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A B S T R A C T   

One of solution-state Nuclear Magnetic Resonance (NMR)’s main weaknesses, is its relative insensitivity. J-driven 
Dynamic Nuclear Polarization (JDNP) was recently proposed for enhancing solution-state NMR’s sensitivity, by 
bypassing the limitations faced by conventional Overhauser DNP (ODNP), at the high magnetic fields where most 
analytical research is performed. By relying on biradicals with inter-electron exchange couplings Jex on the order 
of the electron Larmor frequency ωE, JDNP was predicted to introduce a transient enhancement in NMR’s nuclear 
polarization at high magnetic fields, and for a wide range of rotational correlation times of medium-sized 
molecules in conventional solvents. This communication revisits the JDNP proposal, including additional ef-
fects and conditions that were not considered in the original treatment. These include relaxation mechanisms 
arising from local vibrational modes that often dominate electron relaxation in organic radicals, as well as the 
possibility of using biradicals with Jex of the order of the nuclear Larmor frequency ωN as potential polarizing 
agents. The presence of these new relaxation effects lead to variations in the JDNP polarization mechanism 
originally proposed, and indicate that triplet-to-singlet cross-relaxation processes may lead to a nuclear polari-
zation enhancement that persists even at steady states. The physics and potential limitations of the ensuing 
theoretical derivations, are briefly discussed.   

1. Introduction 

Nuclear Magnetic Resonance (NMR) is one of the most versatile 
forms of spectroscopy, conveying structural and dynamical information 
with minimal invasiveness. Even further applications could emerge if it 
was not for the limited sensitivity of NMR – particularly when executed 
on room temperature solutions and at high magnetic fields (7 T − 23 T), 
where most analytical and biophysical studies are performed. The 
sensitivity of solution state NMR can be enhanced by Overhauser DNP 
(ODNP) [1–3]; however, when driven by dipolar relaxation mecha-
nisms, ODNP only works efficiently at relatively low magnetic fields 
[4–7]. High-field ODNP experiments by contrast are usually limited, as 
they need to be aided by Fermi contact couplings of the kind which 
arises for certain nuclei such as 31P [8,9], 19F [10,11] and 13C [6,12–14]. 
Significant scalar-driven DNP enhancements can then arise, but this 
requires an electron delocalization that only arises in specific radical/ 
solvent combinations. [6,11,15–18]. However, for the more general and 
highly relevant case, involving 1H nuclei interacting with electron rad-
icals solely through inter-molecular dipolar hyperfine couplings, ODNP 

efficiency decays rapidly with the magnetic field, B0. [3,19]. 
J-driven Dynamic Nuclear Polarization (JDNP) [20] is a recently 

described theoretical proposal, aiming to enhance NMR’s sensitivity in 
solution state at any magnetic field, solely relying on inter-molecular 
dipolar hyperfine couplings. As ODNP, JDNP can be conceivably per-
formed either with a microwave irradiation at the electron Larmor fre-
quency or by shuttling the sample between higher and lower magnetic 
fields, with one of these fields serving to achieve hyperpolarization and 
the other NMR observation. [21,22] Unlike ODNP, which relies on stable 
mono-radicals, JDNP relies on stable biradicals with the inter-electron 
exchange coupling Jex in the range of the electron Larmor frequency 
ωE. In such case, Redfield’s relaxation theory [23] predicts that at the 
Jex≈ωE JDNP condition, a difference between the self-relaxation rates of 
the two-electron singlet and triplet states which are dipolar hyperfine 
coupled to the α or β nuclear states will arise. This leads to a transient 
imbalance between the nuclear spin populations, and consequently a 
transient nuclear polarization build-up. 

The current work describes the effects of non-Redfield, field-inde-
pendent local vibrational modes arising from the mixing between spin 
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and orbital angular momentum, on the JDNP enhancement. Relaxation 
arising from local vibrational modes driven by spin–orbit coupling, 
[24–27] often dominate the electron relaxation rates of organic radicals 
[24,25,27,28]. These effects are shown to lead to steady-state NMR 
signal enhancements if moderate, and to the suppression of the JDNP 
phenomena if overtly dominant. For completion this study also con-
siders the possibility of using biradicals with Jex of the order of the 
nuclear Larmor frequency ωN, for enhancing the sensitivity of solution 
state NMR at high magnetic fields. 

