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ASAP: An automatic sequential assignment program for congested 
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A B S T R A C T   

Accurate signal assignments can be challenging for congested solid-state NMR (ssNMR) spectra. We describe an 
automatic sequential assignment program (ASAP) to partially overcome this challenge. ASAP takes three input 
files: the residue type assignments (RTAs) determined from the better-resolved NCACX spectrum, the full peak 
list of the NCOCX spectrum, and the protein sequence. It integrates our auto-residue type assignment strategy 
(ARTIST) with the Monte Carlo simulated annealing (MCSA) algorithm to overcome the hurdle for accurate 
signal assignments caused by incomplete side-chain resonances and spectral congestion. Combined, ASAP 
demonstrates robust performance and accelerates signal assignments of large proteins (>200 residues) that lack 
crystalline order.   

1. Introduction 

Solid state NMR (ssNMR) is the ideal structural biology technique to 
characterize insoluble biomolecular aggregates that lack the perfect 
structural order [1–7]. The assignment of resonance signals, called 
chemical shifts (CSs), to specific sites in the molecule, is the pre-requisite 
to extract site-specific structural information. Recent advancements in 
spectroscopic techniques lead to samples of increasing sizes solved by 
ssNMR, for example, the 41 kDa DsbA/DsbB [8], or the 72 kDa trypto
phan synthase [9]. We note the samples used in these works are either 
micro or nanocrystalline quality, which produce spectra of extraordi
narily sharp lines (0.3 ppm or better). Assignments of such well-resolved 
spectra can be readily completed manually or by auto-assignment pro
grams such as FLYA [10] or ssPINE [11]. However, in most ssNMR 
studies of non-crystalline samples, the linewidth can be twice or triple of 
that observed with crystalline samples, which can lead to serious spec
tral congestion. Hence, it is challenging to make signal assignments with 
large proteins (≥150 residues) that lack crystalline order, which seri
ously cripples the application of ssNMR. 

The typical workflow of ssNMR studies starts with the acquisition of 
multidimensional spectra, which disperse congested resonance signals 
and reveal intra and inter-residue correlations. The fundamentals are 
depicted in Fig. 1A and B, in terms of the 13C detected 3D NMR exper
iments. Briefly, after the polarization signals on nuclei X evolve for a 
period at their respective CSs (1st CS labeling period), they are trans
ferred to nearby Y nuclei to evolve at the CSs of Y sites (2nd CS labeling 

period). Then the polarizations are transferred nearby Z sites for direct 
detection. Thus, similar CSs of Z nuclei are dispersed along their distinct 
CSs of X and Y nuclei to achieve higher resolution. As shown in Fig. 1B, 
the NCACX experiment channels the polarization from amide nitrogen 
(X) to c-alpha (Y), and then to other carbons (Zs) in the same residue, to 
disperses the CSs of carbons (Zs) along the CSs of c-alpha (Y) and amide 
nitrogen (X), gathering the intra-residue correlation. Meanwhile, the 
inter-residue correlation is revealed by NCOCX by the polarization 
transfer from amide nitrogen (X) to carboxylic carbon (Y) and other 
carbons (Zs) in the preceding residue. 3D or 4D experiments such as 
CANCO/CANCX or CONCA/CONCX12 may further improve the resolu
tion, shown in Fig. 1B. They can provide critical additional information 
to facilitate signal assignments and disperse congested signals. These 
experiments work particularly well for crystalline or polycrystalline 
samples [12]. However, for typical ssNMR samples that lack structural 
order and with broad linewidth, [13,14] fewer residues show up in these 
spectra due to the weaker signal-to-noise ratio (SNR) of double hetero
nuclear polarization transfer. 

After acquiring the spectra, the first step of signal assignments is to 
group resonances from the same residue together, and identify their 
residue types, referred to as the residue type assignments (RTAs). Then 
the polarization transfer pathways encoded in RTAs in different spectra 
are matched to the connections specified by the protein sequence, to 
complete the sequential assignment. Various auto-assignment programs 
or strategies exist, [11,15–37] which usually determine RTAs by the 
characteristic CSs of amino acids [38]. However, this can be quite 
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challenging for congested ssNMR spectral with broad resonances. 
Despite the help of multidimensional NMR experiments, signal 

broadening (>0.5 ppm) due to anisotropic interactions in non- 
crystalline solid samples still leads to poor spectral resolution, even 
with advanced magic angle spinning and decoupling pulse sequences 
[39]. Because the CSs dispersion of c-alpha is 2–3 times wider than those 
of the carboxylic sites, frequently the 3D NCOCX spectrum of a sample 
may become too congested for accurate RTAs, even when its 3D NCACX 
still displays sufficient spectral resolution. An example is shown in 
Fig. 1D and E by the 2D planes extracted from the 3D NCACX and 
NCOCX spectra of the tubular assembly formed by the 237-residue Rous 
sarcoma virus (RSV) capsid protein (CA) [13]. In addition, limited 
sidechain resonances makes the determination of RTAs by characteristic 
CS patterns unreliable. While more sidechain resonances may be 
induced by longer mixing time, it also incurs extra line broadening, and 
additional sidechain resonances in the 30–40 ppm regions will also 
exacerbate the signal congestion. As it provides indispensable inter- 
residue correlations, assignment of the over-congested NCOCX spectra 
usually becomes the bottleneck for a ssNMR project. 

When reliable RTAs from different spectra can be obtained, to 
accelerate the sequential assignment, Tycko’s group created the 

MCAssign program to automatically determine their sequential alloca
tions [32,37]. It utilizes the Monte Carlo simulated Annealing (MCSA) 
algorithm to randomly shuffle RTAs to match their polarization transfer 
pathways with the protein sequence. Given the same set of input RTAs, 
the program often finds different sequential allocations with comparable 
final scores. To differentiate them, based on the MCAssign program, 
Hong’s group developed a variant called NSGA-II [36]. It utilizes the 
non-dominated sorting genetic algorithm with an additional bias that 
increases the weight of RTAs forming good connections with their 
neighbors. We refer to both methods as the standard MCSA, as they 
employ the same MCSA process to determine the sequential allocations 
of given RTAs. These methods greatly accelerated the sequential 
assignment for ssNMR projects. 

However, both MCAssign and NSGA-II demand accurate RTAs from 
all spectra. For large proteins, [13,14] while it may be possible to 
determine RTAs fairly quickly and accurately in NCACX, the NCOCX 
spectra are usually too congested to make accurate RTAs. Moreover, the 
performance of MCAssign quickly deteriorates with ambiguous RTAs, 
even with decent spectral resolution (~0.6 ppm full width half 
maximum (FWHM)) for proteins approaching 150 residues [40]. The 
RTAs have to be carefully revised repetitively to maximize the number 

Fig. 1. 3D experiments setup and their resolution disparity. (A). Schematic 3D pulse sequence setup. (B). Polarization transfer pathways of 3D NCACX, NCOCX, 
CANCO/CX and CONCA/CX. (C) Illustration of the RTA complexity caused by coincidental alignment of resonances from different residues. Signals from a L (circles), 
R (triangles), and K (diamonds) are plotted together. (D) The most congested 2D plane extracted from 3D NCACX and NCOCX (E) of the tubular assembly of uniform 
13C, 15N labeled RSV CA. 

B. Chen                                                                                                                                                                                                                                           



Journal of Magnetic Resonance 361 (2024) 107664

3

of sequentially assigned residues, which is quite challenging and prob
lematic with a congested NCOCX spectrum for multiple reasons that will 
be discussed in this work. The assignment process can still take years, 
even for a well-trained researcher with the assistance of these state-of- 
the-art auto-assignment programs. Hence, ssNMR usually becomes the 
last resort for structural characterization of large proteins. 

Here we introduce an auto-sequential assignment program (ASAP) 
that overcomes some of the challenges limiting the capability of ssNMR. 
ASAP integrates an innovative Automatic Residue Type Identification 
STrategy (ARTIST) with MCSA. It only needs the protein sequence, the 
peak list from the NCOCX spectrum, and the RTAs from the NCACX 
spectrum of a sample, which is more likely to be determined with con
fidence and less ambiguity due to its higher spectral resolution than 
NCOCX, to enable thorough sampling of all possible configurations of 
resonances that maximize the signal assignments. With ASAP, proteins 
of 250 residues with broad NMR lines that do not provide useful infor
mation from higher dimensional spectral such as CANCX and CONCX 
spectra can be assigned in days. It demonstrates superior effectiveness, 
accuracy, robustness against ambiguous RTAs, tested by multiple pro
teins [13,41,42]. ASAP is designed to work with the 13C detected NCACX 
and NCOCX spectra, but it can be modified to assign other spectra with 
different polarization transfer pathways and detection methods 
[43–46]. The program is coded in python, [47] which allows easy re
visions and improvements by other users. 

2. Methods 

2.1. Introduction of standard MCSA algorithm and its limitations 

To understand the strength of ASAP, the limitations of the standard 
MCSA should be analyzed first. Accurate RTAs from multiple spectra are 
required by MCAssign and NSGA-II, including NCACX and NCOCX 
[11,40]. The RTAs in the NCACX and NCOCX spectra are identified as 
the residue type associated with each c-alpha and carboxylic site in the 
polarization transform pathway, respectively. Ambiguity in an RTA refer 
to the assignment of a group of signals as more than one possible residue 
types. 

Despite their differences, both methods rely on the MCSA algorithm 
to sample millions of random allocations of RTAs in given spectra to 
determine their sequential allocations. Specifically, each MC attempt 
starts with the selection of a residue position randomly in the protein 
sequence. Assume that current MC attempt picks the residue position 
kres. Next, the program takes turns from the k input spectra to randomly 
select an RTA of matching residue type to replace the existing RTA 
occupying kres position from the same spectrum. For convenience of our 
discussion, assume that an RTA is selected from the NCACX spectrum. 
The program inspects the agreement of the 13C CSs between the new 
RTA from NCACX, and those residing kres position from other spectra 
(NCOCX, CANCX and CONCX if they are available) to determine their 
compatibility. Then its 15N resonance is also compared with that of the 
RTA from the NCOCX spectrum seated at residue position kres-1, to 
count the total number of good (ng), bad (nb) and edge (ne) connections. 
An edge connection refers to the situation that a residue position is 
occupied by a null assignment. The same evaluation is repeated for the 
RTA from NCACX currently residing kres position. The change of the 
score between the old and new configurations is then computed: 

Si(Δng,Δnb,Δne,Δnu) = wi
1Δng − wi

2Δnb − wi
3Δne +wi

4Δnu (1) 

The superscript denotes that the parameters are pertinent to the i-th 
annealing step. Δng, Δnb,Δne and Δnu are the changes of connection 
numbers and used RTAs. Their coefficients wi

j at annealing step i are set 
by: 

wi
j = wj0 + scale ×

wjf − wj0

nstep
i = scale

wjf

nstep
i (2)  

here nstep is the total number of annealing steps in the entire MCSA 
process, with the annealing slope set by scale. Typically, their initial 
values wj0 are set to zero. The score determines the acceptance of the 
new configuration by the Metropolis criterion: 

exp
(
Si(Δng,Δnb,Δne,Δnu)

)
≥ rand(0, 1) (3)  

where rand(0,1) is a random number between 0 and 1. The score 
function imparts a growing penalty as the annealing progresses, to guide 
the MCSA process towards the maximization of ng and nu, minimizing nb 

and ne. However, this setup may limit the efficiency, accuracy of the 
program, as well as the resilience against ambiguous RTAs in input, as 
analyzed below. 

