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Probing correlated states with plasmons
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Understanding the nature of strongly correlated states in flat-band materials (such as moiré heterostructures) is
at the forefront of both experimental and theoretical pursuits. While magnetotransport, scanning probe, and
optical techniques are often very successful in investigating the properties of the underlying order, the exact
nature of the ground state often remains unknown. Here, we propose to leverage strong light-matter coupling
present in the flat-band systems to gain insight through dynamical dielectric response into the structure of the
many-body ground state. We argue that because of the enlargement of the effective lattice of the system arising
from correlations, conventional long-range plasmon becomes “folded” to yield a multiband plasmon spectrum.
We detail several mechanisms through which the structure of the plasmon spectrum and that of the dynamical
dielectric response is susceptible to the underlying order, revealing valued insights such as the interaction-
driven band gaps, spin-structure, and the order periodicity.
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INTRODUCTION
The moiré material paradigm of combining two-dimensional (2D)
weakly interacting materials to yield strongly interacting systems is
at the forefront of the current condensed matter research (1–3).
Moiré systems exhibit a wide range of phenomena ranging from un-
conventional superconductivity to various interaction-induced
(correlated) resistive states (4–19). Identification of the microscopic
nature of the correlated states in the moiré systems is, however, dif-
ficult, as it relies on the interpretation of transport behavior or scan-
ning-tunneling microscopy measurements (20–30). To that end,
despite the intense experimental and theoretical efforts, the exact
flavor of the ground states is often not certain; thus, new tools to
help identify them and complement existing results are in high
demand. One such approach can be based on the study of plasmons,
the collective charge excitations of interacting electron systems (31–
38), and the overall properties of the system’s dynamical dielectric
response.

A defining characteristic of the moiré materials making their di-
electric response distinct from that of conventional condensed
matter systems is the large effective lattice constant (aM∼ 10 nm)
(39–41). The large unit cell size makes microscopic variations of
the electric fields on the scale of the moiré period a substantial
effect, in contrast to the ordinary crystals with lattice constants
a∼ 0.1 nm, necessitating consideration of local field effects, i.e.,
treatment of the screening effects accounting for the variation of
the electric field within the unit cell (42–44). This phenomenon
gives rise to a dynamical response function matrix εGG′(q, ω),
which not only depends on the frequency ω and momentum q
inside the Brillouin zone (BZ) but is also labeled by the reciprocal
lattice vectors G, G′ that relate Fourier components of the cell-pe-
riodic electric field. Crucially, the dynamical response function
matrix contains information about possible plasmon resonances,
which are given by the solution of det εGG′(q, ω) = 0 (45–47).
Because of the matrix structure of the dielectric function, this

characteristic equation can, in analogy to the free electron model,
yield several branches of collective excitations.

In this work, we propose that the structure of the folded plasmon
resonances, together with the overall behavior of the dynamical di-
electric response, can allow for direct characterization of the micro-
scopic nature of the correlated phases and their underlying ground
states. While our findings are general and applicable to any flat-
band material, we focus on heterobilayer moiré transition metal di-
chalcogenides (TMDs) (12–19), where the difference in lattice cons-
tant of the materials in the two layers gives rise to the moiré pattern.
Experimentally, these systems exhibit interaction-induced insulat-
ing states at fractional and integer fillings consistent with general-
ized Wigner crystals pinned to the effective moiré lattice sites as
demonstrated in Fig. 1A. Theoretically, as attributed to the low-
energy band theory with a localized Wannier basis description,
these insulating states are qualitatively well described by a
Hubbard model (48–51). Adopting this identification of the under-
lying competing ground states, we show how the different ground
states can result in drastically different dynamical responses, partic-
ularly in the plasmon spectrum, thus allowing for identification of
such correlated states in the experiments.

RESULTS
Dielectric function with local field effects
The formalism for treating local field effects has been introduced in
the seminal works (42, 43). Specifically, when calculated within the
random phase approximation (RPA), the dielectric function matrix
takes the following form (42–44)

ɛGG0 ðq;ωÞ ¼ δGG0 � TGG0 ðq;ωÞ ð1Þ

TGG0 ðq;ωÞ ¼ VqþG
X

n;m;k

f0ðɛnkÞ� f 0ðɛmkþqÞ

ωþi0þþɛnk � ɛmkþq

� ηnmq;GðkÞ
�ηnmq;G0 ðkÞ

ð2Þ

where the Fourier transform of the Coulomb potential is given by
Vq ¼

2πe2
κjqj (with κ being the dielectric constant of the surrounding

insulating gate material) and f0(ε) = [eβ(ε − μ) + 1]−1 (with μ being
the chemical potential and β = 1/kBT being the inverse
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temperature). The state overlap ηnmq;G0 ðkÞ

