermi level crosses only the chiral Landau levels
(in Appendix B, we treat the case in which the Fermi level intersects with one nonchiral Landau level). We work under the
assumption that the couplings are approximately local in the transverse directions, within the magnetic length lB, above which
they are exponentially suppressed. In practice, this translates into the approximation f (qxlB, qylB) exp[−q2

⊥l2
B/2] � 0 for q⊥lB �

1, and f (qxlB, qylB) exp[−q2
⊥l2

B/2] � f (0, 0) for q⊥lB � 1, where f is some function of the transverse momentum q⊥ = (qx, qy).
With the aforementioned approximation, the action for the (internode) electron-phonon interaction is given by

Sep[ψ†, ψ, φ] � −
√

πvF

βV
∑
ωn,ωm

∑
k,q, j,X,τ

zττ , jg
ep
ττ , j (q) exp[iqxX ]ψ†

X,k+q−bτ ,τ
(ωn + ωm)ψX+qyl2

B,k,τ (ωn)φ j (q, ωm), (A1)

where bτ = kτ − kτ refers to the momentum separation between the two Weyl nodes of opposite chiralities, zττ , j stands as a
renormalization factor for the internode electron-phonon coupling for phonon mode j, τ refers to the Weyl node (τ = ±1), ψ

and ψ† are Grassmann fields for electrons, and φ is the phonon displacement field for mode j with wave vector q.
The action of the electron-electron interactions is divided into two parts, corresponding to backward Coulomb scattering (of

amplitude g1) and forward Coulomb scattering (of amplitude g2):

See[ψ†, ψ] � −g1
πvF

2βV
∑

X,Y,{ωn}

∑
k1,k2,q′,τ

exp[iq′
xX − iq′

xY ]

× ψ
†
X,k1+q′,τ

(
ωn1

)
ψ

†
Y,k2−q′,τ

(
ωn2

)
ψY −q′

yl2
B,k2,τ

(
ωn3

)
ψX+q′

yl2
B,k1,τ

(
ωn1 + ωn2 − ωn3

)
− g2

πvF

2βV
∑

X,Y,{ωn}

∑
k1,k2,q′,τ

exp[iq′
xX − iq′

xY ]

× ψ
†
X,k1+q′,τ

(
ωn1

)
ψ

†
Y,k2−q′,τ

(
ωn2

)
ψY −q′

yl2
B,k2,τ

(
ωn3

)
ψX+q′

yl2
B,k1,τ

(
ωn1 + ωn2 − ωn3

)
, (A2)

where, in the first term, |q′| � |kF+ − kF−| − |k+ − k−| ≡ 2k′
F is a small momentum, k± being the positions of the two nodes

and kF± being the corresponding Fermi momenta (see Fig. 2). In the expressions that follow, we simplify the notation by often
omitting the fermionic Matsubara frequencies associated with the Grassmann and phonon fields.

1. One-loop corrections to the electron-phonon vertex

Let us derive the RG transformation for the internode electron-phonon vertex zτ τ̄ , j , resulting from forward and backward
scattering amplitudes g2 and g1. The one-loop correction to zτ τ̄ , j follows from 〈SepSee〉dl [see Fig. 1 and Eq. (33) in the main
text]. The latter can be subdivided into contributions coming from g1 and g2 alone:

〈SepSee〉dl ≡ 〈SepSee〉dl (g1) + 〈SepSee〉dl (g2). (A3)

First, we focus on

〈SepSee〉dl (g2) �
(

πvF

βV

)3/2 ∑
τ,X,X ′,Y ′

∑
k,q, j

∑
k′

1,k
′
2,q

′
zττ , jg

ep
ττ , jg2 exp[iqxX ] exp[iq′

xX ′ − iq′
xY

′]

× 〈
ψ

†
X,k+q−bτ ,τ

ψX ′+q′
yl2

B,k′
1,τ

〉〈
ψ

†
Y ′,k′

2−q′,τψX+qyl2
B,k,τ

〉
ψ

†
X ′,k′

1+q′,τψY ′−q′
yl2

B,k′
2,τ

φ j (q)

=
(

πvF

βV

)3/2 ∑
τ,X ′

∑
q, j

∑
q′

x,q
′
y

∑
k′,ωm

zττ , jg
ep
ττ , jg2 exp[iqxX ′]

×
∑
ωn

∑
−

k

1

2

[
G0

τ (k + q − bτ , ωn + ωm)G0
τ (k, ωn) + G0

τ (k, ωn)G0
τ (k − q + bτ , ωn − ωm)