A resonance signal in a 3D spectrum contains three coordinates in the 

frequency space: 
(

fx, fy, fz
)
, where fx and fy are the frequencies along the 

first two indirect dimensions, and fz is the frequency along the direct 
detection dimension, shown in Fig. 1A. Assume that residue kres in a 
protein comprises Nkres carbon sites. The signal of its i-th carbon is 

designated by 
(

fkres
axi , fkres

ayi , fkres
azi

)
in the 3D NCACX spectrum. The super

script kres denotes the residue that the signal is associated with. The first 
subscript a denotes that the signal is from NCACX. The last subscript i 
denotes that the resonance is from the i-th carbon along the directly 
detected dimension, with i = 1,… Nkres. For convenience of discussion, 
we refer to the carboxylic carbon as i = 1, c-alpha as i = 2, and c-beta as 
i = 3, etc. Following this notation, the signal for the i-th carbon in residue 

kres in the 3D NCOCX spectrum is 
(

fkres
bxi , f

kres
byi , f

kres
bzi

)
, where the first 

subscript b denotes that the signal is from the NCOCX spectrum. 
Obviously, when two different carbon sites i and j of residue kres both 

produce signals in NCACX, their indirect dimensions must align within 
their uncertainties: 

⃒
⃒
⃒f kres

axi − f kres
axj

⃒
⃒
⃒ ≤

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(
Δf kres

axi

)2
+
(

Δf kres
axj

)2
√

(4)  

⃒
⃒
⃒f kres

ayi − f kres
ayj

⃒
⃒
⃒ ≤

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(

Δf kres
ayi

)2
+
(

Δf kres
ayj

)2
√

(5)  

here, 
(

Δfkres
axi ,Δfkres

ayi ,Δfkres
azi

)
and 

(
Δfkres

axj ,Δfkres
ayj ,Δfkres

azj

)
are their respective 

uncertainties, due to the non-zero resonance linewidth. In ssNMR 
spectra, this uncertainty is typically ~ 1/2FWHM. Overlapping of two 
nearby resonances can shift their exact locations, and the shift is 
accounted for by their respective 1/2 FWHM. Hence, Eqs. 4 & 5 are still 
applicable to signals in the presence of overlapping. If more than 2 
resonances overlap, it is possible that the shift of peak positions goes 
beyond their respective ½ FWHM. 

Likewise, when these two sites produce signals in NCOCX, their in
direct dimensions must align within their uncertainties: 

⃒
⃒
⃒f kres

bxi − f kres
bxj

⃒
⃒
⃒ ≤

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(
Δf kres

bxi

)2
+
(

Δf kres
bxj

)2
√

(6)  

⃒
⃒
⃒f kres

byi − f kres
byj

⃒
⃒
⃒ ≤

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(

Δf kres
byi

)2
+
(

Δf kres
byj

)2
√

(7) 

Note that their x-coordinates fk
bxi and fk

bxj in NCOCX are the 15N fre
quencies of the next residue kres + 1 in the protein, as shown by Fig. 1B. 
Hence, the inter-residue correlation requires the match of 15N 
frequencies: 

⃒
⃒f kres+1

ax − f kres
bx

⃒
⃒ ≤

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(
Δf kres+1

ax

)2
+
(
Δf kres

bx

)2
√

(8) 

We dropped the last subscript in Eq. (8), as the frequencies of indirect 
dimensions are shared by all carbon sites in the same residue, in either 
NCACX or NCOCX. Meanwhile, if a specific carbon site i in residue kres 
produces resonances in both NCACX and NCOCX, the frequencies along 
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the direct detection dimensions should match: 

⃒
⃒f kres

azi − f kres
bzi

⃒
⃒ ≤

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(
Δf kres

azi

)2
+
(
Δf kres

bzi

)2
√

(9) 

Moreover, its frequency along the second indirect dimension in 3D 
NCOCX, should match with the carboxylic carbon’s frequency of the 
same residue detected along the direct detection dimension in 3D 
NCACX, which is the z-coordinate of carbon site i = 1 according to our 
site notation convention: 

⃒
⃒
⃒f kres

byi − f kres
az1

⃒
⃒
⃒ ≤

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(
Δf kres

az1

)2
+
(

Δf kres
byi

)2
√

(10) 

The above equations are the necessary conditions for resonances 
associated with the same site in the same residues. Usually, Eqs. (4–7) 
are used together with the characteristic CSs of side-chains to identify 
RTAs in NCOCX and NCACX. With good spectral resolution, the polar
ization mixing period could be extended to induce resonances of more 
side-chain carbons, so the residue type can be distinguished with a 
greater confidence. However, this strategy is not always applicable to 
ssNMR spectra with broad resonances (FWHM > 0.5 ppm). Extending 
the polarization mixing time also induces extra line-broadening, which 
will exacerbate the signal congestion. Additionally, a longer mixing time 
will not necessarily produce resonances from more side-chain sites, due 
to variations of local disorder or dynamics. The in-commutable Hamil
tonians of interactions employed to mediate the polarization transfer 
may also limit the intensity of polarization transferred to a distanced 
site, referred to as the dipolar truncation problem [39,48,49]. Conse
quently, it is usually inevitable to end up with incomplete side-chain 
resonances. As the protein size increases, the narrower CS dispersion 
along the carboxylic dimension will lead to more congested signals in 
the NCOCX spectrum, which will incur coincidental alignments of res
onances from different residues that satisfy Eqs. (6) and (7). This is why 
auto-assignment programs depending on the characteristic CSs of side- 
chain would encounter difficulty with congested ssNMR spectra, 
[11,25,50,51] as there are too many possibilities to isolate the reso
nances into different sets of RTAs, while all satisfy the alignment 
requirement of frequencies along their indirect dimensions. 

To illustrate this challenge, Fig. 1C plots the random coil CSs of 
aliphatic sites of a K, L and R with coincidental alignment of their fre
quencies along indirect dimensions. Real scenarios would probably be 
more challenging with incomplete side-chain signals and overlapping 
resonances. Even with well resolved signals, they could be grouped into 
multiple different K, L, and R residues, and maybe also D, E, N, or Q 
assignments. Therefore, when multiple congested regions are present, 
the total variations of possible RTAs in a NCOCX spectrum could be 
numerous. Meanwhile, the usage of individual resonances must be 
tracked to ensure that they are used within the degeneracy values. This 
is what we refer to as the signal entanglement issue. When using 
MCAssign or NGSA-II to determine sequential assignments, sorting 
congested signals in the NCOCX spectrum into different RTA combina
tions is not incorporated into the random sampling of the MCSA algo
rithm, which obviously adds to the difficulty to achieve accurate 
sequential assignment. 

Moreover, there are three different types of local minima that can 
cause erroneous sequential allocations for MCAssign or NGSA-II, even 
with accurate RTAs from all spectra. First of all, coincidental match of 
15N resonances of two residues in either or both of their signals in 
NCACX and NCOCX spectra would allow one residue position to be 
occupied by the RTAs of the other residue, but the reverse is not 
applicable. We refer to this scenario as the type 1 local minimum. Spe
cifically, let’s assume that the 15N frequencies of of residue kres in 
NCACX and NCOCX are very close to those of residue jres, so that the 
corresponding RTAs of kres satisfy Eq. (8) with the neighbors of jres and 
can be allocated to residue position jres by a MC move. Meanwhile, at 
least one of the RTAs of residue jres cannot be allocated to residue kres 
due to their different 15N frequencies. Thus, a MC move to misallocate 

RTAs of kres will probably be allowed, due to the positive score ac
cording to Eq. (1). If it happens, at least one of the displaced RTAs of jres 
will not find a position that satisfy Eq. (8), and decreases the total 
number of ng. The misplaced RTAs will be corrected eventually, if the 
system undergoes thorough sampling. Unfortunately, there is no clear 
instructions for thorough sampling or even how to optimize the 
annealing setup. As we will show, insufficient sampling will trap RTAs in 
such kind of type 1 local minima. 

Furthermore, when signals of two residues in both spectra possess 
sufficiently close 15N resonances, each can occupy the other residue 
position and satisfy Eq. (8) equally well with all neighbors. Such erro
neous allocations will not decrease the total number of ng, and can never 
be eliminated by the MCSA algorithm, due to the equal scores. There is 
no mechanism in NGSA-II or MCAssign to detect their likely presence. If 
their secondary shifts differ significantly, it will lead to a different sec
ondary structure. We refer to this scenario as the type 2 local minimum. 
If their secondary shifts are sufficiently close, such a swap will not result 
in a different structure prediction. We refer to this scenario as the type 3 
local minimum, which can be safely ignored. 

We note that these local minima may also be created by mistaken 
RTAs as well, the possibility of which cannot be excluded with a con
gested NCOCX spectrum. 

As we will show, ASAP utilizes ARTIST to incorporate the sampling 
of all possible combinations of RTAs in the congested NCOCX spectrum 
into the MCSA algorithm, in addition to the sampling of all their possible 
sequential allocations, to achieve the optimized signal assignments 
result. ASAP also provides intelligent guidance to optimize the anneal
ing setup for thorough sampling and eradicate erroneous assignments 
caused by type 1 local minima. ASAP cannot differentiate erroneous 
assignments caused by type 2 local minima if only NCACX and NCOCX 
are provided, as they are indistinguishable to the MCSA algorithm. 
Instead, a list of RTAs implicated in type 2 local minima will be provided 
by ASAP. This knowledge can be useful to design additional experiments 
with selective labeled samples to suppress or remove their influence. 

2.2. Unravel the signal entanglement and suppress erroneous RTAs by 
coincidental alignments by ARTIST 

The flowchart of ASAP is shown by Fig. 2. The front end of ASAP is 
ARTIST. Its function is to group individual resonances in NCOCX into 
matched RTAs based on reference RTAs determined in the better 
resolved NCACX, exploiting the CS dispersion disparity between 3D 
NCACX and NCOCX spectra. As shown in Fig. 1D and E, owing to the 
larger c-alpha CS dispersion, even the most congested regions in NCACX 
still demonstrate reasonable resolution for reliable RTAs, in contrast to 
the seriously overlapping resonances in NCOCX. Hence, the RTAs 
determined in NCACX carry a much higher confidence with lower 
ambiguity. 