ηnmq;GðkÞ ¼
1
Ω

ð

Ω
d2r unkðrÞye� iG�rumkþqðrÞ ð3Þ

is evaluated using unk(r), the cell-periodic part of the Bloch wave
function ψnk(r) = unk(r)eik·r for an eigenstate from band n with a
BZ momentum k and energy εnk. The integral in Eq. 3 is taken
over the unit cell with real-space area Ω. Correspondingly, the dis-
placement field due to the free charges is given by DG(q) =P

G0εGG0(q, ω)EG0(q), where EG0(q) are the Fourier components of
the total electric field in the crystal. Plasmon, a sustained electric-
field oscillation in the absence of free charges [DG(q) = 0] is given by
the solution of a zero eigenvalue problem det εGG′ = 0. The relevant
eigenvectors correspond to the real-space pattern of charge oscilla-
tions. Note that because of the finite size of the unit cell compared to
the electromagnetic wave vector, the fields in free space do not map
simply (42, 43) to the field in the crystal EG(q) due to the additional
dependence on reciprocal lattice vectors (see the Supplementary
Materials for further discussion). In a typical tight-binding
model, where the cell-periodic part of the Bloch function
becomes position independent [unk(r) = unk], the overlap of Eq. 3
vanishes for any G ≠ 0, making the notion of local field effects ir-
relevant (only ε00(q, ω) is nonzero in Eq. 1). This property is man-
ifestly not true in continuum models of moiré materials where the
cell-periodic part of the Bloch functions is position dependent, as
we detail below.

Model
To describe our platform of choice, the WSe2/WS2 heterobilayers
with zero twist angle, we use the Bistritzer-MacDonald–type contin-
uummodel (40). One of the key benefits of the heterobilayer setup is
that, because of the lattice mismatch, the moiré pattern is present
even without any twisting angle between layers. This makes the
system robust to moiré potential disorder as the moiré lattice cons-
tant is not as sensitive to small variations in layer placement. The
valence moiré bands of this platform are composed of WSe2 hole
pockets centered around K and K′ points of the BZ. Owing to the
spin-valley locking of TMDs (52), the K/K′ valley degree of freedom
can be identified with the electron spin, and the system is thus
doubly degenerate. Within each valley, the Hamiltonian H0 can
be approximated by a parabolic band with periodic moiré potential

VM(r) resulting from the insulating layer of WS2 imposed on top of
it (49, 53)

H0 ¼ �
h� 2k2

2m�
þ VMðrÞ ð4Þ

wherem* = 0.472me is the effectivemass of the hole pocket ofWSe2.
The moiré potential itself can be expressed in terms of its Fourier
components corresponding to the first shell of reciprocal lattice
vectors bi, with b1 ¼ 2π=aM½2=

ffiffiffi
3
p

; 0�, and the remaining five
vectors obtained by π/3 rotations. Here aM = a/δ ≈ 8.2 nm is the
moiré lattice constant where a = 0.328 nm and δ = 4% are the
lattice constant of WSe2 and lattice mismatch between WSe2/
WS2, respectively (49, 53). The moiré potential can thus be expand-
ed as

VMðrÞ ¼
X

j
Vbj e

ibj�r ð5Þ

where Vb1 = V0eiψ, with V0 = 15 meV and ψ = 45° for WSe2/WS2
(53), and the remaining coefficients can be obtained from symmetry
as Vb = VR(2π/3,b) and Vb ¼ V�� b [here, R(θ, b) denotes counter-
clockwise rotation of vector b by θ].

The moiré potential breaks down the parabolic band from Eq. 4
into a series of mini-bands defined within the moiré BZ, as shown
in fig. S1. The charge neutrality point of the entire structure lies
within the bulk gap of WSe2 and WS2; thus, the topmost doubly
degenerate valence moiré band (with the narrow band width of
below 10 meV) corresponds to the filling −2 ≤ ν ≤ 0 as defined
in the experiments (54). To study the fillings 0 ≤ ν ≤ 2, one can
also use a similar model, which, with an appropriate adjustment
to the effective mass, describes moiré conduction bands formed
by WS2 electron pockets. In what follows when referring to a
filling of ν, we are considering a hole filling of valence bands −ν
(i.e., the top valence band has 2 − ν electrons) or an electron
filling ν of the bottom conduction band (i.e., the band has ν elec-
trons in it). We also refer to these top valence or bottom conduction
bands as the moiré flat band. Because the model of Eq. 4 describes
the low energy theory of the entire moiré TMD bilayer and not just
the WSe2, it is therefore sufficient at the energy scales and frequen-
cies of interest to describe the systemwith a single dynamical dielec-
tric function as opposed to a separate dielectric function for each
TMD layer.