2. Theoretical methodologies 

This study’s steady state numerical simulations were performed 
using the Spinach software package [29] based on a laboratory frame 
Hamiltonian, using the Fokker-Planck formalism described in Ref. [30]. 
Numerical simulations took account of all self- and cross-relaxation 
terms within the Bloch-Redfield-Wangsness relaxation theory, [23,31] 
scalar relaxation of the first kind, [32] and relaxation from a local 
vibrational mode. Scalar relaxation of the first kind arises from the 
conformational mobility that modulates the exchange coupling. A 
“pessimistic” modulation depth of 3 GHz was assumed for this, with a 
conformational mobility correlation time of 1 picosecond. Still, it was 
found that these parameters had negligible effects on the JDNP 
enhancement, since in the ωE1 − ωE2 → 0 scenario here considered – 
where ωE1 and ωE2 correspond to the Larmor frequencies of the two 
electrons – the exchange coupling commutes with the Zeeman interac-
tion leading to no additional relaxation effects. 

Relaxation from a local vibrational mode was included as an addi-
tional diagonal term in the Redfield relaxation superoperator, applied to 
the electron longitudinal and transverse states. In the case of trityls, 
considered here as model systems, local mode relaxation presumably 
arises due the stretching of the C–S bonds in radical structures and its 
rate constant is about 6x104 Hz; [24–27] this was the value assumed 
throughout most of our simulations. 

The assumed spin system was composed by two electrons and one 
proton, that interacts solely through dipolar anisotropic hyperfine cou-
plings. Distances between the two unpaired spin-1/2 electrons 
(belonging to the radical) and the spin-1/2 proton (assumed to belong to 
a stationary solvent molecule; however, see onwards) were set to 5.5 Å 
and 13.2 Å respectively (Table 1 reports the actual proton and electron 
Cartesian coordinates). The electrons’ g-tensors were set axially sym-
metric but non-colinear, with eigenvalues taken from values found in 
trityls. [33,34] As discussed previously, [22] in the case of axially 

symmetric g-tensors, rotations perpendicular to the axis along the linker 
connecting the two monomeric units in a symmetric biradical, could 
lead to variations that would subtract efficiency from JDNP. These 
bending angles would be small for short linkers, but could range be-
tween ≈0◦ and 40◦ for long linkers containing multiple para-phenylene 
or acetylene units. [35] Short and long linkers could lead in turn to Jex 
values ranging from a few 100(s) MHz, to up to 300 GHz [36,37]. For the 
sake of simplicity, a β = 20̊ bending angle was adopted throughout out 
calculations; a more comprehensive analysis on the effect of these dis-
tortions is presented in Supplementary Information A. All the simulation 
parameters are summarized in Table 1. 

3. Results 

3.1. Features of the steady state JDNP 

The transient nuclear polarization build-up obtained in the previ-
ously mentioned JDNP study, based only on the Redfield relaxation 
superoperator model, [20] becomes stable at a non-zero steady state 
when relaxation from local vibrational modes are included in the 
relaxation superoperator. [29,31] Fig. 1 shows this effect, with an in-
crease of the DNP enhancement with an increase of the microwave 
nutation power. As can be seen, when the microwave nutation rates 
become comparable or higher than the magnitude of the relaxation rate 
arising from the local vibrational mode (which in the present model 
dominates the electron relaxation rate), a significant steady state 
enhancement of the nuclear polarization can be achieved. At 9.4 T, 
where microwave nutation powers of up to about 4 MHz have been 
reported, [38] high enhancements will arise even if local mode relaxa-
tion rates are allowed to increase to 1 MHz – a typical value observed for 
organic monoradicals in fluid solutions. [26,27,39]. 

Fig. 2 shows how the nuclear magnetization enhancement depends 
on the isotropic exchange coupling between the electrons, as a function 
of magnetic field B0. A continuous on-resonance microwave irradiation 
at the electron Larmor frequency of the biradicals was assumed, and 
steady state nuclear polarizations were calculated. A significant steady 
state enhancement is predicted at the Jex = ωE + ωN condition; a more 
modest but still sizable enhancement is also expected at the condition 
Jex = ωN. Notice that the JDNP enhancement’s “width” is (ωE + ωN) ± 2 
GHz at any field for the Jex = ωE + ωN condition, while it depends on the 
magnetic field for the Jex = ωN case. For example at 9.4 T, the JDNP 
enhancement is achieved within ca. ωN ± 200 MHz. 

