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Abstract: Musculoskeletal pain is an aversive experience that exists within a variety of conditions
and can result in significant impairment for individuals. Gaining greater understanding of the factors
related to pain vulnerability and resilience to musculoskeletal pain may help target at-risk individuals
for early intervention. This analysis builds on our previous work identifying regions where greater
gray matter density was associated with lower pain following standardized, exercise induced muscu-
loskeletal injury. Here we sought to examine the relationship between baseline resting state func-
tional connectivity in a priori regions and networks, and delayed onset muscle soreness (DOMS) pain
intensity following a single session of eccentric exercise in healthy adults. Participants completed a
baseline functional MRI scan and a high intensity trunk exercise protocol in the erector spinae. Pain
intensity ratings were collected 48-hours later. Resting state functional connectivity from four seed
regions and 3 networks were separately regressed on pain intensity scores. Results revealed that con-
nectivity between left middle frontal gyrus, the left occipital gyrus and cerebellar network seeds and
clusters associated with discriminative, emotional, and cognitive aspects of pain were associated
with lower post-DOMS pain. Results suggest resilience to clinically relevant pain is associated with
aspects of regional and network neural coherence. Investigations of pain modulatory capacity that
integrate multimodal neuroimaging metrics are called for.

Perspective: Our results provide key support for the role of structural and functional coherence in
regional and network connectivity in adaptive pain response and represent an important step in clari-
fying neural mechanisms of resilience to clinically relevant pain.

© 2021 by United States Association for the Study of Pain, Inc.
Key Words: Delayed onset muscle soreness, pain resilience, resting state functional connectivity, pain
modulation, musculoskeletal pain.
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health burden. For nearly three decades, musculoskeletal
pain has remained a leading cause of years lived with dis-
ability globally.?? In the United States, an estimated
20.4% of adults experience chronic pain that is associated
with $560B USD/year of total healthcare costs.”® Chronic
musculoskeletal pain is especially prevalent, with 19.6%
of Americans aged 20 to 59 reporting chronic low back
pain,®" and is commonly characterized by lower physical
activity, reduced mobility, and cognitive impairment.® Tar-
geting individuals who are at high risk for developing
musculoskeletal pain with effective, early treatments for
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acute and sub-acute pain could prevent chronic pain by
preventing maladaptive neural plasticity associated with
negative health consequences.'®** Gaining greater under-
standing of the factors related to pain vulnerability and
resilience to musculoskeletal pain may help target at risk
individuals for early intervention. One approach to identi-
fying factors that predict who will go on to experience
chronic pain after injury is to characterize predictors of
the experience of experimentally induced but clinically
relevant musculoskeletal pain in healthy individuals.

Typical laboratory-based acute pain induction para-
digms (eg, cold pressor, heat pain) are limited in their
ability to characterize musculoskeletal pain mechanisms
because they do not produce the functional impairment
or resulting modification of activities of daily living
common to musculoskeletal pain conditions. Our group
has previously developed and validated a delayed-onset
muscle soreness (DOMS) induction paradigm that pro-
duces clinically relevant but inherently time-limited
pain that peaks within 24 to 48 hours postinduction and
resolves within approximately one week.*'®'”4° bOMS
is an eccentric exercise-induced muscle injury approach
that produces clinically relevant musculoskeletal pain,
typically lasts for several days, vs. seconds or minutes
with other laboratory-based induction methods (e.g.,
heat pain or cold pressor). Additionally, DOMS provides
ecological validity as a pain model because it produces
pain, participant report of disability/movement restric-
tion,” and initiation of self-care procedures.