Fig. 1. The role of local field effects in moiré materials. (A) With a correlated ground state, the moiré unit cell (green) expands to a larger effective cell (blue) that takes
into account charge and spin ordering. An example is given for filling ν = 2/3 and AFM state. (B) Schematic depiction of plasmon foldingwhen crystal unit cell is extended.
The two interband plasmon branches ω±(q) are given by Eq. 11, with Δ being the correlated gap and ΔP the plasmonic gap as defined in the text. (C) The appearance of a
correlated state introduces multiple plasmon branches and opens up gaps both between plasmon bands as well as in the particle-hole continuum. (D) In the absence of
correlated state and unit cell enlargement, the inclusion of local field effects (left panel) does not introduce additional plasmon branches compared to when such effects
are neglected (right panel).
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To understand the origins of the correlated phases present in the
TMDmoiré structures, the flat band of the model can be considered
within the framework of a Hubbard model on a triangular lattice
(48–51). The correlated phases can then be obtained using the
Hartree-Fock mean-field treatment (48, 50, 55), and, depending
on the strength of interactions and filling of the bands, the
ground state can, for example, be ferromagnetic (FM) or antiferro-
magnetic (AFM) with various patterns of in-plane or out-of-plane
magnetic moments. In particular, we focus on the two key charac-
teristics of the ground states that, as we will see, are relevant for the
qualitative properties of the dielectric response: the enlargement of
the unit cell due to the formation of a correlated phase, and what
spin structure the ground state has (cf. Fig. 1A). Specifically, build-
ing on the observation that the Hartree-Fock ground states have a
generalizedWigner crystal character (48, 49) with charge mainly lo-
calized around selected moiré potential minima, we use a Hartree-
like electrostatic potential coming from the charges localized in the
moiré potential minima and effective magnetic fields that are con-
sistent with the orientation of the magnetic moments as shown in
the self-consistent calculations. This approach, together with the
enlargement of the unit cell due to the formation of the Wigner
crystal and using experimentally obtained estimates for the magni-
tudes of the correlated gaps (54), enables us to give an overview of
the qualitative features observed in the dynamic dielectric response
of the system that can help us to identify the nature of the correlated
ground state. We caution in passing that Hartree-Fock techniques
are an approximate scheme, and, thus, if a more exact method is
used, then different candidate ground states may become relevant.
Such analysis would not, however, influence the conclusions of our
work as its goal is to demonstrate that different ground states may be
distinguished using plasmons, rather than to provide a theoretical
prediction of the actual experimentally realized ground state. We
thus use themean-field calculation as a guide towhat are the expect-
ed correlated orders that we can use as a starting point for the
plasmon spectrum calculation.

Expressing the Hamiltonian H0 in terms of reciprocal lattice
vectors of the original moiré lattice G0, we have

HG0G00
0 ðkÞ ¼ �

jk þ G0j
2

2m�
δG0G00 þ

X

i
VbiδG0� G00;bi ð6Þ

When a generalizedWigner crystal state appears, it is pinned to a
fraction of the sites of the underlying moiré lattice, with the overall
periodicity of that lattice different for each correlated ground state
(48, 50, 55). This translates to a different set of reciprocal lattice
vectors G, which are shorter than moiré reciprocal lattice (i.e.,
moiré BZ becomes folded). In terms of the vectors G, the Hartree
(charge) potential takes the form

HGG0
C ðkÞ ¼ VC

X

τ
e� iðG� G

0Þ�τVG� G0 ð7Þ

where VC is a fitting parameter chosen to reproduce the experimen-
tal gap at a given filling as detailed in the concrete examples below,
and τ are the crystal basis vectors within the enlarged unit cell that
specify the centers of charge distribution for a given filling. Similar-
ly, we take the effective potential that enforces the spin texture

predicted by Hartree-Fock calculations (48, 55) as given by

HGG0
M ðkÞ ¼ VB

X

τ
e� iðG� G

0Þ�τBðG � G0; τÞ � σ ð8Þ

Here, VB is also a fitting parameter, B(G − G0, τ) is a vector that
determines the orientation of the magnetic field at a given crystal
basis site τ, and σ is a vector of Pauli matrices that describes the
spin degree of freedom. More details of the model, together with
the parameters used in the calculations, are presented in Materials
and Methods.