ARTIST designs two additional tests for NCOCX signals beyond the 
typical alignment of indirect dimension frequencies. Combined, they 
leverage this superior resolution in NCACX to eliminate some of the 
erroneous RTAs caused by coincidental alignment of signals along their 
indirect dimensions, which would be inevitable if RTAs are determined 
based on the characteristic CSs of amino acids. 

Specifically, given a reference RTA of residue kres in NCACX, with 

signals designated by 
(

fkres
axj , fkres

ayj , fkres
azj

)
, j = 1, Nkres. The first test by 

ARTIST is to make use of the CS of its carboxylic carbon fkres
az1 , if it is 

resolved. It searches through all resonances 
(

fbxi, fbyi, fbzi

)
in NCOCX, 

and select those with their second indirect dimension fbyi aligned to fkres
az1 

according to Eq. (10). If fkres
az1 is not resolved due to spectral congestion in 

NCACX, this test will be skipped for this reference RTA. On the other 
hand, if its fkres

az1 is resolved, but no match is found among all NCOCX 
resonances, we declare that this reference RTA does not have a matched 
RTA in NCOCX. 
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Those resonances surviving the first test will be subjected to the 
second test, designed to address the incomplete side-chain profile in 
ssNMR spectra. We introduce a tunable parameter Nmandate to demand 
the number of non-carboxylic carbons signals co-present in both NCACX 
and NCOCX spectra, counting from c-alpha (j = 2). The fbzi of those 
resonances in NCOCX that passed the first test will be compared with 
fkres
azj of every non-carboxylic carbon specified by Nmandate in the reference 

RTA, according to Eq. (9). If the number of non-carboxylic carbons 
present in the reference RTA is less than Nmandate, only those present will 
be used for the second test. If any of the mandate non-carboxylic carbons 
in the reference RTA fails to find a match in the NCOCX signals surviving 
the first test, we declare that this reference RTA does not have a matched 
RTA in NCOCX. 

Despite the uncertainty of side-chain resonances in ssNMR spectra, 
with an appropriate polarization mixing time, it is achievable that a 
limited number of sites in most of residues would contribute signals in 
both NCACX and NCOCX. Therefore, it is reasonable for Nmandate to be 
small, so most of residues qualify for the second test. For instance, by 
setting it to 2, the second test would require the co-presence of two 
carbon sites (typically c-alpha and c-beta resonances) in both spectra, 
which is plausible without a long mixing time to incur extra line 
broadening. Hence, the second test further filters those resonances that 
passed the first test by coincidence, while at least partially overcomes 
the challenges caused by the incomplete side-chain resonances in ssNMR 
spectra. 

Finally, all signals passing test 2 will be divided into different sets. In 

each set, each of the mandate sites in the reference RTA should have a 
matched resonance. Resonances in the same set will be subjected to the 
final test, according to Eqs. (6) and (7), to ensure their frequencies along 
the indirect dimensions are aligned. If test 3 is successful, signals in this 
set will be labeled as a matched NCOCX RTA and carry the same residue 
type ambiguity as the reference RTA in NCACX. If test 3 fails for all 
possible sets constructed by those resonances surviving test 2, we 
declare that this reference RTA dos not have a matched RTA in NCOCX. 

During these three tests, peak uncertainties along each dimension are 
used to address the line broadening and possible resonance overlap, as 
mentioned earlier. Hence, the match pairing tests should retain their 
accuracy in the presence of peak shifts caused by overlaps between two 
resonances. However, we note that it is possible for more serious peak 
shift to take place by overlapping of more than two resonances, which 
will not be accounted for, unless the uncertainty value is further relaxed 
along the corresponding dimension associated with signal overlaps, or 
the peak positions should be determined by some reliable algorithm to 
deconvolute the overlaps. 

We note that the ambiguity of the reference RTAs in NCACX will be 
transferred to their matched RTAs in NCOCX. This strategy partially 
avoids the negative effect caused by the resonance congestion in 
NCOCX. Ideally, if each RTA in NCACX only finds one unique RTA in 
NCOCX, the inferior spectral resolution of NCOCX then plays no ill-effect 
in the RTA determination, and NCOCX 100 % inherits the spectral res
olution from NCACX. With a congested NCOCX spectrum, usually an 
RTA in NCACX finds multiple matched RTAs, reflecting the signal 
congestion in NCOCX. Nonetheless, the inflation of possible 

Fig. 2. The general workflow of the ASAP program.  

B. Chen                                                                                                                                                                                                                                           



Journal of Magnetic Resonance 361 (2024) 107664

6

combinations of RTAs would be much higher if the NCOCX spectrum 
were assigned by purely the characteristic CSs of residues, as they will 
only check the alignment of resonances in NCOCX along their indirect 
dimensions according to Eqs. (6) and (7), which is the third test in 
ARTIST. In some auto assignment programs, [11,25,50,51] each 
possible RTA combinations is assigned with some probability to reflect 
the confidence of assignment, which depends on various factors, such as 
the number of side-chain resonances. Considering the unpredictable 
nature of side-chain resonances that depends on the local structural 
topology and dynamics in ssNMR, ARTIST does not discriminate any 
possibilities due to missing side-chain resonances and is more inclusive: 
individual resonances in a congested regions can be employed in mul
tiple RTA combinations, and all possible RTAs are accounted for as long 
as they satisfy the three tests. Meanwhile, the criteria used by ARTIST 
are necessary conditions that the correct RTAs should satisfy, except for 
the assumption of Nmandate that depends on the experimental setup. 
Therefore, the correct RTAs must be among the matched RTAs identified 
by ARTIST, which guarantees the inclusion of correct RTAs in a con
gested NCOCX spectrum, if the mandate sites of these residues all 
contribute signals in both spectra, and the peak positions are accurately 
determined. 

ARTIST creates a registry to track the usage of individual resonances 
in construction of all possible matched RTA pairs between NCACX and 
NCOCX. The correct matched RTA should maximize the total number of 
ng. It will be selected by the thorough sampling of MCSA in subsequent 
sequential assignment, as will be explained next. Consequently, ARTIST 
eliminates the workload to determine RTAs in congested NCOCX, and 
the accuracy of RTAs entirely depends on the assignment of the better 
resolved NCACX and the peak picking algorithm in NCOCX, which is 
probably more manageable and realistic. 

The identification of matched RTAs in NCOCX enables the system to 
group each reference RTA in NCACX with each of its matched RTAs in 
NCOCX as individual matched RTA pairs. If no matched RTA is found in 
NCOCX, this RTA in NCACX is always paired with a null RTA. 

After the identification of matched RTA pairs, ARTIST continues to 
identify those implicated to incur type 2 local minima, recorded in file 
Overlap. The program screens each matched RTA pair against every 
other pair of the same residue type. Their 15N frequencies in the same 
spectrum are compared respectively according to Eqs. 4 and 6, with the 
right side of equations changed to the arithmetic means of uncertainties 
to ensure no possibility is excluded. Those matched pairs pass the test 
will be subjected to additional comparison of their secondary shifts. If 
their differences are larger than 0.5 ppm, these two matched RTA pairs 
are considered as potential suspects to cause type 2 local minima in the 
sequential assignment. 

2.3. The advantage of allocation of matched RTA pairs by ASAP 

The rearrangement of the input data as matched RTA pairs enables 
the sequential assignment by MCSA to adopt a slightly different design, 
to enhance the efficiency of sampling and suppress errors due to type 1 
local minima. 

Specifically, at each MC attempt, after a residue position kres is 
chosen by a random selection, an RTA of the same residue type as kres is 
selected randomly from NCACX. In addition, the program randomly 
picks one of its matched RTAs in NCOCX to be its matched pair. 
Together, they are to replace the existing matched RTA pair currently 
occupying kres. The program allows a percentage of the MC attempts to 
select a NCACX RTA to pair with a null assignment, or a pair of null 
assignments, to replace the existing matched RTA pairs at kres. It is a key 
strategy to remove erroneous allocated RTAs due to type 1 local minima, 
to maximize ng and nu. 

Allocating RTAs in matched pairs brings several advantages. Firstly, 
it saves the computation to check the compatibility of RTAs from 
different spectra located at residue kres, improving the efficiency. More 
importantly, this pair-wise allocation of RTAs also increases the penalty 

to mistakenly allocate those RTAs with one coincidental match of 15N 
resonances with the neighbors, implicated in type 1 local minima. In 
MCAssign or NGSA-II, as only one RTA from an individual spectrum is 
allocated at each MC attempt, if it carries a coincidental match of 15N 
resonance with its neighbor, the move would probably be accepted ac
cording to Eq. (8). Moreover, an RTA with a coincidental match of 15N 
resonances could be mixed with the correct RTA from another spectrum. 
By allocation of RTAs in matched pairs, it precludes such erroneous al
locations if they have different 13C resonances. Therefore, allocating 
RTAs in matched pairs eliminates a good fraction of misleading phase 
space associated with type 1 local minima and essentially “smoothens” 
the energy landscape for MCSA, compared to the rugged surface filled 
with false local minima in MCAssign or NGSA-II. As we will show, ASAP 
always eradicates bad assignments in its results. In contrast, bad as
signments may survive in the standard MCSA assignments. 

Fundamentally, allocation of RTAs in matched pairs improves the 
probability to find their correct sequential positions to 20/Nres. In 

contrast, this probability scales with 
(

20
Nres

)k 
in MCAssign or NGSA-II, 

with k as the number of spectra, assuming a uniform amino acid 
composition in the protein. Combined, ASAP is expected to demonstrate 
improved efficiency and accuracy than the standard MCSA, which will 
be shown in our tests by three different proteins. 

2.4. Optimization of the annealing setup to ensure thorough sampling 

To ensure the accuracy of the MCSA algorithm, the data structure of 
individual resonances should be simultaneously optimized at two 
different levels. At the base level, the MCSA algorithm should explore all 
possible RTAs formed by individual signals. At the secondary level, the 
MCSA algorithm should explore all possible sequential allocations of 
RTAs. 

MCAssign or NGSA-II does not incorporate the sampling of the phase 
space of the base level in the MCSA process. For well-resolved spectra, 
this is not an issue, since accurate RTAs can be obtained. Accurate signal 
assignments by MCSA would only require sampling of the phase space of 
the secondary data structure level. This is proved in our test with the 
SrtC. When spectra become congested, the possibility to group the same 
signals into different sets of RTAs quickly multiples, which leads to the 
proliferation of local minima at the base level of RTAs. Successful signal 
assignments by MCSA then demand sampling of the phase space of both 
data structure levels. When using MCAssign and NGSA-II, users have to 
manual revise RTAs, which is inefficient and susceptible to error. As 
explained earlier, the treatment of RTAs from different spectra as in
dependent inputs creates extra local minima and additional phase space, 
which exacerbates the situation. Moreover, there is no intelligent in
struction or guidance to ensure optimized annealing or thorough sam
pling. Even given correct and unambiguous RTAs, as we will show, for 
complicated systems like MLKL or RSV CA, MCAssign will face greater 
challenge to make correct assignments. 