This analysis builds on our previous work identifying
regions where gray matter density (GMD) was lower in
several cortical regions in individuals who experienced
clinically relevant musculoskeletal DOMS-related pain
compared to those who did not.? In this current study,
we examined the relationship between resting state
functional connectivity (rsFC) and musculoskeletal pain
intensity related to DOMS following a single session of
eccentric exercise. The previously identified GMD regions
were included as seed regions of interest (ROIs) in the
current analysis, with the hypothesis that rsFC of these
seed ROIs would be significantly associated with pain
intensity after the induction of DOMS. We did not pre-
dict a specific directionality of this association given that
we based our hypothesis on results regarding the correla-
tion of GMD and self-report. Furthermore, although we
have detected associations between functional connectiv-
ity and pain-related self-report, the directionality of these
associations was quite varied.** The sensorimotor net-
work was also included based on our previous work that
found this network was associated with reductions in
pain ratings in during repeated inductions of DOMS.*?
The default mode and cerebellar network were also
included based on previous studies associating these net-
works with musculoskeletal pain.’ %%’

Methods

Participants

Healthy adults between the ages of 18 and 40 years
were recruited for this study. The study was approved
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by the University of Florida Institutional Review Board.
All participants provided informed consent prior to data
collection. The current report represents a secondary
analysis from a larger randomized clinical trial
(NCT01406847). Participants included in this analysis
from the larger trial were those who completed baseline
rsfMRI scans and the DOMS exercise intervention. These
participants were also included in our prior work
regarding associations between GMD and DOMS-
related pain.®

Study Timeline

Participants completed baseline testing, which con-
sisted of a resting state functional MRI scan, quantita-
tive pain testing and a high intensity trunk exercise to
induce the delayed onset muscle soreness (DOMS).
Forty-eight hours later, pain intensity scores were col-
lected.

Screening Procedure

During screening sessions, participants completed a
standard demographic and health history question-
naire. Responses on the questionnaire were used to
determine study eligibility. Exclusion criteria included:
Engagement exercise programs involving trunk exten-
sors (eg, deadlifting, Olympic weightlifting) in the previ-
ous 6 months; any report of pain in the back or legs in
the past 3 months; presence of chronic medical condi-
tions affecting pain perception (eg, diabetes, high
blood pressure, major psychiatric disorder including
major depression, headaches, kidney dysfunction, mus-
cle damage, or fibromyalgia); history of injury or surgery
to the lumbar spine, renal malfunction, cardiac condi-
tion, high blood pressure, osteoporosis, or liver dysfunc-
tion; consumption of agents (eg, caffeine, alcohol,
theophylline, tranquilizers, antidepressants) that may
affect pain perception or hydration status from 24 hours
prior to and until conclusion of participation; engage-
ment in intervention for symptoms induced by exercise
during study participation; recent illness; and any con-
traindication to MRI (ie, pacemakers, metal implants
which are not MRI compatible (eg, aneurysm clip), preg-
nancy and severe claustrophobia).

Standardized Exercise-Induced Pain
Protocol

All subjects completed a warm-up by riding a station-
ary bicycle (Monark 828E, Monark Exercise AB, Vansbro,
Sweden) at 1 kilopond (KP) for 5 minutes. Participants
then performed repeated bouts of dynamic exercise to
the point of volitional fatigue using a MedX lumber
extension exercise machine (MedX Holdings, Inc. Ocala,
FL) following a standard protocol. Each participant com-
pleted a baseline isometric test of trunk extension tor-
que using a MedX lumbar extension exercise machine.
Isometric testing was performed from the participants'
maximal seated trunk flexion and repeated every 12° of
trunk extension until maximal seated trunk extension
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was obtained. Values at each testing position were
summed to give a total torque for trunk extension. Pre-
vious research has established the repeatability of iso-
metric torque production in participants without pain®*
and in groups of patients with LBP.>® After 30 seconds
of rest, the subject performed as many repetitions as
possible using a weight load equal to 90% of the peak
torque from the isometric test, with each repetition per-
formed through the full available range of motion
(ROM) in a slow, controlled matter. The subject per-
formed the concentric portion of the repetition for two
seconds, paused at full contraction for one second, then
completed the eccentric portion over a 4-second period,
to a total of seven seconds per repetition. Repetitions
were repeated until the patient was unable to move the
weight load through a full ROM. After the completion
of the set, the isometric torque test was performed
again. Participants repeated the sequence of dynamic
exercise and static testing until total measured torque
decreased to 50% of the baseline total isometric torque.
Following the exercise, participants were instructed to
avoid taking medication or any other intervention to
reduce their pain in the lumbar spine.