Because of the folding of the moiré BZ, new electron bands form
that originate from the moiré flat band. Once the effective charge
(Eq. 7) and spin (Eq.8) potentials are included in the Hamiltonian,
gaps open between these folded bands. We, however, highlight that,
in each case, the model is only valid when the chemical potential is
placed within the gap that corresponds to the filling fraction consis-
tent with the ground state used.With the phenomenological models
for the correlated states described above, we can now calculate the
dielectric function matrix with the local field effects included. We
perform the calculations for several distinct filling fractions ν = 1, 2/
3, 1/2, 1/3 for different candidate ground states, which correspond
to the most prominent generalized Wigner crystals as observed in
the experiments (54).

Plasmon folding
The central result of our work, the appearance of multiple plasmon
resonances stemming from the local field effects and their strong
dependence on the type of correlated order, is shown in Fig. 1 (B
and C). This behavior can be understood by studying the structure
of the dielectric function εGG′(q, ω), which, in general, has two types
of entries: diagonal (G = G0) and off-diagonal (G ≠ G0). The diag-
onal entries when expressed using the polarization function Π(q, ω)
have the characteristic RPA structure, 1 − VqΠ(q, ω) ≡ 1 − TGG(q,
ω), each, in principle, yielding a collective excitation solution ωn(q)
when taken separately through 1 = TGG[q, ωn(q)] where the index n
labels each solution. The off-diagonal entries for frequencies
outside of the particle-hole continua are of a fixed sign. As such,
the diagonal entries give rise to the multiple folded plasmon
branches, and the off-diagonal entries of the dielectric function
matrix open gaps between them.

To see this explicitly, let us focus on the behavior of εGG′(q, ω)
near the BZ edge at qM = −G1/2 (chosen to be the M point of the
hexagonal BZ) for the case of ν = 2/3 filling shown in Fig. 1C. In
particular, we focus on a ground state that is a pure Wigner
crystal (VC ≠ 0) without a spin structure (VB = 0). Near qM, only
the matrix entries corresponding to momenta G = 0, G1 contribute
to the leading order in the εGG′(q, ω) due to the Coulomb prefactor
1/∣q + G∣. The resulting dielectric function matrix has the structure

ɛGG0 ðq;ωÞ ¼
1 � T00ðq;ωÞ � T0G1ðq;ωÞ
� TG10ðq;ωÞ 1 � TG1G1ðq;ωÞ

� �

ð9Þ

For simplicity of the argument in evaluating the function TGG′(q,
ω) of Eq. 1, we can focus on the electron states closest in energy, i.e.,
bands separated by the correlated gap Δ. To leading order in mo-
mentum q, we can approximate the energy difference ∣εnk − εmk+q∣
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≈ Δ yielding

ɛGG0 ðq;ωÞ �
1 � AðqÞ

ω2� Δ2 �
CðqÞ

ω2� Δ2

�
DðqÞ
ω2� Δ2 1 � BðqÞ

ω2� Δ2

" #

ð10Þ

In arriving at this expression, we used time-reversal symmetry of
the system that requires ω → −ω [see the Supplementary Materials
for a careful derivation, and see also (56)]. The resulting plasmon
dispersion [obtained from det εGG′(q, ω) = 0; see Fig. 1C] is given by

ω2
+ðqÞ ¼ Δ2 þ

1
2

Aþ B+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðA � BÞ2 þ 4CD
q� �

ð11Þ

where we suppress the dependence on momentum in A, B, C, andD
for clarity. We see that, in the absence of the off-diagonal entries (C
= D = 0), there are two plasmon solutions, ω2

� ¼ Δ2 þ AðqÞ and
ω2
þ ¼ Δ2 þ BðqÞ (orange lines in Fig. 1B). Off-diagonal entries hy-

bridize the two solutions opening the gap ΔP ≡ ω+(qM) − ω−(qM) in
the plasmon spectrum at the boundary. The other plasmon reso-
nances seen in Fig. 1B originate similarly from the diagonal
entries of εGG′(q, ω) (see movie S1); however, the energy ordering
in which the individual resonances appear once off-diagonal entries
are introduced is nongeneric. We discuss both of these points in the
following paragraphs.

Plasmon folding as a signature of correlated states
The appearance of multiple plasmon branches is a robust feature
expected simply due to the folding of the moiré BZ owing to the
correlated order enlarging the unit cell (Fig. 1A). To see this explic-
itly, consider the bare Hamiltonian of Eq. 4 (VC = 0,VB = 0) but with
an artificial enlargement of a unit cell to that of a unit cell of the ν =
2/3 Wigner crystal. The resulting plasmon resonance (Fig. 1C) is
folded at the new BZ edge (cf. Fig. 1B), with a gap opening up in
the plasmon dispersion when an actual correlated order appears
(see movie S2), in addition to the opening of a gap Δ in the band
structure that gaps out the conventional intraband plasmon as q
→ 0.