]
× ψ

†
X ′,k′+q−bτ ,τ

ψX ′+qyl2
B,k′,τ φ j (q, ωm), (A4)

where |q − bτ | � 2k′
F for phonons connecting the two Fermi points or nearby,

G0
τ (k, ωn) = (ih̄ωn − h̄vτ τ (k − k′

Fτ ))−1 (A5)
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is the Green’s function for a noninteracting fermion in the chiral Landau level, k is the momentum measured with respect to the
node position kτ [see Eqs. (1) and (19)], k′

Fτ = kFτ − kτ is the Fermi momentum measured from the node, ψ labels electronic
degrees of freedom in the outer energy shells [−�0(l ),−�0(l + dl )] and [�0(l + dl ),�0(l )] above and below (respectively)
the Fermi level (see Sec. II E in the main text), and

∑− k denotes a summation over momenta in those energy shells. Below, we
convert the momentum sum into an energy integral via (1/Lz )

∑− k → (2π h̄vF )−1
∫− dε.

In the second equality of Eq. (A4), we used a symmetric product of propagators to allow at least one fermion line in the outer
energy shell at nonzero � and δv, the other being tied in these conditions to a previous outer shell contraction.

Then, Eq. (A4) can be rewritten as

〈SepSee〉dl (g2) = −
√

πvF

βV
∑
τ,X ′

∑
q, j

∑
q′

x,q
′
y

∑
k′,ωm

zττ , jg
ep
ττ , jg2 exp[iqxX ′]IP(dl )ψ†

X ′,k′+q−bτ ,τ
ψX ′+qyl2

B,k′,τ φ j (q, ωm), (A6)

with

IP(dl ) = − πvF

2βLz

∑
ωn

∑
−

k

(G0
+(k + 2k′

F , ωn)G0
−(k, ωn) + G0

+(k, ωn)G0
−(k − 2k′

F , ωn))

= dl

2 + δv/vF

1

4

{
2 tanh

[
β�0(l )

2

]
+ tanh

[
β�0(l )(1 + δv/vF )

2

]
+ tanh

[
β�0(l )

2(1 + δv/vF )

]}
≡ dl

2 + δv/vF
λP(l, T, δv), (A7)

evaluated in the static limit (ωm = 0) and at the nesting wave vector q = ±2k′
F to obtain the Peierls transition temperature. As

mentioned in the main text, δv is the difference in the magnitude of group velocities between the two chiral Landau levels of
opposite chirality, which is nonzero when the mirror symmetry is broken. The above expression introduces λP(l, T, δv) as the
cutoff function of the Peierls loop (0 � λP(l, T, δv) � 1), which is independent of the energy scale � for mirror symmetry
breaking. This function is mainly governed by the temperature, such that λP ≈ 1 when l � lT = ln(�0/kBT ) and λP ≈ 0 for
l � lT . The dependence of λP on δv is relatively weak.

Next, in Eq. (A6), we follow the prescription from the beginning of the section to approximate∑
q′

x,q
′
y

� LxLy

∫ 1/lB

−1/lB

dqxdqy

(2π )2
= LxLy

π2l2
B

. (A8)

Clearly, the right-hand side of this equation has some arbitrariness of order one in its prefactor (for example, one could do the
integration in polar coordinates instead of in Cartesian coordinates, or one could change the 1/lB cutoff by a factor of order
one, or one could simply do the convergent integral exactly). Indeed, from our calculations, we find the coefficients of various
one-loop correction terms to be proportional to LxLy/(π2l2

B) up to slightly different prefactors. Below, we approximate the right
hand side of Eq. (A8) to be equal to LxLy/(2π l2

B), so as to obtain the same coefficient as in Eq. (A14). This choice is justified on
physical grounds, to ensure at � = 0 that g1 − g2 is an invariant of the RG flow in order to preserve electron-hole symmetry for
scattering processes that conserve the number of particles on each node.

Henceforth, we introduce the factor

α0 = 1

2π l2
B

1

1 + δv/2vF
, (A9)

so that

〈SepSee〉dl (g2) � −α0g2

√
πvF

βV
∑
τ,X ′

∑
k′,q, j

zττ , jg
ep
ττ , j

λPdl

2
exp[iqxX ′]ψ†

X ′,k′+q−bτ ,τ
ψX ′+qyl2

B,k′,τ φ j (q). (A10)

We can similarly calculate the one-loop corrections to the electron-phonon action Sep from the g1 term,