Post-Induction Pain Assessment

After 48-hours from pain induction, participants com-
pleted a laboratory assessment of their pain using
100 mm visual analogue scales (VAS) anchored from “no
pain sensation” to “most intense pain sensation imagi-
nable.” Current pain intensity, worst pain intensity over
the previous two days, and pain intensity during the
trunk movement (ie, flexion, extension, and right and
left lateral bonding) were assessed during this session.
The present analysis used only current pain intensity 48-
hours after pain induction.

MRI Acquisition

MRI data were acquired with a 3T Philips Achieva
scanner equipped with a 32-channel head coil. Resting
state functional data were collected in the transaxial
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orientation using an EPI sequence (XYZ dimension = 80
* 80 * 3; field of view [RL (right-to-left direction), AP
(anterior-to-posterior direction), FH (foot-to-head direc-
tion) — mm] 240, 240, 114; slice thickness [mm] = 3; gap
thickness = 0; voxel dimension [mm] = 3 * 3 * 3; repeti-
tion time [milliseconds] = 2000). Acquisition time was 5
minutes and 42 seconds. During resting state fMRI col-
lection, participants were instructed to keep their eyes
open and fixated on a cross, remain as still as possible,
and to do their best to remain awake. Resting state data
were collected before the DOMS induction paradigm.

High-resolution structural brain images were col-
lected using a 3-dimensional (3D) T1-weighted magneti-
zation-prepared rapid gradient-echo (MP-RAGE)
sequence with a field-of-view (FOV) = 240 mm (FH) x
240 mm (AP) x 170 mm (RL), voxel wise resolution=1
mm?3, TR = 8.1 ms, TE = 3.7ms, FA = 8. Acquisition time
was 7 minutes 56 seconds.

Regions and Networks of Interest

First-level analyses were conducted to the assess BOLD
signal connectivity among multiple large, a priori desig-
nated clusters that have been previously identified in a
sample including these participants by Boissoneault
et al® to be associated with gray matter density with
musculoskeletal pain, including the left medial frontal
gyrus, left middle occipital gyrus, left middle temporal
gyrus, left inferior frontal gyrus and right superior fron-
tal gyrus (Fig 1). Finally, three resting state functional
networks, including default mode, sensorimotor and
cerebellar’3* have also been shown to be associated
with musculoskeletal pain and were included in our
analysis.

fMRI Data Processing

SPM12 (Wellcome Trust Centre for Neuroimaging,
London, UK) and the CONN toolbox v18b*® was used
to preprocess fMRI data. Steps included slice-time
correction, realignment, registration, normalization
to MNI space, spatial smoothing (8mm FWHM kernel)

SFG (BAS)

MOG (BA19)

Figure 1. Clusters from Boissoneault et al® where pain resilient participants had significantly higher GMD than pain susceptible
participants in standard MNI space (prwe<.05). Red: Left medial frontal gyrus; Green: Left middle occipital gyrus; Violet: Left middle
temporal gyrus; Blue: Left inferior frontal gyrus; Yellow: Left inferior frontal gyrus; Teal: Right superior frontal gyrus.
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and signal artifact reduction using the Artifact Detec-
tion Toolbox (ART; http://www.nitrc.org/projects/arti
fact_detect). Outliers were those where mean global
signals exceeded 3 standard deviations, translation
exceeded 0.5 mm, or rotation exceeded 0.02 radians
from the previous image.’?> Component-based noise
correction for physiological and other noise source
reduction,” as implemented in the CONN toolbox,
was applied during the first-level processing. Regres-
sion was used to reduce the influence of 5 principal
components each from signal within the CSF and
deep cerebral white matter, all 6 movement parame-
ters and their first-order derivatives.