We pause here to comment on the key claim of our paper, which
attributes the appearance of the plasmon folding solely to the cor-
related order. The dielectric function matrix is a well-studied
concept, both in first-principle calculations and early works on
properties of nearly free electron systems (42–44). Oliveira and
Sturm (47) first predicted the appearance of the folded plasmon res-
onance, albeit for a narrow momentum window (greatly limited by
damping) in a nearly free 3D electron gas. In the flat-band systems,
because of the mismatch between the kinetic and Coulomb energy
scales, plasmon dispersion rises above the particle-hole continuum
(57–61), circumventing the problem encountered by Oliveira and
Sturm (47). At first glance, therefore, a metallic moiré flat-band
system should exhibit such folded plasmon resonances. This,
however, does not occur due to the subtle interplay of interband
and intraband contributions to the polarization functions, as we
explain below.

When local field effects are introduced in a metallic moiré flat-
band system (cf. Fig. 1D), the plasmon dispersion flattens and is
pushed to higher energies near the BZ, but a new plasmon branch
does not appear. Cea and Guinea (62) found similar behavior in the
case of the twisted bilayer graphene continuum model, lacking any
additional plasmon resonances. The origin of this behavior can be

traced to the form of the dielectric response of the Eq. 9. Schemati-
cally, the G1G1 entry can be found by extending the 00 entry to the
second BZ and then folding it back into the first BZ as depicted in
Fig. 1B. Suppose the plasmon dispersion has a maximum away from
the BZ boundary. In that case, the resulting folded branch (i.e.,
found only by keeping the diagonal entries of the dielectric
matrix) will appear below the original plasmon branch. In turn,
when the off-diagonal elements of the dielectric matrix are consid-
ered, the resulting gap between the original (now higher energy)
branch and that of the folded (now lower energy) branch pushes
the folded branch into the particle-hole continuum and the original
branch upward in energy, flattening it near the BZ boundary as
shown in Fig. 1D (see also movie S3). On the other hand,
suppose the original plasmon branch has a maximum at the BZ
edge, as it does in the schematic of Fig. 1B. In that case, the
folded plasmon will appear in the BZ above the original plasmon
branch. The off-diagonal element of the dielectric matrix will
then separate the two plasmons that are not pushed into the parti-
cle-hole continuum.

A nontrivial question therefore arises: What controls the overall
shape of the plasmon dispersion? Or, more precisely:Where does its
maximum in dispersion lie in relation to the BZ edge? Because of
the interplay of two types of entries in the polarization function, as
discussed by Lewandowski and Levitov (57), those corresponding to
transitions between the states separated by energies higher than the
plasmon resonance (type I), and those corresponding to transitions
between states separated by energies lower than the plasmon reso-
nance (type II). The type II transitions give rise to the plasmon dis-
persion / ffiffiffiqp , while the type I transitions act to renormalize the
plasmon dispersion at large momenta comparable to the BZ scale.
As a result of this interplay, in a generic metallic moiré flat-band
system, a maximum in the plasmon dispersion will occur away
from the BZ boundary. When a correlated order appears, the
maximum of the plasmon dispersion is pushed toward the BZ
zone interface, and the plasmon becomes flattened. This process,
in conjunction with the reduction of the BZ size, gives rise to the
folding of plasmons, which are flattened at large momenta and,
hence, produce many weakly dispersing plasmon resonances. This
rich interplay of type I and type II transitions with local field effects
appears only in multiband continuummodels and thus is missed by
a preliminary tight-binding-based analysis as studied in (63), which
predicts folding of a plasmon branch in any two-site model, e.g.,
both metallic twisted bilayer graphene and a Mott insulator
would manifest folded plasmon branches.

Plasmon spectrum of a generalized Wigner crystal
We can now analyze the different dynamical responses for the
various filling fractions and candidate ground states in more
detail; see Fig. 2. Unlike the uncorrelated state, Fig. 1D, here, for
any of the fractional fillings, we find several plasmon branches
with the precise number set by the underlying ground state. More
specifically, on the basis of the arguments of the previous section, if
only the diagonal entries were considered, then we should see many
plasmon branches εGG′(q, ω). Here, however (despite considering
more than 40 reciprocal lattice vectors in the presented results),
we see substantially fewer resonances, i.e., the off-diagonal compo-
nents of the dielectric function push other resonances into the par-
ticle-hole continua. Unexpectedly, we also find that the number of
plasmon resonances (degenerate along some high-symmetry
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directions) is precisely equal to the enlargement of the unit cell
compared to the original moiré BZ; i.e., for ν = 1, we expect 3; for
ν = 1/3, we expect 9; for ν = 1/2 (AFM) we expect 4; and for ν = 1/2
(FM), we expect 2. We postulate this to be a key signature that
enables the detection of the underlying lattice enlargement.