At the end of each MC move in ASAP, the change of scores caused by 
allocations of a new matched RTA pair is computed according to Eq. (1). 
If it is accepted, the system updates the registry that tracks the usage of 
the NCACX RTA in the matched pair, and individual NCOCX signals in 
the matched NCOCX RTA. Thus, the sampling of the phase space in both 
data structure levels is simultaneously incorporated in the MCSA pro
cess, and the signal entanglement issue is unwounded in the congested 
NCOCX spectrum. Therefore, given thorough sampling, the MCSA al
gorithm in ASAP will find the optimal combinations of signals into the 
RTA configurations that maximize ng and nu, minimizing ne and nb, the 
global minimum. 

To achieve thorough sampling, the setup must have sufficient MC 
moves to allow reallocations of matched RTA pairs with coincidental 
matches of 15N resonances forming good connections with both neigh
bors, which is essential to eradicate type 1 local minima to maximize ng 
and nu. The most likely trajectory is to replace it by a pair of null 
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assignments. It can be shown that the least number of MC attempts at 
annealing step i for this to happen is: 

Na
(
ng = 2

)
=

3N2
res

10
e−

Si (− 2,0,− 2,− 1)
2 (11)  

here Nres is the number of residues in the protein. Si(− 2,0, − 2, − 1)
corresponds to the score defined by Eq. (1). Meanwhile, the system 
should prohibit reallocations of RTAs forming one good connections 
with its neighbors towards the end of annealing. Similarly, it can be 
shown that the least number of MC attempts at annealing step i for this to 
happen is: 

Na
(
ng = 1

)
=

3N2
res

10
e−

Si (− 1,0,0,− 1)
2 (12)  

here Si(− 1, 0,0, − 1) corresponds to the score defined by Eq. (1). Eqs. 
(11) and (12) can be used to guide the system setup for optimized 
annealing. Detailed derivations are described in the supporting 
information. 

There is not a unique set of parameters to satisfy Eqs. (11) and (12), 
as we will demonstrate. But we would like to propose a general guide
line, which will be validated in our results section. Firstly, the coefficient 
for bad connections wi

2 should outweigh all the rest. A single bad 
sequential assignment misplaces at least two pairs of RTAs from NCACX 
and NCOCX. Hence, we set its value to be 2.5 times of wi

1, the coefficient 
for good connections. As we will show, it eradicates assignments form
ing bad connections. Meanwhile, wi

1 is the main positive drive to 
maximize the total sequential assignment, so we set it twice of wi

4, the 
coefficient for used signals, which encourages the maximum usage of 
signals. The least important is the edge connections, which would be 
minimized naturally if most signals are sequentially allocated. There
fore, we set wi

3 as half of wi
4. The penalty from wi

3 encourages continu
ously distributed good connections, so it is preferred to be at least 
nonzero. 

To verify Eqs. (11) and (12), two matrices neighbor_t and occu
pancy_step are created to track the dynamic migration of RTAs. Specif
ically, neighbor_t and occupancy_step are a npeak nca × npeak nca × nstep 
and a npeak nca × Nres × nstep 3D matrix. Here npeak nca refers to the 
number of RTAs in NCACX. At the i-th annealing step, assume that a MC 
move is accepted to allocate an NCACX RTA j with its matched pair from 
NCOCX to residue kres. At this time, its neighboring residue positions 
kres ± 1 are occupied by matched RTA pairs with their NCACX RTAs 
identified as k and l, respectively. Here j, k, l are the indexes of RTAs in 
the input NCACX RTA file. Therefore, the correlation between the newly 
allocated matched RTA pair and its neighbors can be registered by 
adding 1 to the components at the l and k-th columns, j-th row and i-th 
stack in neighbor_t. Likewise, this change of occupancy at kres residue 
position can be registered by 1 increment to the entry at j-th column, 
kres-th row and i-th stack stack in occupancy_step. Thus, neighbor_t tracks 
the dynamic and correlated migration of RTAs, and occupancy_step re
cords the dynamic residency of each residue position. To get a coarse- 
grained view, the total dynamic migration of each RTA and occupancy 
at each residue position along the annealing process are also computed 
by summing all columns, and recorded in matrices instigator and occu
pancy_sum. In case of parallel simulations, these matrices report their 
averaged values. Therefore, they provide a direct visual confirmation of 
Eqs. (11) and (12), which will be shown in our results section. 

We note that the optimal setup optimizes the possibility to achieve 
thorough sampling but does not guarantee it. Practically, the direct 
conformation of thorough sampling is to conduct a series of sequential 
assignments, with optimized setup and progressively increasing nt, the 
MC attempts per annealing step. As thorough sampling removes RTAs 
trapped in type 1 local minima, ng and nu continue to grow until thor
ough sampling is achieved. As we will show, for proteins ~ 150 residues 
with spectral quality comparable to MLKL or SrtC, it requires nt = 50 

million. For proteins of ~ 250 residues with spectral resolution com
parable to the RSV CA, it requires nt = 500 million. Hence, nt increases 
with increasing spectral complexity, protein composition and size for a 
single ASAP or MCSA simulation. Alternatively, the search for the global 
minimum may be achieved via iterative parallel short simulations 
instead of a single long simulation. 

2.5. Iterative ASAP simulations for accelerated convergence towards the 
global minimum and eliminations of local minima 

The signal assignments result by a single MCSA simulation without 
thorough sampling is certain to contain some mistakenly assigned RTAs 
even in the absence of explicitly bad connections, due to the existence of 
type 1 local minima. Meanwhile, the actual trajectories of MCSA simu
lations differ due to the random shuffling of RTAs in the annealing 
process. If nt is insufficient for thorough sampling, but most residues still 
find their correct RTAs, and the RTAs trapped in local minima are mi
norities. Among parallel MCSA simulations, consistently allocated RTAs 
probably correspond those assigned correctly, and the positions of 
erroneous allocated RTAs should vary. Therefore, instead of a long 
simulation, correct assignment can be obtained by iterative rounds of 
MCSA simulations with a less-than-optimal nt, each round comprising 
multiple parallel simulations. The positions of consistently allocated 
RTAs will be fixed in subsequent simulations. As will be shown in our 
results section, accelerated convergence towards the global minimum 
can be achieved. 

It is difficult to provide a universal parametrization for this 
approach. It depends on the details of the system, including the protein 
sequence composition and spectral resolution. A general rule of thumb 
is, a successful iterative MCSA simulation should keep removing RTAs 
trapped in type 1 local minima, thus more correctly assigned RTAs are 
expected in each subsequent round, and eventually plateau. On the 
other hand, if nt is too low and the local minima are too populated, some 
of the mistakenly assigned RTAs will coincidentally occupy the same 
residue positions in all parallel simulations and be retained in subse
quent iterations, which will lead to decreasing nu and ng. We will 
demonstrate examples in our results sections, both positive and nega
tive. Additionally, only those NCACX RTA paired with a valid NCOCX 
RTA should be counted towards consistently allocated assignments 
before the last iteration, because RTAs involved in edge connections are 
more likely due to a coincidental match, and persist until the end of each 
simulation. 

Type 1 local minima are more populated in MCAssign or NGSA-II, 
due to uncorrelated allocations of RTAs from different spectra. Itera
tive parallel simulations will face a greater challenge, as shown by our 
test with the level 2 ambiguity in the input data of the RSV CA by 
MCAssign. 

Compared to MCAssign, NGSA-II executes many parallel sequential 
assignments by MCSA with an extra random weight factors to modulate 
the score function, so more diverse solutions with comparable number of 
good assignments can be identified. Essentially, this random variation 
surveys different trajectories towards the global minimum. Hence, 
NGSA-II is a variant of iterative MCAssign simulations with a controlled 
selection mechanism between iterative generations. As expected, the 
requirement of thorough sampling is relaxed, which exhibits improved 
performance when tested on small proteins (100 residue or less) [36]. 
With increasing protein sizes and spectral congestion, under sampling 
may still lead to erroneous results in iterative MCSA simulations, as we 
will show with tests by level 2 ambiguity in the RSV CA data. In addition, 
it demands accurate RTAs from all spectra and doesn’t incorporate 
sampling of all possible RTAs in the congested NCOCX in the MCSA 
process. Hence, all performance comparisons are tested against the 
MCAssign program with a single simulation in this work. 
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2.6. Overall workflow of ASAP, input and output files 

The ASAP program is coded in python, and requires three input files, 
shown in Fig. 2. Input 1 holds the RTAs in the 3D NCACX spectrum, 
input 2 is the protein sequence, and input 3 contains the peak list in the 
3D NCOCX spectrum, specified by in the program by NCACX_filename, 
protein_seq, and NCOCX_filename, respectively, shown in Fig. 3C. 

Input 1 and 3 adopt an identical format, as shown in Fig. 3A and B. 
The first row holds two numbers, separated by a tab or space. The first 
number denotes the number of RTAs in input 1 or individual resonances 
in input 3. The second number denotes the number of CSs per entry in 
input 1 or 3. The maximum allowed CSs is 7, which could specify up to 5 
non-carboxylic carbon CSs. Starting from the second row, the CSs of 
each entry are listed in the order of their 15N, c-alpha, carboxylic carbon, 
and any additional carbons. Their CS uncertainties are listed at corre
sponding columns after the last CS entry, estimated to be ~ ½ FWHM of 
the spectral linewidth. In input 3, if only three CSs of one resonance are 
listed per row, they should be listed in the order of fbxi,fbzi,fbyi, where the 
CS coordinate of the non-carboxylic site along the direct detected 
dimension is entered as the second column. For both files, if the CS of a 
particular site is unknown, that entry is filled by 1e6, with its uncertainty 
set to 0.001. The last two columns of each row are the signal degeneracy 
and its RTA. Here signal degeneracy refers to how many carbon sites 
actually contribute signals to this resonance. At the beginning of an 
ASAP simulation, the RTA column in input 3 is just a place holder. In 
contrast, this field in input 1 describes its RTA in upper-cased single 
letters. Ambiguous RTAs are accepted as consecutive upper-cased single 
letters representing each possible assignment. 

If the sequential allocation is known (definitely assigned), the RTA 
column should be the upper-cased single letter for the residue type 
followed by its numeric position in both files. Definitely assigned RTAs 
and signals are exempted from match pairing by ARTIST, and their 
sequential positions are fixed in subsequent sequential assignment. 
Additionally, multiple resonances in NCOCX can be entered at a single 
row in input 3, as long as they share the indirect dimension frequencies 
and degeneracy values. Their common 15N and carboxylic carbon fre
quencies should be entered only once at the same row at the first and 
third columns, with the CSs of additional non-carboxylic carbons listed 
after the carboxylic carbon entry. The program will parse them into 

individual resonances 
(

fbxi, fbyi, fbzi

)
. 