Seed-to-Voxel Functional Connectivity
Regression Analysis

GLM was used to examine significant BOLD signal cor-
relation with respect to time between each ROI derived
from Boissoneault et al® and the whole brain (Between-
subjects contrast: subject, DOMS pain intensity [0 1]).
The average signal within each ROl was used in func-
tional connectivity analyses. The resulting correlation
coefficients were converted to Z-scores using Fisher’s r-
to-Z transformation. Whole-brain analyses were con-
ducted to identify significant clusters (pheignht < .001,
uncorrected; pguster < -05, FDR) where DOMS-related
pain severity and seed-to-voxel FC were significantly
associated.”” The association between connectivity
strength and DOMS-related pain severity was based on
average signal within ROIs and significant clusters (vs
the average signal within ROls and the peak voxel of sig-
nificant clusters).

Network Group Independent
Components Analysis

Group-level independent component analysis (ICA)
was performed to assess three resting-state networks:
default mode, sensorimotor and cerebellar. ICA is a
technique that derives distinct sources of variance which
are orthogonal in time course between components and
correlated with spontaneous fluctuations in voxels
within each component. The ICA technique used in this
study was performed using the methodology described
by Calhoun et al."' This procedure results in maps of
regression coefficients that represent functional con-
nectivity between the IC network and every whole-brain
voxel. We identified 20 unique IC components. The IC
components with the highest correlation were corre-
sponded to each of the networks of interest were deter-
mined using a spatial match-to-template approach. The
default mode and sensorimotor network masks used
were derived from Yeo et al.*® CONN's integrated cere-
bellar network mask was also used. The ICs that corre-
sponded to networks of interest were then
independently verified through visual inspection by two
researchers (NB and VS). Whole-brain analyses were
conducted to identify brain regions where functional
connectivity with the spatial extent of each network
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component was predicted by DOMS-related pain inten-
sity (Between-subjects contrast: subject, DOMS pain
intensity [0 1]); Pheight < -001, uncorrected; peyster < .05,
FDR).

Results

Participants

A total of 46 subjects completed the baseline MRI scan
and DOMS protocol. The average age of the sample was
23.11 (SD = 5.57, range = 18—39). The majority of the
sample was female (60.9%), non-Hispanic (82.6%) and
identified as White (45.7%), followed by Asian (34.8%),
and Black (2.2%) or more than one race (2.2%). Most
participants’ highest degree of education was a bach-
elor's degree (54.3%) or high school (34.8%), followed
by master’s degree (6.5%) and doctorate (2.2%). Partici-
pants reported an average pain intensity 48-hours post-
DOMS induction as 13.78 (SD = 17.00), and the average
48-hour post-DOMS pain intensity as 24.83 (SD = 25.75).

Seed-to-Voxel Functional Connectivity
Regression

Seed-to-voxel functional connectivity was assessed
with the regions where gray matter density was associ-
ated with musculoskeletal pain.® The regions included
the left middle frontal gyrus, left middle occipital gyrus,
and left inferior frontal gyrus. Results revealed
several significant clusters where greater connectivity
with left middle frontal gyrus (Fig 2) and left middle
occipital gyrus (Fig 3) was associated with lower DOMS
pain intensity (prpr< .05). No significant clusters were
detected for the left inferior frontal gyrus, left middle
temporal gyrus and right superior frontal gyrus seeds.
See Table 1 for more details.