One can understand this parallel between the number of
plasmon branches and the unit cell enlargement in the following
way. In the absence of a correlated state, only one plasmon
branch appears within the moiré BZ as shown in Fig. 1D, even
when local field effects are taken into account. As explained
above, this is because the plasmon branch arising from ε00 is
sloped downward in the vicinity of the BZ boundary. Thus, when
new plasmon branches appear with other diagonal elements of εGG′
taken into account, they will be lower in energy than the original ε00
branch. As off-diagonal elements are included in the calculation,
they will open gaps between various plasmon branches, pushing
the original branch up and all the other branches down into the par-
ticle-hole continuum. As the moiré potential is an energy scale
larger than the plasmon energies themselves, it buries all but one
plasmon branch in the continuum. This is clearly visualized in
movie S3, where the off-diagonal elements gradually increase, and
the process of removing the other plasmon branches is evident. This
one remaining plasmon is then the source of the multiple plasmon
branches in the Wigner crystal state. A similar mechanism of
pushing plasmons into particle hole-continua can also be observed
in the case when we switch on the off-diagonal terms in the case
with ν = 2/3 Wigner crystal (see movie S1), but because the
energy scale of the Wigner crystal is smaller than that of the
moiré potential and, in consequence, smaller than the plasmon
energy, the inclusion of the Hartree-like potential leads to
opening of the gaps in plasmon spectrum but does not lead to the
disappearance of the plasmon branches. As a result, because only
one (the original moiré) plasmon becomes folded as many times
as the original moiré BZ is folded, we expect the number of
plasmon branches to be set by the enlargement of the BZ.

The details of the plasmon dispersion behavior and the overall
dynamical response (specifically, the particle-hole continuum)
can yield further insights into the nature of the underlying
ground state. The interband continuum reveals the presence and
magnitude of the correlated gaps as it extends down to the lowest
energies in the metallic case. Similarly, the plasmon dispersion in
the metallic case stretches down to zero frequency as q → 0. In

contrast, when interactions open the gap, the plasmon also rises
to higher energies, even for the smallest momenta, as discussed in
the context of Fig. 1 (B and C). As the moiré materials allow for
continuous tuning of the filling fraction, this opening of the gap
could be directly observed when the plasmon spectrum ismeasured.

Our method can also help distinguish between different types of
correlated ground states that can appear at the same filling. For
example, at ν = 1/2, the generalized Wigner crystal forms stripes,
separated by two moiré lattice constants (48). However, such
stripes may have either FM or AFM chain configurations. While
in the FM state, the lattice period becomes doubled only in one di-
rection, the AFM state has a doubling of both lattice vectors. This
corresponds to two and four times smaller BZs for FM and AFM,
respectively. This, as shown in Fig. 2, has marked consequences for
the dielectric response. Not only the plasmon energies are entirely
different, but even the number of plasmon branches changes
between the two states, as mentioned previously. This enables dis-
tinguishing the type of ground state present in the system.

The behavior of the plasmon dispersion near the folded BZ edge
yields further insights into the nature of the underlying order. In
Fig. 2, we see that the plasmon dispersion at the M point does not
have a gap. Within the 2 × 2 effective dielectric function model of
Eq. 9, a gap in the plasmon spectrum will not open if the off-diag-
onal entry of the dielectric function matrix vanishes. This is the case
for Fig. 2 (ν = 1/2 AFM) at the high-symmetry pointM, which is in
the direction of the reciprocal vector G1 yielding ε0G1

(ω, q = −G1/2)
= 0 and εG10(ω, q = −G1/2) = 0. This is in contrast to an inequivalent
high-symmetry pointM′ in the direction G2 where a gap does open
(see fig. S3) as the corresponding off-diagonal entries do not vanish.
This vanishing of the off-diagonal entry for some G value is not a
consequence of vanishing state overlaps of Eq. 3 for all BZ k points
(as other entries of the εGG′ feature them as well), but instead such
entry vanishes only after summation over the BZ as a consequence
of symmetry of the ν = 1/2 AFM state. More precisely, we attribute
this to the striped nature of the ν = 1/2 state where period doubling
occurs only along one direction, breaking the C3 symmetry present
for other generalized Wigner crystals considered. The extent to
which the vanishing of the off-diagonal entries and hence
plasmon gap closing is a general feature of the ν = 1/2 correlated
state remains to be assessed based on different microscopic models.