Fig. 3 shows the performance predicted for steady-state JDNP effects 
as compared with the conventional Overhauser DNP, at different mag-
netic fields, microwave nutation powers and rotational correlation 
times, τC. As expected, the ODNP enhancement, based solely on dipolar 
hyperfine couplings, is strong when the magnetic field is about 0.5 T, but 
it decays to negligible values at magnetic fields ≥ 1 T, when the rota-
tional correlation time is ≥ 150 ps. The JDNP enhancement, by contrast, 
remains strong at any magnetic field, and increases with the τC, at both 
the Jex = ωE + ωN and Jex = ωN conditions. In the case of Jex = ωE + ωN, 
the DNP enhancement increases with the microwave nutation power, 
while for this set of simulation parameters it decreases with the power in 
the case of Jex = ωN, after having reached a maximum at about 200 kHz 
at 5 T. 

3.2. The physics of the steady state JDNP 

The electron relaxation and the spin dynamics were examined in this 
study using the singlet and triplet basis sets. This is justified by the 
Jex≫ωE1 − ωE2 scenario, where the electron Zeeman eigenstates are no 
longer eigenfunctions of the spin Hamiltonian; it is therefore convenient 
to treat the Hamiltonian in the singlet/triplet electron basis set. Further, 
as the two electrons are considered localized in different radical 
monomers, the zero-field splitting is expected to be negligible with 
respect to the Zeeman interaction, and it was not here included in the 

Table 1 
Biradical / proton spin system parameters used in this paper’s simulations.  

Parameter Spin system 
1H chemical shift tensor, ppm [555] 
Electron 1 g-tensor1 eigenvalues, [xx yy zz] / Bohr 

magneton 
[2.0032 2.0032 
2.0026] 

Electron 1 g-tensor, ZYZ active Euler angles / rad [0.0 0.0 0.0] 
Electron 2 g-tensor1 eigenvalues, [xx yy zz] / Bohr 

magneton 
[2.0032 2.0032 
2.0026] 

Electron 2 g-tensor, ZYZ active Euler angles / rad [0.0 π/8 0.0] 
1H coordinates [x y z] / Å [0.0 5.0 5.0] 
Electron 1 and electron 2 coordinates, [x y z] / Å [0 0–7.20] and [0 

0 7.20] 
Rotational correlation time2 τC / ps 800 
Scalar relaxation modulation depth / GHz 3 
Scalar relaxation modulation time / ps 1 
Local mode relaxation / Hz 6x104 

Temperature / K 298  

1 Simulations used Zeeman interaction tensors that were made axially sym-
metric along the main molecular axis (corresponding for instance, to a linker 
connecting two trityl units). 

2 Rotational correlation time of the biradical/proton dipolar hyperfine 
coupled triad. 
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Hamiltonians. [40] By contrast, inter – electron dipolar interactions 
were included in both the spin Hamiltonian and relaxation super-
operator in all the simulations; notice that the modulation of these inter- 
electron dipolar interactions does not contribute to the JDNP mecha-
nism, but only to the electron T1 and T2. [20]. 

The physics of the JDNP can then be described using three-spin 
population operators, corresponding to the α and β nuclear compo-
nents of the two-electron singlet and triplet states (T̂+, T̂0, T̂ − and Ŝ0). 
[41,42] An alternative description of JDNP’s physics can be done using 
Cartesian operators, by examining the cross-relaxation rate ÊZ→N̂Z; this 
is analogous to what is usually done in ODNP, and is discussed in the 
Supporting Material. The steady state effect introduced in Figs. 1-3 can 
be explained considering the Liouvillian: 

̂̂L =
̂̂H + i ̂̂R (1)  

where ̂̂R is the Redfield relaxation superoperator and ̂̂H is the spin 
Hamiltonian for a three-spin system composed by two electrons and one 
proton: 