Independent Component Analysis

Whole-brain analyses were conducted on the ICs with
the highest correlation to the DMN (r = .36), CN (r = .48)
and SMN (r = .42) templates (Fig 4). Results indicated
greater connectivity in another cluster with the sensori-
motor network was associated with greater DOMS pain
intensity. This cluster included the posterior right supra-
marginal gyrus, anterior right supramarginal gyrus,
right angular gyrus, and the right parietal operculum
cortex (Fig 5). Greater connectivity in the CN with a clus-
ter that included the left postcentral gyrus, left precen-
tral gyrus, right postcentral gyrus, and right precentral
gyrus (Fig 6); rsFC with this cluster was associated with
lower DOMS pain intensity. No significant clusters were
found for the default mode network IC. See Table 2 for
more details.

Discussion

Overall, we found that DOMS pain intensity was asso-
ciated with functional connectivity between regions
and networks previously identified to be associated
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Figure 2. (Upper Left) Anterior view showing the location and spatial extent of clusters (1) (coordinates: 36, -76, 0) including the
right lateral occipital cortex, (2) (coordinates: -20, -52, 58) including the left superior parietal lobule and the left lateral occipital cor-
tex, (3) (coordinates: 16, 14, -16) including the right orbitofrontal cortex, where connectivity with the left middle frontal gyrus was
associated with lower DOMS pain severity. (Right and Lower Left) Scatterplots 1 to 3 demonstrating the significant correlation
between pain severity and functional connectivity of left middle frontal gyrus with each significant cluster.

with musculoskeletal pain. These included the left mid-
dle frontal gyrus and left middle occipital gyrus, where
we have previously identified greater gray matter den-
sity in people who did not report musculoskeletal pain

following DOMS induction, and the ICA-derived sensori-
motor and cerebellar networks.

Among the regions with previously identified greater
gray matter density associations with lower DOMS-
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Figure 3. (Left) Left mid-sagittal view showing the location and spatial extent of a cluster (coordinates: -12, -68, -16), including the
left cerebellum and left lingual gyrus, where connectivity with the left middle occipital gyrus was associated with lower DOMS pain
severity. (Right) Scatterplot demonstrating the significant correlation between pain severity and functional connectivity of left mid-

dle occipital gyrus with this cluster.
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Figure 4. Right and superior views showing the spatial extent
of the independent components analysis derived networks:
(blue) cerebellar, (red) sensorimotor, and (green) default
mode.

related pain, we found that lower levels of DOMS-
related pain predicted greater connectivity of the left
MFG with 3 clusters including right lateral occipital cor-
tex, left superior parietal lobule, and right orbitofrontal
cortex. The left MFG (BA 6), which includes both pre-
motor cortex and the supplementary motor area, has
previously been associated with processing both painful
and nonpainful mechanical stimulation.>* This result
suggests efficient communication between brain
regions involved in motor coordination and the
detected clusters, which have been previously impli-
cated with activation in response to acute pain stimula-
tion, pain self-reinforcing placebo mechanisms, and
spontaneous pain seen in postherpetic neuralgia
- patients, may confer resilience to DOMS-related
pain.®'%293¢ We also found associations with connectiv-
ity between the left MOG and a cluster located in the
left cerebellum and left lingual gyrus, where greater
levels of DOMS-related pain predicted lower connectiv-
ity. While the MOG is commonly associated with visual
processing and object recognition, previous research
has found higher levels of painful stimuli to be associ-
ated with BOLD signal decreases in the left MOG.3®
Potential implications of this finding are further
explored below in our discussion of cerebellum network
analysis results.

There are several potential explanations as to why
some regions previously identified to be associated with
gray matter density and lower DOMS-related pain also
showed functional associations, but others did not. First,
gray matter density may reflect multiple characteristics
of tissue contained within a given voxel, including
water content (which may fluctuate due to hydration
status and/or cerebral blood flow), dendritic arboriza-
tion, and neuronal density. Each of these characteristics
may contribute to voxel-wise gray matter density in
regionally specific ways.?’ Notably, previous work has
identified lesser correspondence among ICA-derived
~ structural and functional components among cortical
i structures compared to those of the basal ganglia while
other findings suggest that sustained practice of cogni-
tive tasks may result in divergent structural and func-
tional effects.”® Second, this study focused on
associations of resting state functional connectivity
between ROIs and the whole brain with DOMS-related
pain. However, there are numerous other ways that a