However, even if the unit cell is the same for two magnetic struc-
tures at the same filling, it is still possible to differentiate them on

Fig. 2. The trace of the electron loss function at ν = 1,1/3,1/2 hole filling fractions. In each case, multiple plasmon branches are present due to local field effects. The
enlargement of the moiré lattice unit cell in the correlated state determines thenumber of the plasmon branches. The size of the interacting gap determines the lower
bound of interband particle-hole continua. In the case of ν = 1/2, the two competing states are FM and AFM, and due to their different lattice periodicity, they have
radically different plasmonic spectra.
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the basis of the plasmon spectrum. This is demonstrated in Fig. 3,
where we show the results at ν = 2/3 for three different correlated
states. They each have the same effective unit cells but have either
purely electrostatic potential, an AFM state, or a FM state, and in
each case, the correlated gap is set to 2.9 meV. Apart from the dif-
ferences in plasmon dispersion, there is another notable contrast
between the FM and AFM states: Because of the spin-polarization
in the FM state, some excitation processes are forbidden due to the
vanishingmatrix elements of band overlap. This leads to an effective
gap of 3.9 meV as determined by the boundaries of the particle-hole
continuum. Such a gap would thus be different from the one ob-
served in STM or activated transport experiments, where the
matrix elements do not play a role. This adds an additional
feature through which the dielectric response can identify these
ground states.

Experimental detection
Throughout the manuscript, we plotted the imaginary part of the
trace of the inverse dielectric function,
Tr ɛ� 1GG0 ðq;ωÞ/ 1=det ɛGG0 ðq;ωÞ, which carries information
about all plasmon resonances [detεGG′(q, ω) = 0]. This form was
chosen because of the general focus of the manuscript on the
plasmon folding due to the formation of the correlated order. It
is, however, an experimentally relevant question how and if all of
those plasmon resonances can be excited in a given experimental
setup. In particular, different plasmon launching schemes (35, 36,
64) could couple to the dielectric tensor (Eq. 1) differently. A de-
tailed answer to this question depends on the specific experimental
method used, as different techniques may excite different patterns
of charge oscillations (e.g., dipole). Here, we focus on the long-
wavelength limit, which corresponds to the conventional optical
probes (q → 0), where the relevant quantity is the loss function
defined (65) as log � ɛ� 1M ðq;ωÞ. Here, εM(q, ω) is the macroscopic
dielectric function (42–44)

1
ɛMðq;ωÞ

¼ ½ɛ� 1GG0 ðq;ωÞ�00 ð12Þ

that is the G = G0 = 0 entry of the inverse of the dielectric function

from Eq. 1. This loss function describes the probability of exciting
plane wave longitudinal charge oscillations. In Fig. 3, we compare
the spectrum of the plasmon excitations to the plasmons that can be
excited by conventional optical probes. We see that while some of
the folded plasmons remain in the optical excitation spectrum with
varying intensity, some of the resonances are not active and likely
require experimental probes that can excite charge oscillations
where individual Fourier wave vectors EG have an internal structure
(are not plane wave-like). We leave detailed consideration of these
effects to future work.

DISCUSSION
In summary, we have shown that the dynamical dielectric response,
particularly the plasmon dispersion, can be a valuable tool in iden-
tifying correlated phases of moiré materials. The advent of tunable
on-chip THz radiation sources presents an opportunity to clarify
the nature of the rich phase diagram of correlated states in flat-
band materials. Moreover, the results that we show here only con-
stitute the first step in investigating the phenomenon of plasmon
folding. One possible future direction is the investigation of real
space patterns of charge density oscillations, which could be ob-
served using scanning near-field optical microscopy (35, 36, 66, 67).

As in our analysis we used the RPA approximation (Eq. 2), a
natural question is to what extent our conclusions are valid in the
strongly interacting (low-density) regime of the moiré materials.
Crucially, the plasmon folding that we predict is a consequence of
the dielectric function having a matrix structure owing to the inclu-
sion of local field effects rather than the result of the RPA approx-
imation. This matrix structure of the dielectric function will
naturally give rise to the folding of a plasmon resonance when the
correlated order appears, provided that such resonance exists in the
original metal before the impact of the correlated ground state is
considered. As argued by Lewandowski and Levitov (57) on
general grounds based on Ward identities (namely, gauge invari-
ance demanding that spatially uniform external potential does not
perturb density), one expects a plasmon to exist with a λ ffiffiffiqp disper-
sion (with higher momentum correction becoming relevant at
larger q) with the prefactor λ dependent on the details of the

Fig. 3. The comparison between the trace of the energy loss function and the inverse macroscopic dielectric function εM(q,ω). Here, each panel corresponds to a
different ground state at filling ν = 2/3. Although, in each case, the unit cell of the correlated state is the same (triple the size of the moiré unit cell), the plasmon spectra
and particle-hole continua are distinct. While the trace of the loss functions shows all of the possible collective excitations of the system, the macroscopic dielectric
function shows the optical absorption spectrum.
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polarization function. As such, this plasmon will become folded due
to the local field effects structure, making our predictions robust.
We caution, however, that the quantitative features of the
plasmon dispersion likely depend on the extent to which the RPA
approximation captures the quantitative aspects of the exact
density-density pair correlator. It would, therefore, be interesting
to investigate beyond-RPA results in future work.