To perform an ASAP simulation, all input files should be located in 
the same data folder as the ASAP script. In addition to the three input 
files, users are expected to specify the following parameters, directly at 
the beginning section of the code, as shown in Fig. 3C:  

1. NCACX_filename: the file name of input 1, the RTAs in the NCACX 
spectrum.  

2. NCOCX_filename: the file name of input 3, the peak list in the 
NCOCX spectrum.  

3. protein_seq: the file name of input 2, comprising upper-cased 
single letter abbreviations of the amino acid sequence. 

4. run_num: the number of parallel sequential assignment simula
tions by ASAP.  

5. scale: the variable scale in Eq. (2), to control the annealing slope.  
6. nattempt: the MC attempts per annealing step in the MCSA 

simulation, corresponds to nt in our discussion. For iterative 
simulations with parallel jobs, the recommended value is 5 
million for proteins with 150–––250 residues.  

7. final: a flag to control which kind of sequentially allocated RTAs 
in parallel simulations will be labeled as definitely assigned sig
nals in output files. If final = 0, only those NCACX RTAs paired 
with a valid NCOCX matched RTA will be counted towards 
consistently assigned signals. If final = 1, all consistently allo
cated RTAs will be treated as definitely assigned signals. For 
better accuracy, it should be set to zero for iterative simulations, 
and revised to 1 for the final iteration. 

8. nstep: the number of total annealing steps in MCSA. The recom
mended value is 40.  

9. w1f to w4f: correspond to variables w1f to w4f in Eq. (2), to control 
the penalty or bonus of ng, nb, ne, and nu. The recommended 
values for these coefficients are 20, 50, 10, and 5, respectively.  

10. N_mandate: the number of mandatory non-carboxylic carbon sites 
in the reference RTA to find a match in the second test of ARTIST. 
It is recommended to be set to 2, so only the CSs of two non- 
carboxylic carbon sites (typically c-alpha and c-beta) in the 
reference NCACX RTA are required to be matched by signals in 
NCOCX. All results in this work use N_mandate = 2. 

11. disparity_nco1: a positive number ≤ 1. The multiplication of dis
parity_nco1 with the listed uncertainty of the 15N CS in input 3 sets 
the uncertainty Δfkres

bxi in the final test according to Eq. 6. Usually, 
signals of the same site in the same residue in different spectra 
may exhibit some deviation, due to factors such as variations of 
sample conditions during spectra acquisition, field calibrations. 
This is captured by the uncertainty values listed in input 1 and 3, 
used for the first two tests in ARTIST according to Eqs. 9 and 10. 
However, when testing if signals belong to the same residue in the 
same spectrum, the alignment along their indirect dimensions 
should have a much tighter tolerance, no more than 0.2 ppm, or 
typically 0.1 ppm.  

12. disparity_nco2: a positive number smaller ≤ 1. The multiplication 
of disparity_nco2 with the listed uncertainty of the carboxylic 
carbon CS in input file 3 sets the uncertainty Δfkres

byi in the final test 
according to Eq. 7. Just like disparity_nco1, it modifies the toler
ance of alignment of the second indirect dimension of resonances 
belonging to the same residue in NCOCX. 

Fig. 3. Input files for ASAP program. (A). A snapshot of input 1 file that supplies the RTAs in the 3D NCACX spectrum. (B). A snapshot of input 3 file that specifies the 
individual resonances in the 3D NCOCX spectrum. (C). A snapshot of the ASAP script where users specify the values of 12 parameters introduced in our discussion. 
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In practice, users only need to update the values for parameters listed 
in 1 to 7, keeping the rest as recommended. Disparity_nco1 and dis
parity_nco2 may be revised according to the spectral quality or users’ 
preferred rigor. 

Before initiating an ASAP simulation, users are advised to use python 
script Plot_survivability based on Eqs. (11) and (12) to set parameters 
scale and nattempt, demonstrated in Fig. 4D. Alternatively, they can refer 
their project parameters (protein size and amino acid composition, 
spectral quality) to the examples in this work to set these parameters 
properly. Optimized values of scale and nattempt should maximize the 
number of effective annealing steps. In simple words, it should maximize 
the annealing steps with nattempt ≥ Na(ng = 2). Meanwhile, there 
should be a few annealing steps with nattempt ≤ Na(ng = 1). 

The general workflow of ASAP is described by Fig. 2. The program 
first uses ARTST to find the matched RTAs in NCOCX for each reference 
RTA in NCACX. The results are summarized in the file NCO_
MatchSummary, as shown in Fig. S1, with details listed in file NCO_
MatchDetail. The number of matched RTAs for each RTA in NCACX is 
stored in file knmatch_rd, which is used to generate the plot shown in 
Fig. 4A by python script Plot_nmatch. 

After match pairing, ARTIST identifies those RTA matched pairs 
implicated in type 2 local minima, and records the number in file 
Overlap. Users can inspect the content, as plotted in Fig. S2. 

Next, the program proceeds to determine the sequential allocations 
of these matched RTA pairs by the MCSA algorithm as described above. 
If the protein is small and ambiguity in RTAs is low, most of the RTAs 
finds a unique matched RTA in NCOCX, with low values in Overlap, users 
may try a single MCSA simulation with a high nattempt. However, most 
of ssNMR projects probably need iterative parallel simulations due to the 
less-than-ideal spectral quality. The progress of the ASAP simulation is 
recorded in file runrecord. When each parallel simulation ends, the final 

values of ng, nb, ne, nu are recorded in file runsummary. Each parallel 
simulation also updates the RTA columns of RTAs that are successfully 
assigned, reported in NCACXbknum and NCOCXbknum, in the same 
format as the input files, where num is the job index in the parallel 
simulations. When all parallel simulations are completed, the program 
identifies those RTAs being consistently allocated and generate another 
pair of output files NCACX4nextrd and NCOCX4nextrd. In these files, 
only the RTA columns of those consistently assigned RTAs are revised to 
their allocated residue positions. 

The consistently allocated RTAs of all parallel simulations can be 
plotted together with the number of matched RTAs for each NCACX RTA 
by python script Plot_nmatch, as shown in Fig. 4A. The progress of ng,

nb,ne, nu along an MCSA simulation can be plotted by python script 
Plot_numbers, as shown in Fig. 4B. The dynamic occupancy at each res
idue position can be visualized by python script Plot_occupancy_sum, as 
shown in Fig. 4C. 

After all parallel simulations end, if a new iteration should be per
formed, protein_seq, NCACX4nextrd and NCOCX4nextrd can be copied to 
a new folder, together with the ASAP script. The names of NCACX4
nextrd and NCOCX4nextrd should be revised as the new input 1 and 3 to 
start the new iteration. 

3. Results and discussion 

3.1. Construction of input files 

Three proteins are used to test the resilience of ASAP against 
ambiguous RTAs vs MCAssign: the 237-residue RSV CA tubular assem
bly, [13] and the catalytic domain of Bacillus anthracis sortase protein 
SrtC (147 residues) and the N-terminal domain of the mixed-lineage 
kinas domain-like protein MLKL (166 residues) [40]. 

Fig. 4. Optimization of the ASAP setup. (A) Number of matched RTAs identified by ARTIST in NCOCX for each RTA in NCACX (red filled bars). The dark shaded 
positions are RTAs consistently allocated to the same residue positions in all parallel simulations in run 6 in Table 1. (B) The progress of the total number of good (red 
circles), bad (blue triangles), edge connections (green squares) and used RTAs (purple diamonds) along the annealing process. (C). The number of re-allocated 
occupancies at each residue positions along the annealing process. The scale bar to the right denotes the re-allocation frequency. (D). The minimum number of 
MC attempts to guarantee at least one successful move to remove a matched RTA pair forming two good connections (red tilted line) or one good connection (blue 
tilted line), described by Eqs. (11) and (12) respectively. The thin red horizontal line is the number of MC attempts at each annealing steps. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.) 
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Specifically, the NCACX and NCOCX spectra of the RSV CA were 
acquired at the 900 MHz field at National High Magnetic Field Labo
ratory, with 50 ms and 150 ms DARR mixing [52]. They 
exhibit ~ 0.6–0.75 ppm linewidth along the directly detected 13C 
dimension, and 0.8–1 ppm along the 15N dimension, which justifies our 
setting of 0.3 ppm CS uncertainties. 230 RTAs were determined by 
multiple samples of different isotopic labeling patterns, including the 
uniform 13C,15N labeled sample, sparsely 13C labeled samples by 
1–1,3-13C and 2-13C glycerol, and R and L selective residue 13C,15N 
labeled samples [13]. The frequencies of individual resonances were 
determined by Poky in each spectrum [53]. They are used to construct 
input 1 and 3 for ASAP simulations. The RTA columns of input 1 for 
ASAP hold their experimentally determined RTAs, while the corre
sponding field in input 3 is merely a place holder. Meanwhile, MCAssign 
simulations use the experimentally determined RTAs in all input files. 

The input files for tests on the 147-residue SrtC and 166-residue 
MLKL are prepared based on their assignments deposited at Biological 
Magnetic Resonance Bank (BMRB). The structure of these proteins were 
solved by Robson et al. (PDB 2LN7, BMRB 18152) [41] and Su et al. (PDB 
2MSV, BMRB 25135) [42]. They are smaller than the RSV CA, but still 
considerably larger than the peptide samples for ssNMR. Specifically, 
the input 1 file of SrtC contains 119 RTAs, for residues 7–21, 23–37, 
43–53, 55–64, 75–114, 116–121, 125–131, and 133–147. The input 3 
file of SrtC contains the signals from 116 residues, for residues 7–20, 
22–36, 39, 43–52, 54–64, 75–113, 115–120, 125–130, 133–146. The 
input 1 file of MLKL contains 148 RTAs, for residues 13–52, 54–65, 
67–106, 109–134, 136–137, and 139–166. The input 3 file of MLKL 
contains signals from 148 residues, for residues 13–51, 53–64, 66–106, 
108–133, 135–136, 139–165. Hence, they are a good representation of 
typical ssNMR data with signals missing from certain stretches. 
Furthermore, the SrtC structure comprises mostly β-stand structure, and 
that of the MLKL is dominated by α-helices. Therefore, they represent 
proteins with different secondary structure compositions. For both 
samples, we assume that their spectral linewidth is comparable to our 
RSV CA sample ~ 0.6 ppm, with the uncertainties ~ 0.3 ppm. Only the 
CSs of 15N, carboxylic carbon, c-alpha and c-beta are used to construct 
input files for ASAP simulations following the format specification as 
described. The RTA columns of input 1 hold their experimentally 
determined RTAs, while the corresponding field in input 3 is merely a 
place holder. Meanwhile, MCAssign simulations use the experimentally 
determined RTAs in all input files. 