̂̂H =
(
ωE + ωoff

)
(Ê1Z + Ê2Z) − ωN N̂ Z+

+Jex(Ê1X Ê2X + Ê1Y Ê2Y + Ê1Z Ê2Z) + ωMW(Ê1X + Ê2X)
(2)  

where ωoff = ωE − ωe is the offset between the radical Larmor frequency 
and the free electron frequency; ωMW is the micro-wave irradiation 
power. Terms describing the secular and pseudo-secular dipolar hyper-

fine interactions (in the order of MHz) are here neglected when 
compared to terms describing Zeeman and inter-electron exchange in-
teractions (in the order of GHz) – even if they were accounted for and 
take part in the JDNP mechanism via the relaxation superoperator (as 
explained below). Although for simplicity these terms are omitted from 
the spin Hamiltonian in Eq. (2), the full spin Hamiltonian and its singlet/ 
triplet representation is shown in the supporting material of [20]. The 
spin Hamiltonian in Eq. (2) corresponds to a matrix that can be diago-
nalized, yielding eigenvalues and eigenstates. For the nuclear α states 
these eigenvalues correspond to: 

E1 = −
3Jex

4
+

ωN

2
→
⃒
⃒Ŝ0,α

〉
, E2 =

Jex

4
+

ωN

2
+

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

ω2
MW +

(
ωoff + ωE

)2
√

→
⃒
⃒T̂+,α

〉
,

E3 =
Jex

4
+

ωN

2
→
⃒
⃒T̂ 0,α

〉
, E4 =

Jex

4
+

ωN

2
−

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

ω2
MW +

(
ωoff + ωE

)2
√

→
⃒
⃒T̂ − ,α

〉
,

(3) 

While for the β states they correspond to: 

E5 = −
3Jex

4
−

ωN

2
→
⃒
⃒Ŝ0,β

〉
, E6 =

Jex

4
−

ωN

2
+

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

ω2
MW +

(
ωoff + ωE

)2
√

→
⃒
⃒T̂+,β

〉
,

E7 =
Jex

4
−

ωN

2
→
⃒
⃒T̂ 0,β

〉
, E8 =

Jex

4
−

ωN

2
−

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

ω2
MW +

(
ωoff + ωE

)2
√

→
⃒
⃒T̂ − ,β

〉
,

(4) 

At t = 0, when ωMW = 0, the eigenvalues of the α states become equal 
to: 

Fig. 1. Simulated DNP enhancements expected at 9.4 T upon continuous microwave irradiation as a function of the microwave power (γB1 nutation frequencies) and 
of the magnitude local mode relaxation rate, applied to the diagonal terms in the Redfield relaxation superoperator. Conditions explored Jex = ωE + ωN in (A) and 
Jex = ωN in (B). In this and other figures shown below, the DNP enhancements denote the achieved nuclear polarization, normalized by its Boltzmann counterpart at 
the same temperature and field. The simulation parameters are given in Table 1. 

Fig. 2. Simulated DNP enhancements arising at the steady state, assuming a continuous microwave irradiation of a biradical with a nutation frequency of 500 kHz, as 
a function of Jex and of B0. The Jex was changed in between –500 and +500 GHz range in (A) and between − 2000 and +2000 MHz range in (B). Additional simulation 
parameters are given in Table 1. 
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E1(0) = −
3Jex

4
+

ωN

2
→
⃒
⃒Ŝ0,α

〉
, E2(0) =

Jex

4
+

ωN

2
+ ωoff + ωE→

⃒
⃒T̂+,α

〉
,

E3(0) =
Jex

4
+

ωN

2
→
⃒
⃒T̂ 0,α

〉
, E4(0) =

Jex

4
+

ωN

2
+ ωoff − ωE→

⃒
⃒T̂ − ,α

〉
,

(5) 

and the eigenvalues of the β states become equal to: 

E5(0) = −
3Jex

4
−

ωN

2
→
⃒
⃒Ŝ0,β

〉
, E6(0) =

Jex

4
−

ωN

2
+ ωoff + ωE→

⃒
⃒T̂+,β

〉
,

E7(0) =
Jex

4
−

ωN

2
→
⃒
⃒T̂ 0,β

〉
, E8(0) =

Jex

4
−

ωN

2
+ ωoff − ωE→

⃒
⃒T̂ − ,β

〉
,

(6) 

The energy of the eigenstates in Eqs. (5) and (6) can be arranged from 
low to high; in the case of negative Jex ≈ ωE, the order is: 

E4 < E8 < E3 < E7 < E1 < E2 < E5 < E6 (7) 

with E1 ∼ E2 ∼ E5 ∼ E6. In the case of positive Jex ≈ ωN, the order is: 

E4 < E8 < E1 < E3 < E5 < E7 < E2 < E6 (8) 

with E1 ∼ E3 ∼ E5 ∼ E7. In the absence of microwave irradiation, this 
leads to the thermal equilibrium populations shown in the central panels 
of Fig. 4A and 4B (MW power = 0). 