〈SepSee〉dl (g1) = −
(

πvF

βV

)3/2 ∑
X,X ′,Y ′

∑
k,q, j,τ

∑
k′

1,k
′
2,q

′
zττ , jg

ep
ττ , jg1 exp[iqxX ] exp[iq′

xX ′ − iq′
xY

′]

× 〈
ψ

†
X,k+q−bτ ,τ

ψY ′−q′
yl2

B,k′
2,τ

〉〈
ψ

†
Y ′,k′

2−q′+bτ ,τ
ψX+qyl2

B,k,τ

〉
ψ

†
X ′,k′

1+q′−bτ ,τ
ψX ′+q′

yl2
B,k′

1,τ
φ j (q)

=
√

πvF

βV
1

LxLy

∑
X ′

∑
k′

1,q, j,τ

zττ , jg
ep
ττ , jg1

∑
X

exp[iqxX ]
∑

q′
x

exp[iq′
x(X ′ − X )]IP(dl )ψ†

X ′,k′
1+q−bτ ,τ

ψX ′+qyl2
B,k′

1,τ
φ j (q),

(A11)
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following the same prescription as before. We convert the sum over q′
x into an integral from −1/lB to 1/lB, and obtain

Lx

2π

∫ 1
lB

− 1
lB

dq′
x exp[iq′

x(X ′ − X )] = Lx

2π

2 sin( X−X ′
lB

)

X − X ′ . (A12)

Thereafter, we perform the sum over the guiding center X ,∑
X

exp[iqxX ]
2 sin

(
X−X ′

lB

)
X − X ′ = LyB

φ0

∫ ∞

−∞
dX exp[iqxX ]

2 sin
(

X−X ′
lB

)
X − X ′ ≈ 2πLyB

φ0
exp[iqxX ′]. (A13)

Thus, we obtain

〈SepSee〉dl (g1) =
√

πvF

βV α0g1

∑
X ′,τ

∑
k′

1,q, j

zττ , jg
ep
ττ , j exp[iqxX ′]λP

dl

2
ψ

†
X ′,k′

1+q−bτ ,τ
ψX ′+qyl2

B,k′
1,τ

φ j (q). (A14)

Combining Eqs. (A10) and (A14) with Eq. (33), we arrive at

1

zττ , j

dzττ , j

dl
= α0(g2 − g1)λP

2
, (A15)

which corresponds to Eq. (50) of the main text.

2. One-loop corrections to electron-electron interactions

The renormalization of the backward and forward Coulomb scattering amplitudes, g1 and g2, at the one-loop level are obtained
from the outer-shell averages 1

2 〈S2
ee〉dl [see Eq. (34) in the main text]. Schematically,

See[ψ†, ψ,ψ
†
, ψ] = SC

ee + SP
ee + SL

ee ⇔ (ψ
†
+ψ

†
−ψ−ψ+ + ψ

†
+ψ

†
−ψ−ψ+) + (ψ

†
+ψ

†
−ψ−ψ+ + ψ

†
+ψ

†
−ψ−ψ+)

+ (ψ
†
+ψ

†
−ψ−ψ+ + ψ

†
+ψ

†
−ψ−ψ+), (A16)

which in order correspond to contributions of the Cooper channel (two particles or two holes in the outer momentum shell), the
Peierls channel (one particle and one hole on opposite branches), and the Landau channel (a particle and a hole on the same
branch). The Landau channel does not lead to logarithmic contributions at the one-loop level and will be hereafter ignored.
For the chiral Landau levels, we consider both the Peierls and the Cooper channel contributions, since the Weyl nodes are
located at equal and opposite momenta with respect to the � point in the presence of mirror symmetry, giving rise to logarithmic
divergences from both the channels. Thus, 〈

S2
ee

〉
dl

/
2 � 〈(

SP
ee

)2〉
dl

/
2 + 〈(

SC
ee

)2〉
dl

/
2. (A17)

Cross terms of the form 〈SP
eeSC

ee〉dl/2 vanish in outer shell averaging. In the following, we study 〈(SP
ee)2〉dl/2 and 〈(SC

ee)2〉dl/2
separately.

a. Peierls channel

The contribution from the g2 term to 〈(SP
ee)2〉dl/2 is given by

g2
2

2

(
πvF

2βV

)2 ∑
k1,k2,q,τ,X,Y

∑
k′

1,k
′
2,q

′,X ′,Y ′
exp[iqxX − iqxY ] exp[iq′

xX ′ − iq′
xY

′]