CONNECTIVITY
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Table 1. Cluster Coordinates and Regions Where Functional Connectivity was Associated With Delayed Onset Muscle Soreness Pain Intensity
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Left middle
Left middle
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Figure 5. (Left) Right mid-sagittal view showing the location and spatial extent of a cluster (coordinates: 66, -44, 36), including the
right posterior and anterior supramarginal gyrus, right angular gyrus and the right parietal operculum cortex, where connectivity
with the ICA-derived sensorimotor network was associated with greater DOMS pain severity. (Right) Scatterplot demonstrating the
significant correlation between pain severity and functional connectivity of the sensorimotor network with this cluster.

given region may contribute to a functional process,
including as the center of a hub or as part of a distrib-
uted network.'® It is possible that alternative analytic
approaches could elucidate functional roles for other
structural ROIs. Our reliance on resting state data for
this analysis may limit our ability to identify the associa-
tion between functional metrics in these regions and
the musculoskeletal pain experience.

We also assessed three ICA-derived resting state func-
tional networks. Greater resting state functional con-
nectivity of the cerebellar network with the left
postcentral gyrus, left precentral gyrus, and right pre-
central gyrus was associated with lower reported pain
intensity after DOMS induction. However, greater
DOMS pain predicted greater connectivity between the

SMN and the anterior and posterior supramarginal
gyrus, right angular gyrus, and right parietal operculum
cortex. Previous findings with similar proximity have
shown this area to be associated with pain anticipation
and activation in response to pain versus warm stim-
uli.®*>*" This was the only cluster we noted in our analy-
sis where greater connectivity with a seed region or
network was associated with greater levels of pain.
However, this finding is consistent with the literature as
the sensorimotor network is a key component of normal
pain processing,”® and suggests that greater connectiv-
ity between SMN structures, which are involved in dis-
crimination and localization of pain, and those
mediating pain-related expectations, attention, and
salience of pain-related stimuli may predispose

80
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p =<.001

19

Functional Connectivity (B) Cerebellar Network with Pre/Postcentral Gyrus

Figure 6. (Left) Superior view showing the location and spatial extent of a cluster (coordinates: -20, -34, 62), including the left
postcentral gyrus and the left and right precentral gyrus, where connectivity with the cerebellar network was associated with lower
DOMS pain severity. (Right) Scatterplot demonstrating the significant correlation between pain severity and functional connectivity

of the cerebellar network with this cluster.
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Table 2. Cluster Coordinates and Regions Where Functional Connectivity With ICA Networks was Associated With Delayed Onset Muscle Sore

ness Pain Intensity
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individuals to experience greater DOMS-related pain.*’
Additionally, SMN connectivity with medial frontal
structures has been associated with trainability of pain
response (ie, reductions in pain intensity over repeated
pain exposures that may reflect improved endogenous
pain modulatory capacity).®*’

We also found that lower levels of DOMS-related pain
were predictive of greater connectivity between the
cerebellar network and bilateral pre- and postcentral
gyri, as well as greater connectivity between left middle
occipital gyrus and cerebellar lobule VI. A mechanistic
role for the cerebellum in susceptibility to DOMS-
related pain is consistent with both its canonical role in
motor processing and its increasingly recognized contri-
butions to sensorimotor integration, cognition, and
emotion processing.>’ Indeed, previous literature has
identified the cerebellum to be an important region for
central pain processing and endogenous pain modula-
tion?>33 and structural alterations of the cerebellum
have been associated with chronic musculoskeletal con-
ditions.*® The cerebellum is thought to modulate activ-
ity (consistent with the Universal Cerebellar Transform?®
from both the primary somatosensory and motor corti-
ces via well-characterized neuroanatomic connections
through the pons and inferior olive.>* Our finding of an
association between lobule VI connectivity and DOMS-
related pain intensity is consistent with previous evi-
dence showing overlapping activity in that area during
pain and motor processing, as well as significant func-
tional connectivity with the left middle occipital
gyrus.>> While evidence suggests occipital structures
may be functionally and structurally connected with
antinociceptive regions and are commonly reported in
functional imaging studies of pain response, limited evi-
dence is available to clarify their role(s) in pain modula-
tion, making this finding difficult to interpret.’®