When on-resonance microwave irradiation is applied at the electron 
Larmor frequency of the radical, meaning − ωoff = ωE, the eigenvalues 
in Eq. (5) become: 

E1(t) = −
3Jex

4
+

ωN

2
→
⃒
⃒Ŝ0,α

〉
, E2(t) =

Jex

4
+

ωN

2
+ ωMW→

⃒
⃒T̂+,α

〉
,

E3(t) =
Jex

4
+

ωN

2
→
⃒
⃒T̂ 0,α

〉
, E4(t) =

Jex

4
+

ωN

2
− ωMW→

⃒
⃒T̂ − ,α

〉
,

(9) 

corresponding to the indicated eigenstates, while the eigenvalues in 
Eq. (6) become: 

E5(t) = −
3Jex

4
−

ωN

2
→
⃒
⃒Ŝ0,β

〉
, E6(t) =

Jex

4
−

ωN

2
+ ωMW→

⃒
⃒T̂+,β

〉
,

E7(t) =
Jex

4
−

ωN

2
→
⃒
⃒T̂ 0,β

〉
, E8(t) =

Jex

4
−

ωN

2
− ωMW→

⃒
⃒T̂ − ,β

〉
,

(10)  

where the associated states are also indicated. The microwaves do not 
affect the populations of the Ŝ0,α/β and T̂0,α/β states, but they will lead to 
the decrease/increase in the energy of the T̂+,α/β and T̂ − ,α/β states, that 
will then approach the energy of the T̂0,α/β states (Fig. 4). The left panels 
in Fig. 4, show the electronic saturation as a function of the microwave 
power. In the presence of microwave irradiation the triplet states are 
brought out of the thermal equilibrium, and a population imbalance 
between T̂+ and T̂ − is transferred to a population imbalance between T̂0 

and Ŝ0 (see Fig. 4, left panels). In the case of Jex≈ωE, the maximum 
enhancement is achieved when the electron is fully saturated (meaning 
ÊZ = T̂+ − T̂ − = 0, which in this case occurs with ωMW > 4 MHz); a 
maximum imbalance between the α and β nuclear components of the 
triplet states is then obtained, as shown in the central panel of Fig. 4A. In 
the case of Jex≈ωN, the maximum enhancement is achieved when the 
maximum imbalance between the between T̂0 and Ŝ0 states is obtained. 
This does not happen when the electron is fully saturated, but rather 
when maximal differences between the α and β nuclear components of 
the triplet states is present (Fig. 4B, central panel). This explains the 
difference between the monotonic increase of the JDNP enhancement 
with microwave power arising in the Jex = ωE + ωN case, vs the 

Fig. 3. Simulated DNP enhancements expected upon continuous on-resonance microwave irradiation at the electron Larmor frequency of the biradical, as a function 
of the magnetic field, of the microwave nutation power, and of the correlation time τC in (A) ODNP, (B) JDNP with Jex = ωE + ωN and (C) JDNP with Jex = ωN. Notice 
that each plot has its own colorbar scale. The simulation parameters are given in the Table 1. 
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maximum enhancement observed at about 0.5 MHz that decreases with 
further microwave power in the case of Jex = ωN (e.g., Fig. 3). 