× (〈
ψ

†
X,k1+q,τψX ′+q′

yl2
B,k′

1,τ

〉〈
ψ

†
Y ′,k′

2−q′,τψY −qyl2
B,k2,τ

〉
ψ

†
X ′,k′

1+q′,τψ
†
Y,k2−q,τ

ψY ′−q′
yl2

B,k′
2,τ

ψX+qyl2
B,k1,τ

+ 〈
ψ

†
X ′,k′

1+q′,τψX+qyl2
B,k1,τ

〉〈
ψ

†
Y,k2−q,τψY ′−q′

yl2
B,k′

2,τ

〉
ψ

†
X,k1+q,τ

ψ
†
Y ′,k′

2−q′,τψY −qyl2
B,k2,τ

ψX ′+q′
yl2

B,k′
1,τ

)
= −g2

2

(
πvF

2βV

)∑
q̃,τ,Y

∑
k1,k′

2 ,̃q
′,X ′

exp[iq̃xX ′ − iq̃xY ]IP(dl )ψ†
X ′,k1+q̃,τ

ψ
†
Y,k′

2−q̃,τ
ψY −q̃yl2

B,k′
2,τ

ψX ′+q̃yl2
B,k1,τ

, (A18)

where the couplings have once again been assumed to be approximately local in the transverse direction, and in the second line
we have expressed the correction in terms of a new set of variables, q̃ = q + q′, q̃′ = q − q′, k′

2 = k2 + q′, and IP(dl ) is the
symmetrized product of outer-shell averages defined in Eq. (A7) of the previous section.

Summing over the transverse momenta using similar approximations as in the previous section, Eq. (A18) becomes

−α0
g2

2

2

(
πvF

βV

)∑
q̃,τ,Y

∑
k1,k′

2,X
′
exp[iq̃xX ′ − iq̃xY ]λP

dl

2
ψ

†
X ′,k1+q̃,τ

ψ
†
Y,k′

2−q̃,τ
ψY −q̃yl2

B,k′
2,τ

ψX ′+q̃yl2
B,k1,τ

, (A19)
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which has the form of a g2 term and thus contributes to the RG flow equation for g2.
We can similarly calculate the contributions to the renormalization of g1 term from 〈(SP

ee)2〉dl/2, which comprises terms
proportional to g2

1 and g1g2, respectively. This makes explicit all contributions to the first diagram of the flow equation of
Fig. 1(c). The outcome gives the Peierls part of RG equations:(

dg2

dl

)
P

= α0λPg2
2

2
,

(
dg1

dl

)
P

= −α0λP

2

(
g2

1 − 2g1g2
)
. (A20)

b. Cooper channel

We now consider the contribution coming from the Cooper scattering channel. At the one-loop level, the contribution reads

1

2

〈(
SC

ee

)2〉
dl = −

(
g2

1 + g2
2

)
2π l2

B

(
πvF

2βV

) ∑
k′ ,̃q,τ,X,Y

∑
k′

2

exp[iq̃xX − iq̃xY ]IC (dl )ψ†
X,k′+q̃,τ

ψ
†
Y,k′

2−q̃,τ
ψY −q̃yl2

B,k′
2,τ

ψX+q̃yl2
B,k′,τ

− 2g1g2

2π l2
B

(
πvF

2βV

) ∑
q̃,q̃⊥,τ,X,Y

∑
k′

1,k
′
exp[iq̃xX − iq̃xY ]IC (dl )ψ†

X,k′
1+q̃,τ

ψ
†
Y,k′−q̃,τ

ψY −q̃yl2
B,k′,τψX+q̃yl2

B,k′
1,τ

, (A21)

where the first and last lines contribute to the RG flow of g2 and g1, respectively. The expression for the outer shell Cooper loop
at zero pair momentum and frequency is given by

IC (dl ) = −πvF

2βL

∑
ωn

∑
−
k2

(G0
+(−(k+ + k−) − k2,−ωn)G0

−(k2, ωn) + G0
+(k2, ωn)G0

−(−(k+ + k−) − k2,−ωn))

= πvF

2L

∑
−

k

(
f [ε+(k)] − f [−ε−(−(k+ + k−) − k)]

ε+(k) + ε−(−(k+ + k−) − k)
+ f [ε−(k)] − f [−ε+(−(k+ + k−) − k)]

ε−(k) + ε+(−(k+ + k−) − k)

)
, (A22)

where ετ (k) = h̄vτ τ (k − k′
Fτ ) is the energy of the Weyl fermions with respect to the Fermi energy and f [z] is the Fermi function.