To test the resilience of ASAP simulations against ambiguous RTAs, 
we adopt two levels of ambiguity in RTAs. At the first level, we adopt the 
same type of ambiguity described by Tycko in his work [40]: E or Q are 
assigned as EQ, W or H are assigned as HW, D or N are assigned as DN, 
and F or Y are assigned as FY. Together, it amounts to 21.7 %, 32.8 %, 
and 34.5 % RTAs in input 1 to be ambiguous for the RSV CA, SrtC and 
MLKL, respectively. At the second level, all D, N, E and Q residues are 
labeled as DENQ in the RTA columns. 

3.2. Input data analysis and match pairing by ARTIST 

We first test the match pairing function of ARTIST with the RSV CA 
data. The number of matched RTAs identified in NCOCX for each 
NCACX RTA is plotted in Fig. 4A. Briefly, 20 RTAs in NCACX fail to find 
any match in NCOCX, they are colored yellow in NCACX_1CompareNCO 
in supporting materials. They are residues missing mandatory reso
nances in NCOCX, or those with CS deviations slightly beyond the 
specified uncertainty that fail the first two tests, highlighted in red. They 
reflect the robotic (or rigorous) aspect of ARTIST to identify matched 
RTAs. In practice, human interventions can easily salvage such obvious 
outliers. 

There are additional 30 RTAs in experimentally determined lists with 
fewer number of mandatory carbon signals in NCOCX than NCACX, or at 
least one of their CS deviations beyond the specified values, colored in 
orange in NCACX_1CompareNCO. They should not find a match in 

NCOCX. However, with disparity_nco1 and disparity_nco2 set to 1, AR
TIST still identifies at least one match for these entries, by mixing signals 
in NCOCX that are experimentally assigned to other residues, but 
nonetheless satisfy all three tests in ARTIST. Experimentally, these sig
nals are assigned based on a holistic evaluation of additional side-chain 
signals, either from the same spectrum of the uniform labeled sample, or 
from those of other samples. This additional information is not provided 
to ARTIST. It testifies the complexity induced by incomplete side-chains 
and signal entanglement in ssNMR, and the ability of ARTIST to account 
for all possible combinations. We also highlight four pairs of neigh
boring NCACX and NCOCX assignments with bad connections. They 
should not be sequentially assigned based on the large deviation of 15N 
frequencies. Therefore, if we count the remaining consecutively con
nected experimental sequential assignments in input 1 and 3, the total 
number of ng should be 150 residues. However, it may be possible to 
achieve a higher ng by ASAP, as ARTIST is able to enumerate all possible 
combinations of signals in NCOCX for each RTA in NCACX. On the other 
hand, because simulations by MCAssign use actual experimentally 
determined RTAs from both spectra as inputs, this analysis suggests that 
the maximum total number of ng should be ~ 452 for MCAssign simu
lations, since RTAs from NCACX and NCOCX are counted individually. 

ARTIST also reports the number of matched RTA pairs that can be 
assigned interchangeably due to overlapping 15N frequencies in file 
Overlap. The histogram of this statistics is plotted as the red bars in 
Fig. S2A. Altogether, 51 NCACX RTAs and their matched NCOCX RTAs 
find at least one matched RTA pair with overlapping 15N resonances, 
with sufficiently different secondary shifts to potentially incur type 2 
local minima. Among them, four matched RTA pairs are reported to 
have 5 sets of RTA pairs that can be assigned interchangeably, corre
sponding to A68, A84, A93 and A185. 

3.3. Validating the optimization strategy for annealing setup 

Following ARTIST’s match finding, ASAP proceeds to perform 
sequential allocation by the MCSA algorithm. Our first task is to validate 
Eqs. (11) and (12) to optimize the MCSA setup. Following our guide
lines, we set nt = 5× 106, w1f = 10, w2f = 25, w3f = 2.5, and w4f = 5, 
with scale = 1.0. Only c-alpha and c-beta resonances of the NCOCX 
spectrum of the uniform 13C, 15N labeled RSV CA sample are included in 
input 3. For better resolution to track the migration of matched RTA 
pairs during the annealing process, a single MCSA simulation is per
formed with nstep = 400. The progress of ng, nb, ne and nu is plotted in 
Fig. 4B as red circles, blue triangles, green squares, and purple di
amonds, respectively. Ng smoothly increases to 191 after about 150 
annealing steps. It surpasses the estimated lower bound of 150 good 
connections, proving the power of ARTIST to find all possible matched 
RTAs in the congested NCOCX for given reference RTAs in NCACX, and 
the ability of MCSA to unwind resonance entanglements to maximize ng. 
Meanwhile, nb drops to zero quickly, and ne stabilizes after the first 150 
annealing steps. The fluctuation of ne gradually damps down to ± 1 
beyond annealing step 350. 

To visualize the annealing progress, occupancy_sum is plotted in 
Fig. 4C. At the initial stage, every residue position exhibits high counts of 
re-allocations in red. As the annealing progresses, the penalty to relocate 
RTAs with good connections gradually increases, so those matched RTA 
pairs making good connections with both neighbors permanently reside 
at their positions, manifested as the fading red to blue and eventually to 
blank, at about ~ 150 steps. It agrees well with the predicted values nt =

Na
(
ng = 2

)
= 153 according to Eq. 11, shown in Fig. 4D. Beyond this 

step, RTAs forming only one good connection with their neighbors can 
still be re-allocated, but with decreasing frequency. This is evident from 
the gradually fading blue intensity between annealing steps 300–350, 
also consistent with the nt = Na

(
ng = 1

)
= 307 prediction by Eq. 12, 

shown in Fig. 4D. There are some residue positions being frequently 
accessed until the end of annealing. These are positions that cannot find 
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a good assignment. 
In summary, this test validates Eqs. (11) and (12) as a crude 

approximation to optimize the annealing setup for MCSA. In addition, 
the re-allocation frequency of each RTA can also be visualized by script 
Plot_instigator, shown in Fig. S3. It shows which RTAs are seated prop
erly. At each annealing step, the re-occupancy frequency at each residue 
position in the protein can be plotted by script Plot_occupancy_step, as 
shown by Fig. S4A and B for annealing step 5 and 400, respectively. 
Likewise, RTAs allocated to the preceding and next residue positions 
(indexed by x coordinates) to the specified RTAs (indexed by the y co
ordinate) can be visualized by plotting file neighbor by script Plot_
neighbor, as shown by Fig. S4C and D for annealing step 5 and 400, 
respectively. They may be helpful to identify NCACX RTAs that need 
revisions. 

3.4. Validating thorough sampling and differentiation of the global 
minimum and local minima 

To validate the guideline for thorough sampling, we conduct four 
series of ASAP runs with the same input data of the RSV CA tubular 
assembly in the previous section, comprising run 1–4, 5–8, 10–11 and 
12, respectively, shown in Table 1. All simulations are performed with 
w1f = 20, w2f = 50, w3f = 5, w4f = 10, nstep = 40, with nt increased 
from 0.5 × 106 to 500 × 106 to probe the progress of assigned RTAs 
approaching thorough sampling. For different runs among each of the 
first three series, the scale values are adjusted to modulate nt = Na

(
ng =

2
)

and nt = Na
(
ng = 1

)
, to vary the effective annealing steps. The Na

(
ng 

= 2
)

and nt = Na
(
ng = 1

)
values are computed according to Eqs. (11) 

and (12). The results reported in the table are the average of 10 simu
lations, to average the randomness associated with MC simulations, 
except the last run, as it took 48 h to complete a single simulation. 

As shown in Table 1, in each series, the effective annealing range 
expands as the scale value decreases, indicated by nt = Na

(
ng = 2

)
and 

nt = Na
(
ng = 1

)
. Accompanied with this trend, ng and ne improves. The 

same trend is observed for runs in different series with similar annealing 
ranges but larger nt . The maximum ng approaches a plateau ~ 191, 
suggesting simulations in run series 3 is close to thorough sampling, 
while series 1 and 2 are under sampled. We note the number of 
consistently assigned RTAs continues to increase from series 1 to 3. 
Within a series, simulations with more effective annealing steps produce 
more consistently assigned RTAs. However, we note there are some 
exceptions. Run 5 in series 2 produces fewer consistently assigned RTAs, 
due to the threshold nt = Na

(
ng = 1

)
that goes beyond the last annealing 

step. Furthermore, run 1 in series 1 with the most effective annealing 
steps does not have the most consistently assigned RTAs, due to the 
severity of under sampling. We will show in the next section that most of 
the consistently assigned RTAs are allocated to their correct positions 
(experimental assigned positions). 

Therefore, to determine if thorough sampling is achieved, users 

should execute ASAP simulations with increasing nt to maximize the 
annealing steps nt ≥ Na(ng = 2), until the total number of ng stops 
improving. To maximize RTAs allocated at their global minimum posi
tions, the threshold step nt = Na(ng = 1) should be sufficiently distant 
from the last annealing step to maximize the effective annealing. Note 
that the simulations in the previous section also achieved ng = 191. It 
shows that thorough sampling can be achieved by different parameter 
setups. 

3.5. Alternative strategies to achieve thorough sampling by iterative ASAP 
simulations 

A single ASAP simulation with nt = 5.0 × 106 and nstep = 40 
takes ~ 29 min on a desktop with 12th gen Intel i5-12500. Therefore, 
considerable time is needed to achieve thorough sampling for a large 
protein. Converting the program to Fortran or C will probably reduce the 
time by hundreds of folds, according to our experience simulating the 
self-assembly of the HIV CA by MCSA [54–57]. Alternatively, thorough 
sampling can be achieved by iterative ASAP simulations as discussed 
earlier. 

To prove this, iterative ASAP runs are performed with the identical 
setup as run set 6 in Table 1 with the same RSV CA data, results shown in 
Table 2. As iteration progresses, ng and ne improve quickly. At the end of 
the third iteration, they produce comparable total number of ng and ne to 
those obtained by ASAP with the maximum nt in Table 1. The number of 
consistently allocated RTAs saturates at ~ 183. Moreover, the number of 
correctly assigned RTAs quickly grows from 113 to 144, approaching the 
maximum possible value. Hence, iterative ASAP runs are more favorable 
than a single ASAP runs with a large nt , if done correctly. 

The success of iterative ASAP is to strike a balance between 
increasing the number of parallel simulations in each iteration and the 
decreasing sampling nt . A less-than-optimal sampling would probably 
produce some erroneous sequential allocations in each simulation. 
However, if sufficient number of parallel simulations are performed, a 
mistaken assignment due to a specific local minimum will not be 
repeated in all parallel simulations, so consistently assigned RTAs 
should correspond to those allocated correctly. However, as the protein 
size and spectral congestion increases, local minima also proliferate. It is 
possible for all parallel simulations experience one or more identical 

Table 1 
ASAP sequential assignments with different setups to test thorough sampling. All simulations end with nb = 0. Each run set are performed with 10 identical simulations 
to average the randomness, except for run 12 with one simulation. All simulations are performed with disparity_nco1 and disparity_nco2 set to 1.  