In the presence of relaxation due to local vibrational modes, the self- 
relaxation rates of the α and β nuclear components of the singlet and of 
the triplet states become of comparable magnitude (see Figures S2 and 
S3 in the Supporting Material). Therefore, within the framework 
described so far, the imbalance between their populations is suppressed, 
and with it the nuclear polarization enhancement. The creation of a 
steady state DNP enhancement is thus created by a different mechanism 
in the presence of the local vibrational relaxation. This DNP enhance-
ment, which was exemplified in Figs. 1-3, can be explained using cross- 
relaxation arguments akin to those arising in ODNP. Specifically:  

1) JDNP mechanism for a biradical with Jex ≈ ωE 

Fig. 5 shows the difference between the cross-relaxation rates among 
the T̂+,β and Ŝ0,α and among the T̂+,α and Ŝ0,β states, as a function of 
magnetic field and of Jex in the presence of both Redfield and non- 
Redfield (local) relaxation terms. Notice the marked differences that 
arise in these rates when the condition Jex≈ωE is fulfilled (assuming here 
a negative inter-electron exchange coupling; otherwise the condition 
Jex≈-ωE would have to be fulfilled). This difference arises due to the 
presence of different denominators in the cross-relaxation rates, that 
becomes relevant when the condition Jex≈ωE is satisfied: 

σT̂+β ,Ŝ0α
= −

Δ2
HFC

180
J(Jex − ωE + ωN) (11)  

σT̂+α ,Ŝ0β
= −

Δ2
HFC

30
J(Jex − ωE − ωN) (12) 

Fig. 4. Dependence of the steady states achieved by various spin states on the microwave nutation power, for a spin system fulfilling Jex = ωE + ωN (A), or Jex = ωN 

(B). Left-hand panels: difference between the T̂+ and T̂ − states, corresponding to the electron longitudinal magnetization,ÊZ, and between the T̂0 and Ŝ0 states, 
corresponding to the pseudo singlet order pSO = − Ê1− Ê2+ − Ê1+ Ê2− . Center panels: amplitude of the α and β nuclear components of the singlet and triplet states. 
Right-hand panels: longitudinal nuclear magnetization N̂Z, arising from the sum of the N̂Z T̂+, N̂Z T̂0, N̂Z T̂ − and N̂Z Ŝ0 components, according to Eq. (15). All sim-
ulations were performed assuming 9.4 T using the parameters given in Table 1. 

Fig. 5. Triplet to singlet cross-relaxation rates σT̂+β ,Ŝ0α 
and σT̂+α ,Ŝ0β 

as a function of the Jex ranging between − 500 GHz and +500 GHz and of the magnetic field. 
Simulation parameters are given in the Table 1. 
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Here the Δ2
ΔHF term is the second rank norm squared [20,43] arising 

from anisotropies associated to the difference between the hyperfine 
coupling tensors arising due to the interaction between the proton and 
the two electrons in the system; and J(ω) is the spectral density function 
at a frequency ω, corresponding to τC/

(
1 + τ2

Cω2
)
. A similar discussion 

can be made also in the case of a positive Jex≈-ωE, leading to σT̂− β ,Ŝ0α 
>

σT̂− α ,Ŝ0β 
at any magnetic field.  

2) JDNP mechanism for a biradical with Jex ≈ ωN 

Fig. 6 shows the difference between the cross-relaxation rates among 
Ŝ0,α and T̂0,β states and among the Ŝ0,β and T̂0,α states with the magnetic 
field and with Jex, that occurs when the condition Jex ≈ ωN is fulfilled. 
The difference between the triplet to singlet cross-relaxation rates arises 
this time due to the presence of (Jex − ωN) and (Jex + ωN) in the de-
nominators of the spectral density functions describing the rates: 

σT̂0β ,Ŝ0α
= −

Δ2
HFC

60
J(Jex − ωN) (13)  

σT̂0α ,Ŝ0β
= −

Δ2
HFC

60
J(Jex + ωN) (14) 

This difference is maximized when the condition Jex = ωN is fulfilled. 

4. Discussion and conclusions 

The present study revisited the proposal for enhancing NMR signals 
in solution state at any magnetic field and for a wide range of rotational 
correlation times, solely relying on inter-molecular dipolar hyperfine 
couplings and the presence of polarizing biradicals with either Jex ≈ ωE 
or Jex ≈ ωN. In the previous study, which neglected relaxation from local 
vibrational modes, the JDNP condition led to a transient imbalance 
between the α and β nuclear components of singlet and triplet state 
populations, and consequently to a transient nuclear magnetization 
build-up. The addition of relaxation from local vibrational modes to the 
Redfield relaxation superoperator, suppresses the transient nature of 
this imbalance and leads to a steady state enhancement, akin to that 
arising in ODNP. However, unlike steady state ODNP effects whose 
enabling cross-relaxation rates decay quadratically with the strength of 
the magnetic field, the JDNP effects are only weakly dependent on 
magnetic fields. Thus, if the available microwave nutation powers are 
sufficiently high to compete with the triplets’ self-relaxation rates 
(≈105Hz), a cross-relaxation process between the out-of-the equilibrium 
triplet states – either the T̂± in the Jex≈ωE case or the T̂0 in the Jex≈ωN 
case – and the singlet state, will take place. When either the conditions 
Jex≈±ωE or Jex≈±ωN are fulfilled, these triplet-to-singlet cross-relaxa-
tion rates will occur with different rates for α and β states (Eqs. (11) – 