In the case where both the velocities and positions of the two Weyl nodes differ from one another, the corresponding dispersions
satisfy the relations

ε−(−(k+ + k−) − k) =
(

1 + δv

vF

)
ε+(k) +

(
1 + δv

vF

)
�, ε+(−(k+ + k−) − k) =

(
1 + δv

vF

)−1

ε−(k) − �, (A23)

with � = h̄vF (kF+ + kF−). Thus, when � �= 0, the Fermi points are no longer symmetric with respect to the � point, thereby
removing the logarithmic divergence in the Cooper channel (� acts as a pair-breaking perturbation). By carrying out the outer
shell energy integration, it follows that

IC (dl ) = − dl

2 + δv/vF

1

4

{
tanh

[
β�0(l )

2

]
1 + �γ/(γ ′�0(l ))

+ tanh
[

β�0(l )
2

]
1 − �γ/(γ ′�0(l ))

− f [(�0(l ) + �γ )/γ ] − f [(−�0(l ) − �)γ ]

1 + �γ/(γ ′�0(l ))

− f [(�0(l ) − �)γ ] − f [(−�0(l ) + �γ )/γ ]

1 − �γ/(γ ′�0(l ))

}
,

≡ dl

2 + δv/vF
λC (l, T,�, δv), (A24)

where γ = 1 + δv
vF

and γ ′ = 1 + δv
2vF

. The above expression defines the cutoff function λC (l, T,�, δv) of the Cooper loop (−1 �
λC (l, T,�, δv) � 0). One may easily verify the following limiting cases of λC . First, when � � kBT and l � l� = ln(�0/�),
the influence of � is small and λC ≈ −λP ≈ −1; at l � l�, one rather has λC ≈ 0 which suppresses the logarithmic singularity
of the Cooper channel. Second, when � � kBT , � is essentially irrelevant so the Cooper loop is only cut off by the temperature,
where λC ≈ −1 for l � lT and λC ≈ 0 for l � lT . This allows us to define a sharp cutoff procedure for λC as a function of l ,
which is used in the main text to determine the different limits of the flow equations. Note that for � = 0, we have the expression

λC = −1

4

{
2 tanh

[
β�0(l )

2

]
+ tanh

[
β�0(l )

2γ

]
+ tanh

[
β�0(l )γ

2

]}
= −λP, (A25)

whose amplitude coincides with the cutoff function determined previously for the Peierls channel.
The corresponding Cooper contributions to the RG equations are given by(

dg2

dl

)
C

= α0

2

(
g2

2 + g2
1

)
λC,

(
dg1

dl

)
C

= α0g1g2λC . (A26)
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c. Total contribution

Summing Eqs. (A20) and (A26), we have

dg2

dl
=
(

dg2

dl

)
P

+
(

dg2

dl

)
C

= g2
1α0λC

2
+ g2

2α0(λP + λC )

2
,

dg1

dl
=
(

dg1

dl

)
P

+
(

dg1

dl

)
C

= −g2
1α0λP

2
+ g1g2α0(λC + λP ),

(A27)

in agreement with Eqs. (52) and (53) of the main text.

3. One-loop corrections to the phonon propagator

The self-energy correction for the phonon mode j is [see Fig. 1 and Eq. (32) of the main text]

1

2

〈
S2

ep

〉
dl = −1

2

(
πvF

βV

) ∑
τ,X,X ′, j, j′

∑
k,k′,q,q′

g2
ττ zτ,τ zτ ,τ exp[iqxX ] exp[iq′

xX ′]
〈
ψ

†
X,k+q−bτ ,τ

ψX ′+q′
yl2

B,k′,τ
〉

× 〈
ψ

†
X ′,k′+q′−bτ ,τ

ψX+qyl2
B,k,τ

〉
φ j (q)φ j′ (q′)

= α0

∑
q,τ, j

g2
ττ z2

τ,τ

λPdl

2
|φ j (q)|2, (A28)

where, in the second equality, we have only kept terms corresponding to j = j′. This amounts to neglect the hybridization
between different phonon modes, induced by electron-phonon coupling. This approximation, which we adopt for simplicity, is
justified if the bare phonon frequencies for different j are well separated (compared to the off-diagonal part of the electron-
phonon self energy). Accordingly, the inverse of the phonon propagator is

D−1
j,l (q, ωm) = ω2

m + ω2
0, j (q)

(
1 − α0g′2

x, j

2

∫ l

0
z+−, j (l

′)2λPdl ′
)

, (A29)

where g′
x, j = gx, j/ω0, j , in agreement with Eq. (56) of the main text.