While the folding of the plasmon spectrum is a robust phenom-
enon stemming from the physics of BZ folding, the overall disper-
sion is sensitive to the details of the correlated order. In particular,
in our analysis, we assume a simplified framework wherein the
structure of the correlated order has no dependence on BZmomen-
tum q. This is an oversimplification of the analysis, which a calcu-
lation that involves Hartree-Fock treatment could remedy. Such a
calculation could also treat RPA screening with Hartree-Fock self-
consistently (68, 69) to conserve the particle number and imbue the
plasmons with an additional momentum and/or spin dependence.
In particular, moiré systems can in principle exhibit other collective
modes (e.g., spin waves), which can similarly be obtained through
the framework of RPA analysis. Thus, consideration of “local field
effects” in the context of such excitations may prove a fruitful re-
search direction to follow, potentially yielding alternative probes
into the microscopic nature of the correlated states in the moiré
materials.

MATERIALS AND METHODS
Ground states and parameters
This section provides additional details of the models used to cal-
culate the energy loss functions for various filling fractions. In all
the cases, the starting point is the moiré lattice with unit vectors
given by

a1 ¼ aMð
ffiffiffi
3
p

=2; � 1=2Þ; a2 ¼ aMð0; � 1Þ ð13Þ

where aM = 8.2 nm is the moiré lattice constant. This triangular
lattice then has a corresponding reciprocal lattice defined by the
vectors

b1 ¼ 2π=aMð2=
ffiffiffi
3
p

; 0Þ; b2 ¼ 2π=aMð� 1=
ffiffiffi
3
p

; � 1Þ ð14Þ

The band structure of the noninteracting model is given in fig.
S1. We then impose various generalizedWigner crystal states on top
of this lattice, following the mean-field Hartree-Fock solutions of
the triangular lattice Hubbard model from (48, 55). The particular
structures for each filling are presented in fig. S2, and the parame-
ters used in the calculations are listed in table S1. In each case, the
number of G vectors of the reciprocal lattice used in the calculation
of εGG′ was determined by imposing a cutoff of 3.55 bW1, corre-
sponding to including above 40 shortest vectors.

The fitting parameters VC and VB are, in each case, chosen to
give electronic bands with a bandgap estimated from the critical
temperatures observed for correlated phases in (54). The Hartree-
like potential is expressed in terms of the Fourier components of
Coulomb interaction for G ≠ G0 (with VG−G′ = 0 for G = G0) and
normalized by its value for bW2, one of the reciprocal lattice vectors
of the generalized Wigner crystal lattice

VG� G0 ¼
2πe2

jG � G0j
=
2πe2

jbW2j
ð15Þ

We choose the effective magnetic potential to be described as a
combination of Gaussian functions in real space. Each is centered
around the appropriate moiré lattice site given by the basis of
Wigner crystal τ. It can be thus expressed in terms of the Fourier
components as

BðG � G0; τÞ ¼ exp �
jG � G0j2

2jbW2j
2

 !

B̂ðτÞ ð16Þ

where B̂ðτÞ is a unit vector in the direction given by the arrows
shown in fig. S2, with purple arrows pointing in the xy plane,
while red and blue arrows point along the z axis, perpendicular to
the Wigner crystal.

In each calculation, the temperature is set to be kBT = 5 ×
10−5 eV, and the chemical potentials are placed around the center
of the gaps that result in the filling under study.We also consider the
insulating material of the gate below the sample by setting the di-
electric constant κ = 3. Changing this value does not affect the
results qualitatively; the effect of increasing κ is the decrease of
plasmon energies, with the dispersion becoming flatter. The sum-
mations over momenta within the BZ are performed over Mo-
khorst-Pack meshes (70) with 51 × 51 points in the Wigner
crystal reciprocal unit cell, except for the unfolded case, where the
mesh is 101 × 101.

Supplementary Materials
This PDF file includes:
Figs. S1 to S3
Table S1
Legends for movies S1 to S3

Other Supplementary Material for this
manuscript includes the following:
Movies S1 to S3
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