(12) and Eqs. (13) – (14). This leads to an imbalance between the 
populations of α and β nuclear components, and consequently to the 
creation of longitudinal nuclear polarization in according to: 

N̂ Z =
(

T̂+,α − T̂+,β
)
+
(

T̂ 0,α − T̂ 0,β
)
+
(

T̂ − ,α − T̂ − ,β
)
+
(

Ŝ0,α − Ŝ0,β
)

= N̂ Z T̂+ + N̂ Z T̂ 0 + N̂Z T̂ − + N̂Z Ŝ0

(15) 

These differences are the ones shown on the right-hand side of Fig. 4, 
evidencing the enhancement of the nuclear polarization. Notice that due 
to the cancellation of the electron or the nuclear Larmor frequencies in 
the dominators of the spectral density functions arising under JDNP, 
these cross-relaxation rates are solely dependent on dipolar hyperfine 
interactions; hence the weak field dependencies shown in Fig. 2. Notice 
as well that while in the Jex≈ωE case the sign of the enhancement is 
always negative, for Jex≈ωN the sign of the enhancement will change 
together with the sign of the Jex (see Supporting Material for more 
details). 

The present study assumed a fixed electrons-nuclear geometry. In 
realistic cases, the nuclear polarization build-up will be interrupted by 
diffusion of the proton being enhanced, out of the polarization region 
where JDNP is active and into non-enhancing regions. Under continuous 
microwave irradiation, however, a steady state enhancement is still 
expected to arise, as the proton diffuses from one polarizing environ-
ment into another in the solution; this is further discussed in the Sup-
porting material. 

Another issue further discussed in the Supporting material is the 
slight increase in the JDNP enhancement with rotational correlation 
time shown in Fig. 3. This reflects the increased differences between the 
α/β and the β/α cross-relaxation rates with magnetic field, as expected 
from the spectral density changes at the JDNP conditions. Notice, 
however, that in actual cases singlet and triplet self-relaxation rates will 
also depend on the g-anisotropy, [20,22] and that a large difference 
between these would lead to a decrease of the triplet T1(s), subtracting 
efficiency from JDNP. Therefore, the ideal biradicals for these JDNP 
experiments would be those connecting two identical monomers, with 
axially symmetric g-tensors; these are often found in bistrityls,[33] with 
a linear, short, conformationally rigid linker. Inter-electron exchange 
couplings in the order of the electron Larmor frequency can be achieved 
by linking these radicals with a single para-phenylene unit, leading to a 
Jex of ≈240 ± 25 GHz [36]. Inter-electron exchange couplings in the 
order of the nuclear Larmor frequency can be achieved by lengthening 
the linker. [37] By contrast, nitroxide biradicals are not suitable for 
JDNP due to their large g-tensor anisotropy that increases with the 
magnetic field, contributing to shortening the electron’s T1 and sub-
tracting efficiency to the JDNP process. Pure hydrocarbon-based bir-
adicals, characterized by axial g-tensors with less anisotropy and 
characterized by slower electron relaxation rates [39], are expected to 

Fig. 6. Triplet to singlet cross-relaxation rates σT̂0β ,Ŝ0α 
and σT̂0α ,Ŝ0β 

as a function of the Jex and of the magnetic field. The simulation parameters are given in the Table 1.  
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be the most promising polarizing agents for JDNP. Electron Para-
magnetic Resonance (EPR) / DNP instrumentation operating at high 
magnetic field [12,38,44] and equipped with suitable microwave power 
sources, [38] could enable the observation of the JDNP and develop-
ment of the optimal polarizing agents. 
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