APPENDIX B: DERIVATION OF RENORMALIZATION GROUP EQUATIONS IN THE NEAR-QUANTUM LIMIT

In this section, we derive the recursion equations for the phonon self-energy, the electron-phonon vertex and the electron-
electron couplings, up to one-loop order, when the Fermi level intersects both the n = 0 (chiral) and |n| = 1 (nonchiral) Landau
levels. We tailor our theory to the situation in which the phonon wave vector of interest connects the two Fermi points of a
nonchiral Landau level in a given node. Moreover, we restrict our analysis to the case in which the two Weyl nodes are related
by an improper (e.g., mirror) symmetry. The case for broken mirror symmetry will be briefly discussed in Appendix C.

In the mirror-symmetric situation, the electronic dispersion for the |n| = 1 Landau level on a given node [cf. Eq. (1)] can be
linearized around the Fermi points ±kF , where kF is the Fermi momentum measured from the location of the node:

εnkτ,μ � τ sign(n)

⎛⎝h̄vF

√
k2

F + 2

l2
B

+ h̄vF kF√
k2

F + 2
l2
B

(μk − kF )

⎞⎠, (B1)

where we consider τ = n = 1 and τ = n = −1 (see Fig. 4), and μ = ±1 is an index referring to the two branches on a given
node. The fermion fields can be labeled by ψμ,n,X,k,τ but, because n = τ for the bands of interest, the label n will be omitted
henceforth. Also, while we can generally consider multiple phonon modes j, here we limit the analysis to the scalar and
pseudoscalar phonon modes only. Finally, like in Appendix A, we once again work under the assumption that the couplings are
approximately local in the transverse directions, within the magnetic length lB, above which they are exponentially suppressed.

The electron-phonon part of the action is then given by

Sep[ψ†, ψ, φ] = −
√

πvF

βV
∑

k,q,μ,X,ωn,ωm

eiqxX

(
zsgsφs(q, ωm)

∑
τ

ψ
†
μ,X,k+q,τ

(ωn + ωm)ψμ,X+qyl2
B,k,τ (ωn)

+zpsgpsφps(q, ωm)
∑

τ

τψ
†
μ,X,k+q,τ

(ωn + ωm)ψμ,X+qyl2
B,k,τ (ωn)

)
, (B2)

where φs(q) and φps(q) refer to the scalar and pseudoscalar phonon modes, and gszs and gpszps denote their respective couplings
to electrons. Motivated by the fact that the nesting vector of interest is much smaller than the size of the Brillouin zone, we
have adopted the long-wavelength approximation for phonons. In this approximation, scalar (pseudoscalar) phonons couple
with the same magnitude and the same (opposite) sign to electrons of the two nodes at every step of the RG flow. A factor
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λ = 1/
√

(kF lB)2/2 + 1, originating from the pseudospin textures of the nonchiral Landau levels (see Sec. IV), has been absorbed
in the definition of gs,ps.

The electron-electron part of the action can be written as

See[ψ†, ψ] � −πvF

2βV
∑
τ,τ ′

∑
X,Y

∑
k1,k2,q

∑
μ

exp[iqxX − iqxY ]
(
g1ψ

†
μ,X,k1+q,τ

ψ
†
μ,Y,k2−q,τ ′ψμ,Y −qyl2

B,k2,τ ′ψμ,X+qyl2
B,k1,τ

+ g2ψ
†
μ,X,k1+q,τ

ψ
†
μ,Y,k2−q,τ ′ψμ,Y −qyl2

B,k2,τ ′ψμ,X+qyl2
B,k1,τ

)
, (B3)

corresponding to the sum of the backscattering g1 and forward-scattering g2 terms. The labels τ, τ ′ are used to distinguish the g1

and g2 scattering terms within a given node from those between different nodes. Since the nodes are related by mirror symmetry,
we take the amplitudes of the scattering terms g1 and g2 to be the same for the two nodes, with no additional τ, τ ′ labels.

1. One-loop corrections to the electron-phonon vertex

Here we calculate the one-loop corrections to the electron-phonon vertex, from the g1 and g2 terms, for both the scalar and
pseudoscalar phonon modes. As an illustrative example, we write down the various corrections for the electron-phonon coupling
zs for the scalar phonons. The one-loop correction to the electron-phonon action from the g1 and g2 terms is given by

〈SepSee〉dl = 1

2π l2
B

(
πvF

βV

)3/2
⎛⎝∑

μ,τ

∑
k′,q

∑
X ′

(
zsgsg2 exp[iqxX ′]

∑
−

k

G0
μ,τ (k + q)G0

μ,τ (k)ψ†
μ,X ′,k′+q,τ

ψμ,X ′+qyl2
B,k′,τ

)
φs(q)