Interestingly, while functional connectivity of the cere-
bellar network and sensorimotor regions was associated
with pain intensity, functional connectivity of the SMN
with the cerebellum was not associated with pain inten-
sity. This may suggest that not all areas within the SMN
are functionally correlated with the cerebellum in its
association with pain. It may be beneficial for future
research to use pre- and postcentral gyrus as regions of
interest rather than the entirety of the SMN. In addition,
it is possible that there may be a directional association
between the cerebellum and the SMN in its association
with pain. Utilization of effective connectivity may help
to characterize this result. Although we did not assess
functional impairment resulting from the eccentric exer-
cise induction, our results, combined with prior work, are
suggestive that disruptions in functional networks involv-
ing the cerebellum may also underpin susceptibility to
musculoskeletal-pain related impairment and disability.
This possibility should be investigated in future studies.

Our previous work® suggested that exercise induced
DOMS pain intensity is associated with aspects of brain
structure in several brain regions that have been previ-
ously linked to discriminative, emotional, and cognitive
processing of pain. Present results identified that
among a subset of these regions, DOMS pain intensity is
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also tied to aspects of brain function. While previous
work?? suggests that functional interactions may under-
lie aspects of trainability in pain modulation, given the
areas of convergence of structural and functional prop-
erties within regions associated with lower DOMS-
related pain, identification of coherence among struc-
tural and functional predictors of pain modulatory
trainability is recommended. Considering evidence of
the role of intraregional neural dynamics (e.g., regional
signal variability) in facilitating capacity regarding pain
and other processes,”’*%3° future work clarifying the
role of these features in resilience to subacute pain is
needed. Additionally, given the aspects of convergence
and divergence of regional properties in predicting
DOMS-related pain, work is needed to integrate find-
ings across neuroimaging metrics to aid in clarifying
indicators of pain resilience and modulatory capacity.

Notably, in this manuscript we have conceptualized
lower pain intensity following DOMS as a potential indi-
cator of pain resilience.** This is consistent with theories
of resilience that focus on recovery from stressors or dis-
tress, and in the case of the present investigation, the
capacity to minimize derivations from a state of equilib-
rium in the context of DOMS-related pain.?> However, it
is important to note that other factors such as sustain-
ability and growth®® are theorized to be important
aspects of pain resilience and were not directly assessed
in this investigation. Additionally, while we believe indi-
vidual differences DOMS-related pain intensity may be
indicative of pain resilience, these differences in pain
report and resilience itself are likely influenced by
numerous other factors (eg, gender, global fitness level,
positive affect, acceptance). We have also previously
identified regional BOLD signal variability to be associ-
ated with key aspects of pain modulatory capacity that
may also contribute to pain resilience.’ Future investiga-
tions to clarify the neural processes and psychological
processes that directly contribute to resilience to DOMS-
related pain are clearly warranted.

Strengths and Limitations

The findings of the present study represent an impor-
tant step in clarifying neural mechanisms of resilience to
clinically relevant pain and importantly suggest areas of
structural and functional coherence in this aspect of
resilience. While the findings of this study contribute to
our understanding of indicators of adaptive pain modu-
lation and resilience, they should be considered within
the contexts of the study’s limitations. One key limita-
tion is that there was only a single induction of DOMS
pain, and subsequently only one measurement of rsFC.
As such, our data does not speak to the relationship
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