Run index nt(millions) scale nt = Na(ng = 2) nt = Na(ng = 1) Mean ng Mean ne Consistently assigned 

1 0.5  0.25 18 37 183.2 37.6 97 
2 0.5  0.45 10 20 179.6 43.7 92 
3 0.5  0.6 8 15 179.5 45.3 105 
4 0.5  1.0 5 9 177.0 49.5 90 
5 5  0.25 31 61 188.8 31.9 97 
6 5  0.45 17 34 187.2 36.2 136 
7 5  0.6 13 26 186.9 37.7 133 
8 5  1.0 8 15 185.8 40.9 130 
10 50  0.6 18 36 190.0 30.5 171 
11 50  1.0 11 22 190.1 36.3 171 
12 500  1.0 14 28 191 35 NAN  

Table 2 
Thorough sampling achieved in 3 iterations, with nt = 5.0× 106, scale = 0.45. 
Each run set are performed with 10 parallel simulations, with disparity_nco1 and 
disparity_nco2 set to 1.  

Iteration Mean 
ng 

STD 
ng 

Mean 
ne 

STD 
ne 

Consistently 
assigned 

Correctly 
assigned 

1 188.8 1.48 33.7  2.11 133 113 
2 189.7 0.48 34.8  1.03 182 144 
3 190 0 35  1.56 183 144  
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local minima. Retaining such erroneously assigned RTAs for subsequent 
iterations would lead to decreasing total number of ng. This observation 
would alert users to increase either nt, or the number of parallel simu
lations in each iteration. This does happen if we use NCACX4nextrd and 
NCOCX4nextrd of run 1 in Table 1 with nt = 0.5 × 106 as input files to 
seed subsequent ASAP simulations, where ng decreases to 181 in the 
second round. 

3.6. Robustness against ambiguous assignments in input 

Previously, Tycko demonstrated that ambiguity in RTAs was 
particularly detrimental for correct sequential assignments with 
MCAssign, even for proteins of ~ 150 residues [40]. In our discussion, 
we claimed that the matched RTA pairs by ARTIST can greatly suppress 
local minima. To prove this, simulations are performed by MCAssign 
[37] and ASAP to test the effect of ambiguous RTAs, tabulated in 
Table 3. 

The performance of ASAP against ambiguity in RTAs is first tested by 
the NCACX RTAs and the NCOCX peak list of the 147-residue SrtC [41]. 
As shown by Table 3, run 1 is first performed to assign SrtC with un
ambiguous RTAs in input 1, as a baseline reference. To compare with the 
results obtained by MCAssign, run 2 is performed with level 1 ambigu
ity, the same as in reference [40]. As shown in Table 3, all residues in the 
input files for SrtC are assigned correctly and consistently. This is shown 
by Fig. 5A, where the ASAP allocated positions for those consistently 
assigned RTAs are plotted against the experimentally assigned positions. 
In contrast, 2 were assigned mistakenly by MCAssign even in the absence 
of any ambiguous inputs [40]. 

Similarly, run 3 and 4 are ASAP simulations with the unambiguous 
and ambiguous RTAs in input 1 for MLKL, with 142 RTAs always 
consistently assigned, as shown in Table 3. Among them, 7 and 15 pairs 
of RTAs are placed to different positions than their experimentally 
assigned positions, for simulations with unambiguous and ambiguous 
inputs respectively. Specifically, with unambiguous input, the 7 erro
neously assigned RTAs are those due to overlapping 15N resonances 
implicated in type 2 local minima, falling onto the grey bar highlighted 
positions in Fig. 5B. This is an improvement in contrast to the 22 
mistaken assignments by MCAssign [40]. In the presence ambiguity, 13 
out of the 15 misplaced RTAs are those implicated in type 2 local 
minima. The other 2 are those implicated in type 3 local minima (K78 vs 
K122, L128 vs L81). As shown in Fig. 5B, we note that adjacent residue 
positions to these erroneous assignments are correctly assigned, indi
cated by their distribution along the diagonal direction. It agrees with 
our discussion that type 2 or 3 local minima are caused by RTAs with 
completely interchangeable sequential allocations, so neighboring as
signments are not disrupted. 

Next, the performance of ASAP is compared against MCAssign with 
the RSV CA data. We note that MCAssign program counts the RTAs in 

NCACX and NCOCX individually, so ng in its results corresponds roughly 
to twice of that in ASAP simulations. When nt = 5 × 106, for MCAssign 
simulations with level 1 ambiguity in input 1, the number of consistently 
and correctly assigned RTAs decreases ~ 1/3 of those with unambiguous 
RTAs, shown by run 5 and 6 in Table 3. When the ambiguity of RTAs is 
increased to level 2, the consistently and correctly assigned RTAs 
decreased further, shown by run 7. It implies the system is seriously 
under sampled to remove the populated type 1 local minima caused by 
ambiguous RTAs. When nt is increased to 50× 106, the number of 
consistently and correctly assigned RTAs are both greatly improved for 
simulations with unambiguous or level 1 ambiguity, shown by run 8 and 
9 in Table 3. It indicates that sufficient sampling can effectively over
come the local minima caused by level 1 ambiguity. However, the 
consistently and correctly assigned RTAs stay roughly unchanged, even 
with more sampling for simulations with level 2 ambiguity, shown by 
run 10, suggesting that the system is still under sampled to overcome the 
local minima with MCAssign. In addition, according to our analysis of 
input experimental RTAs in the previous section, the maximum ng for 
MCAssign should be ~ 452, or ~ 226 NCACX RTA. 

In comparison, ASAP demonstrates a stronger resilience against both 
levels of ambiguity. When nt = 5 × 106, the decrease of consistently and 
correctly assigned RTAs with both levels of ambiguity (run 11 and 12 in 
Table 3) is much milder compared to results in the absence of ambiguity 
(run 6 in Table 1). Moreover, when nt is increased to 50× 106, results for 
simulations with both levels of ambiguity are greatly improved, shown 
by run 13 and 14. Recall that our analysis of input data for ASAP sug
gests that the maximum number ng is only ~ 150. 

To inspect the consistently allocated RTAs, Fig. 5C plots the 
sequentially allocated residue positions of consistently allocated RTAs 
against their experimentally assigned positions. Specifically, in the 
presence of level 2 ambiguity in input 1, there are 25 distinct RTAs 
shifted from their experimentally determined positions. Among them, 
18 are implicated in type 2 local minima, falling in the grey bar high
lighted regions. Out of the remaining 7 shifted RTAs, 6 are signals 
forming type 3 local minima with the experimentally assigned values, 
listed in Table S1. The only exception is the T17 that is assigned to 
residue position 227, seated alone with both neighbors occupied by null 
assignments. Similar to our observations in Fig. 5B for MLKL results, 
adjacent residue positions to these mistaken assignments are correctly 
assigned, with signals distributed along the diagonal directions in 
Fig. 5C. They confirm that these mistaken assignments are caused by 
those RTAs with entirely overlapping 15N resonances. Thus, to simplify 
our discussions, we will stop listing the IDs of these mistaken 
assignments. 

Note that while there are nearly always bad connections in all 
MCAssign results, they are eradicated in all ASAP simulations. This is 
due to the higher penalty to allocate matched RTA pairs with bad con
nections. We can use Plot_occupancy_sum to visualize the ill-effect caused 

Table 3 
Comparison of resilience against ambiguous RTAs between MCAssign and ASAP. Each run set comprise10 identical simulations to average the randomness, with 
disparity_nco1 and disparity_nco2 set to 1.  

Run index Protein Algorithm nt(millions) scale Ambiguity in input RTAs? Mean ng Mean ne Mean nb Consistently assigned Correctly assigned 

1 SrtC ASAP 50  0.7 0 111 8 0 111 111 
2 SrtC ASAP 50  0.7 Level 1 111 8 0 111 111 
3 MLKL ASAP 50  0.65 0 142 7 0 142 135 
4 MLKL ASAP 50  0.65 Level 1 142 7 0 142 127 
5 RSV CA MCAssign 5  1.0 0 414.3 14.3 1.3 121 120 
6 RSV CA MCAssign 5  1.0 Level 1 402.4 25.9 1.1 79 78 
7 RSV CA MCAssign 5  1.0 Level 2 396 30.2 0.6 56 54 
8 RSV CA MCAssign 50  1.0 0 416.1 13.1 1.4 139 137 
9 RSV CA MCAssign 50  1.0 Level 1 416.7 12.8 1.4 138 136 
10 RSV CA MCAssign 50  1.0 Level 2 396 30.2 0.6 56 56 
11 RSV CA ASAP 5  0.45 Level 1 185.0 38.1 0 113 92 
12 RSV CA ASAP 5  0.45 Level 2 185.2 38.6 0 111 95 
13 RSV CA ASAP 50  0.6 Level 1 189.3 34.4 0 144 115 
14 RSV CA ASAP 50  0.6 Level 2 189 34.6 0 143 116  
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by ambiguous RTAs in input 1, which leads to more shuffling in the 
annealing process. They are shown by Fig. S5A for run 10 in Table 1 and 
Fig. S5B for its counterpart run 14 in Table 3. 

In summary, our results confirmed that consistently allocated RTAs 
may be considered as those assigned to their global minimum locations 
if thorough sampling can be guaranteed, except for those implicated in 
type 2 and 3 local minima. To correct erroneous assignments caused by 
type 2 local minima, additional restrains are needed from experiments 
such as CANCX or CONCX spectra, if SNR allows. For proteins with 
highly repetitive stretches of sequences, frequency selective dipolar 
dephasing experiments can be performed with selective residue labeled 
samples to resolve the ambiguity [58]. Owing to the correlation estab
lished by ARTIST for input RTAs, ASAP demonstrates a stronger resil
ience against ambiguity in input RTAs. 

3.7. Capability to work with the full NCOCX peak list 

In all prior tests, only c-alpha and c-beta resonances in NCOCX 
spectra are included in input 3. This is justifiable when the NCOCX 
spectra are recorded with a short DARR mixing time. To demonstrate the 
full capability of ASAP, simulations are performed to test ASAP with 
input 3 comprising only c-alpha and c-beta resonances vs the full NCOCX 
peak list of the RSV CA acquired with 150 ms DARR mixing. 

To make the test more challenging, the full NCOCX peak list contains 
more resonances than those obtained by Poky peak picking. Specifically, 
if the resonance of a non-mandatory side-chain site is present in NCACX 
but absent in the NCOCX spectrum, a fictitious resonance (fbx, fby, fbz) is 
added to input 3, with fbz obtained by randomly shifting (≤ Δfaz ) its faz 
frequency in NCACX, and fbx and fby as the common indirect frequencies 
identified for the c-alpha and c-beta in NCOCX. Thus, the number of 
individual signals in input 3 increases from 414 to 627. Because only c- 
alpha and c-beta resonances are used to identify matched RTAs by AR
TIST, it maximizes the interferences from extra side-chain resonances in 

NCOCX. All runs are performed with 10 parallel simulations to average 
out the randomness factors. 