−
∑
τ,τ ′

∑
μ

∑
k′

2,q

∑
Y ′

(
zsgsg1 exp[iqxY

′]
∑
−

k

G0
μ,τ (k + q)G0

μ,τ (k)ψ†
μ,Y ′,k′

2+q,τ ′ψμ,Y ′+qyl2
B,k′

2,τ
′

)
φs(q)

⎞⎠
� − 1

2π l2
B

√
πvF

βV

⎛⎝∑
μ,τ

∑
k′,q

∑
X ′

(
zsgsg2 exp[iqxX ′]IP(dl )ψ†

μ,X ′,k′+q,τ
ψμ,X ′+qyl2

B,k′,τ
)
φs(q)

+
∑
τ,τ ′

∑
μ,ν

∑
k′

2,q

∑
Y ′

(
zsgsg1 exp[iqxY

′]IP(dl )ψ†
μ,Y ′,k′

2+q,τ ′ψμ,Y ′+qyl2
B,k′

2,τ
′
)
φs(q)

⎞⎠. (B4)

where

IP(dl ) = dl

2
tanh

[
β�1(l )

2

]
≡ dl

2
λP(l, T ) (B5)

and �1 refers to the cutoff energy scale for the nonchiral Landau levels (see Fig. 4). Henceforth, we define α1 = 1/(2π l2
B).

It is easy to see that the second part of the correction in Eq. (B4) above involves additive contributions from both nodes because
scalar phonons couple to both nodes with the same magnitude and sign. This results in a multiplicative prefactor of −2g1 for
scalar phonons. On the other hand, the first part of the correction, resulting from the g2 coupling, only involves contributions to
the electron-phonon coupling defined on a given node from the electronic interactions within the same node. The corrections to
the electron-phonon couplings corresponding to the scalar phonon modes are then given by

dzs

dl
= zs(g2 − 2g1)

λPα1

2
. (B6)

A similar analysis can be carried out for pseudoscalar phonons. Because such phonons couple to both nodes with the same
magnitude but opposite signs, the contribution of g1 terms to the electron-phonon vertex cancels out. This results in

dzps

dl
= zpsg2

λPα1

2
. (B7)

Equations (B6) and (B7) can be more concisely rewritten as
dz j

dl
= z j

γ j

2
λP, (B8)

where γ j (l ) = α1(g2(l ) − 2g1(l )) for j = s and γ j (l ) = α1g2(l ) for j = ps, in agreement with Eq. (89) of the main text.

2. One-loop corrections to the electron-electron interactions

Here, we calculate the renormalization of the electron-electron interaction couplings to one-loop order. Since our analysis
only involves interbranch and intrabranch electronic interactions within a given node, where the two branches are not located at
equal and opposite momenta with respect to the � point, we no longer consider contributions from the Cooper channel, instead
limiting ourselves to the Peierls channel contributions. These are given by

1

2

〈
S2

ee

〉
dl

= − 1

2π l2
B

πvF

2βV

⎛⎝∑
τ,τ ′

∑
X ′,Y

∑
μ

∑
q̃,q̃⊥

∑
k1,k′

2

g2
2 exp[iq̃xX ′ − iq̃xY ]IP(dl )ψ†

μ,X ′,k1+q̃,τ
ψ

†
μ,Y,k′

2−q̃,τ ′ψμ,Y −q̃yl2
B,k′

2,τ
′ψμ,X ′+q̃yl2

B,k1,τ
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−
∑
τ,τ ′

∑
X,Y ′

∑
μ

∑
k1,k′

2,q

g2
1 exp[iqx(X − Y ′)]IP(dl )ψ†

μ,X,k1+q,τ
ψ

†
μ,Y ′,k′

2−q,τ ′ψμ,Y ′−qyl2
B,k′

2,τ
′ψμ,X+qyl2

B,k1,τ

+
∑
τ,τ ′

∑
X,X ′

∑
μ

∑
k1,k′

2,q

2g1g2 exp[iqx(X − X ′)]IP(dl )ψ†
μ,X,k1+q,τ

ψ
†
μ,X ′,k′

2−q,τ ′ψμ,X ′−qyl2
B,k′

2,τ
′ψμ,X+qyl2

B,k1,τ

⎞⎠, (B9)

where the first term contributes to the RG flow of g2, while the latter two terms contribute to the RG flow of g1.
Collecting the above contributions, we get the RG equations

dg1

dl
= (− g2

1 + g1g2
)
α1λP, (B10)

dg2

dl
= g2

2

2
α1λP, (B11)

as given in Eqs. (91) of the main text. We note that while the RG equation for the forward-scattering term g2 only involves
contributions from a given node, the corrections to the backscattering term g1 involve additive contributions from both nodes.

3. One-loop corrections to the phonon action

The one-loop correction to the bare phonon action is given by

1

2

〈
S2

ep

〉
dl = α1

∑
j∈{s,ps}

∑
q

(z jg j )
2λPdl|φ j (q)|2, (B12)

which leads to

D−1
j,l (q, ωm) = ω2

m + ω2
0, j (q)

(
1 − α1

g2
j

ω2
0, j (q)

∫ l

0
z2

j (l
′)λP(l ′)dl ′

)
(B13)

for the inverse propagator for the scalar ( j = s) and pseudoscalar ( j = ps) phonon modes at step l of the RG flow. This agrees
with Eq. (94) of the main text.

APPENDIX C: RG EQUATIONS FOR THE NEAR-QUANTUM LIMIT IN THE ABSENCE OF MIRROR SYMMETRY

To conclude, we briefly generalize the analysis of Appendix B to the case in which the mirror (or inversion) symmetry relating
the two Weyl nodes of opposite chirality is broken. If the electronic energy scale associated with the mirror symmetry breaking,
� = h̄vF (kF,+ + kF,−), is small compared to the Peierls transition temperature Tc computed for the mirror-symmetric case, the
results from Appendix B are still applicable. However, if the energy scale � exceeds Tc, the effect of mirror symmetry-breaking
in the Peierls transition is significant. In the case in which the mirror symmetry is strongly broken, the intranodal nesting wave
vector (q1 in Fig. 4) becomes largely different for the two nodes of opposite chirality. Accordingly, only one of the nodes
contributes to the Peierls instability and the transition temperature can be approximated by considering a model of a single
nonchiral Landau level with interbranch electron-phonon coupling. For such a model, the Cooper channel contribution is once
again negligible, since the two Fermi points in a nonchiral Landau level of a fixed chirality are not symmetric with respect to
the � point. Then, the RG equations for the electron-phonon couplings become identical in form to the corresponding couplings
defined between the chiral Landau levels in Eq. (A15), and the equations for the electron-electron interactions become identical
to those in Eqs. (A27), with λC = 0.
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[79] S. Barisić, J. Phys. France 44, 185 (1983).
[80] L. G. Caron and C. Bourbonnais, Phys. Rev. B 29, 4230

(1984).
[81] J. E. Hirsch and E. Fradkin, Phys. Rev. B 27, 4302 (1983).

[82] M. I. Aroyo, J. M. Perez-Mato, C. Capillas, E. Kroumova,
S. Ivantchev, G. Madariaga, A. Kirov, and H. Wondratschek,
Z. Kristallogr. Cryst. Mater. 221, 15 (2006).

[83] M. I. Aroyo, A. Kirov, C. Capillas, J. M. Perez-Mato, and H.
Wondratschek, Acta Crystallogr. Sec. A 62, 115 (2006).

[84] M. D. Dresselhaus, G. Dresselhaus, and A. Jorio, Group
Theory: Application to the Physics of Condensed Matter
(Springer-Verlag, Berlin, 2008).

[85] J.-P. Pouget, C. R. Phys. 17, 332 (2016).
[86] The Physics of Organic Superconductors and Conductors,

Springer Series in Materials Science, Vol. 110, edited by A.
Lebed (Springer, Heidelberg, 2008).

[87] D. K. Hong, Y. Kim, and S.-J. Sin, Phys. Rev. D 54, 7879
(1996).

[88] K. Hattori, K. Itakura, and S. Ozaki, Phys. Lett. B 775, 283
(2017).

195113-27

https://doi.org/10.1103/PhysRevB.95.205108
https://doi.org/10.1103/PhysRevB.96.195143
https://doi.org/10.1103/PhysRevB.97.041202
https://doi.org/10.1103/PhysRevB.85.115317
https://doi.org/10.1103/PhysRevB.34.2681
https://doi.org/10.1103/RevModPhys.83.1193
https://doi.org/10.1016/0038-1098(76)91462-9
https://doi.org/10.1051/jphys:01983004402018500
https://doi.org/10.1103/PhysRevB.29.4230
https://doi.org/10.1103/PhysRevB.27.4302
https://doi.org/10.1524/zkri.2006.221.1.15
https://doi.org/10.1107/S0108767305040286
https://doi.org/10.1016/j.crhy.2015.11.008
https://doi.org/10.1103/PhysRevD.54.7879
https://doi.org/10.1016/j.physletb.2017.11.004