In addition, all tests in prior sections are performed with dis
parity_nco1 and disparity_nco2 set to 1, so the full uncertainty values 
listed in input 3 are used by ARTIST to check resonances alignment 
along their indirect dimensions. To help cope with the full NCOCX peak 
list, tests are also performed with both parameters set to 0.33. It requires 
the frequencies of the indirect dimensions to match within 0.1 ppm in 
NCOCX, for them to pass the final test in ARTIST. This is the standard 
used in manual assignment, and should help to disqualify interference of 
resonances belonging to different residues. 

The results are shown in Table 4 and Fig. 6. As shown in Fig. 6A, 
introduction of extra side-chain peaks in input 3 does lead to slightly 
inflated matched RTAs, due to the coincidental matches to mandatory 
resonances by other side-chain carbons. However, with disparity_nco1 
and disparity_nco2 set to 0.33, when all RTAs in NCACX are unambigu
ously determined, the results are not impacted by the extra side-chain 
peaks, indicated by similar ng, ne and consistently assigned RTAs, as 
shown by the statistics of run 1 vs run 2 in Table 4. They also find 
comparable correctly assigned RTAs among the consistently assigned 
RTAs, shown in Fig. 6D. Majority of those shifted assignments are those 
implicated in type 2 local minima, indicated by the grey bars. Those fall 
in the blank regions are RTAs with overlapping 15N and 13C resonances, 
implicated in type 3 local minima. Again, due to the interchangeability 
of their sequential allocations, we note that assignments of adjacent 
residues are not affected, as their signals nearly always fall along the 
diagonal in Fig. 6D. Similar patterns are observed in the following two 
tests. 

To investigate ASAP’s ability to resist ambiguity in input 1 with the 
full NCOCX peak list, additional tests are performed with level 1 am
biguity in input 1, with input 3 comprising just c-alpha and c-beta res
onances (run 5), or the full peak list from NCOCX (run 6), respectively. 
Level 1 ambiguity further increases the coincidentally matched RTAs 

Fig. 5. Resilience against ambiguity in RTAs in ASAP simulations. Allocated positions of consistently assigned RTAs are plotted against their experimentally assigned 
positions. (A). Allocated positions for consistently assigned RTAs of SrtC data with zero ambiguity (run 1 in Table 3, red empty squares) vs level 1 ambiguity in input 
1 (run 2 in Table 3, blue solid squares). (B). Allocated positions for consistently assigned RTAs of MLKL data with zero ambiguity (run 3 in Table 3, red empty 
diamonds) vs level 1 ambiguity in input 1 (run 4 in Table 3, blue solid diamonds). (C). Allocated positions for consistently assigned RTAs of the RSV CA with zero 
ambiguity (run 10 in Table 1, red empty diamonds) vs level 2 ambiguity in input 1 (run 14 in Table 3, blue solid diamonds). Grey bars are RTAs implicated with 
overlapping 15N resonances to incur type 2 local minima. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version 
of this article.) 

Table 4 
Capability of ASAP to work with the full NCOCX peak list. All runs comprise 10 parallel simulations to average randomness, with nt = 5 million, scale = 0.45.  

Run index signalsinNCOCX disparity_nco1 disparity_nco2 Ambiguity in input RTAs Mean ng Mean ne Consistently assigned Correctly assigned 

1 c-alpha and c-beta  0.33 0  188.0  34.0 142 116 
2 Full peak list  0.33 0  188.6  35.2 141 121 
3 Full peak list  1.0 0  186.5  37.0 123 94 
4 Full peak list with absolute R and L  0.33 0  190.2  33.6 156 133 
5 c-alpha and c-beta  0.33 Level 1  185.1  38.0 122 108 
6 Full peak list  0.33 Level 1  186.4  36.6 126 95 
7 Full peak list  1.0 Level 1  186.3  37.3 114 91 
8 Full peak list with absolute R and L  0.33 Level 1  188.3  35.0 137 119  
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identified in NCOCX, shown in Fig. 6B. The quality of sequential as
signments for both run 5 and 6 also is decreased, shown in Table 4. 
Specifically, compared to run 5, run 6 produces slightly fewer consis
tently and correctly assigned RTAs. As shown in Fig. 6E, the consistently 
assigned RTAs but shifted from their experimentally determined posi
tions are mostly those implicated in type 2 local minima, falling in the 
grey bar highlighted positions. Additionally, there are 5 pairs corre
sponding to those implicated in type 3 local minima, outside the grey bar 
highlighted regions for type 2 local minima. 

Simulations are also performed with full uncertainty values in input 
3 with disparity_nco1 and disparity_nco2 set to 1, with the full NCOCX 
peak list, for zero ambiguity (run 3) and level 1 ambiguity in input 1 (run 
7). They produce fewer consistently assigned RTAs compared to simu
lations with disparity_nco1 and disparity_nco2 set to 0.33, proving the 
interference adding extra side-chain resonances, and the ability of the 
program to suppress this interference by a tighter tolerance in the final 
test of ARTIST. Moreover, we note that run 3, 6 and 7 produce compa
rable number of correct assigned RTAs. It suggests the mistakenly 
assigned RTAs are predominantly due to the side-chain interferences, 
not the ambiguity in input 1. 

With the full NCOCX peak list, in addition to the standard approach 
of increasing nt or iterative simulations, the results of ASAP can be 
further improved by strengthening the correlations of resonances in 
input 1 and 3. Specifically, in experiments, selective residue labeled 
samples can help us unambiguously correlate signals from the same 
residue across spectra, as shown in our prior work [13]. Run 4 and 8 are 
performed, with zero or level 1 ambiguity in input 1 respectively. In 
both runs, we simulate this situation that all signals of R and L residues 
can be unambiguously resolved and correlated in both spectra, by 

imposing identical c-alpha and c-beta frequencies for faz and fbz for these 
residues in input 1 and input 3, with their uncertainty set to 0.001 ppm. 
As shown by Fig. 6C, it suppresses coincidentally matched RTAs in 
NCOCX not only for these residues, but also for 10 other residues, as the 
side-chain resonances of these R and L residues could be used to match 
the mandatory carbons of other residues. Indeed, both runs produce 
improved results, with better ng, ne and consistently assigned RTAs. 
More importantly, the number of correctly allocated RTAs are greatly 
improved, by nearly 30 compared to their reference runs (run 3 and run 
5). Hence, if a residue exhibits distinct and well-resolved CS signals in 
both NCACX and NCOCX spectra, such as A, S, T, I, P, V or G, we should 
impose identical faz and fbz for their c-alpha and c-beta resonances in 
input 1 and input 3, and remove non mandatory side-chain resonances 
in input 3 to prevent coincidental matching to other residues. This 
strategy will further improve the performance of ASAP. 

3.8. Limitations and incorporation of additional spectral assignments into 
ASAP 

ASAP cannot differentiate those RTA pairs implicated in type 2 or 3 
local minima that can be assigned interchangeably due to their similar 
15N resonances, with only NCACX and NCOCX spectra. They may cause 
fluctuations of consistently and correctly assigned RTAs in the simula
tions with the same or similar setup, shown by the differences between 
run 11 in Table 3 vs run 7 in Table 4. However, if their adjacent residues 
exhibit distinct resonances, incorporation of correlations revealed by 
CANCX or CONCX will eliminate these type 2 or 3 local minima. Current 
version of ASAP does not automate the inclusion of this correlation, and 
must be implemented manually by adjusting the amide 15N CS 

Fig. 6. Sequential assignment tests of ASAP with the full NCOCX peak list. (A) to (C) are the number of matched NCOCX RTAs identified for each NCACX RTA. (A) 
Input 3 comprising only c-alpha and c-beta resonances in input 3 (red) vs the full NCOCX peak list (blue), with no ambiguity in input 1. (B). Input 3 comprising the 
full NCOCX peak list and input 1 comprising zero (red) vs level 1 ambiguity (blue). (C). Input 3 comprising the full NCOCX peak list and input 1 with level 1 
ambiguity. The red bars are for signals of R and L residues entered as their actual positions in NCOCX, and the blue bars are for their positions fixed to the observed 
frequencies in NCACX. The grey bars highlight the R and L residues in input 1. (D) to (F) are the allocated positions of consistently assigned RTAs plotted against their 
experimentally assigned positions. (D). Input 3 comprising only c-alpha and c-beta resonances (red empty triangles, run 1 in Table 4) vs the full NCOCX peak list (blue 
empty circles, run 2 in Table 4), with no ambiguity in input 1. (E). Input 3 comprising only c-alpha and c-beta resonances (red filled triangles, run 5 in Table 4), vs the 
full NCOCX peak list (blue filled circles, run 6 in Table 4), with level 1 ambiguity in input 1. (F). Input 3 comprising the full NCOCX peak list with R and L residues 
fixed to those identified in NCACX, with zero ambiguity (red cross, run 4 in Table 4) vs level 1 ambiguity in input 1 (blue filled squares, run 8 in Table 4). In (D) to (F), 
the grey bars highlight the RTAs implicated in type 2 local minima. (For interpretation of the references to colour in this figure legend, the reader is referred to the 
web version of this article.) 
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uncertainties of corresponding RTAs in input 1 and 3 that are correlated 
in CANCX or CONCX, so that they are the only pair to satisfy Eq. 8. This 
process can be accelerated by ARTIST to find matched RTAs in these 
spectra against the reference NCACX RTA. The damage of these errors is 
probably localized, as we showed, assignments of adjacent residue are 
not perturbed by these errors. 

The more challenging limitation is to accurately determine the peak 
positions in the presence of severe resonance overlap, as it directly im
pacts the accuracy of ARTIST and ASAP. While smaller disparity_nco1 
and disparity_nco2 help to suppress coincidental matches, it weakens the 
ability to account for peak shifting caused by resonance overlap along 
the two indirect dimensions. Hence, separating congested resonances in 
NCOCX along the two indirect dimensions entirely depends on the ac
curate peak deconvolution algorithm of other programs such as Poky 
[53]. 

ASAP is designed for 13C detected spectra NCACX and NCOCX. 
However, it can be easily adapted for inputs derived from other multi
dimensional spectra, or recorded with proton detection, by replacing 
corresponding entries along their indirect and direct dimensions. 

3.9. Data availability 

The ASAP source code with all input and output files are provided as 
the zip file in supporting materials for simulations in Table 4. Brief in
structions are provided for the plotting scripts in supporting materials, 
as well as NCACX_1CompareNCO that tabulates the original RSV CA 
input files. Please contact Bo Chen at bo.chen@ucf.edu if you need 
additional help. 

4. Conclusion 

In conclusion, we demonstrate that ASAP is a robust sequential 
assignment program for congested multidimensional NMR spectra. 
Compared to other popular auto-assignment programs for ssNMR such 
as FLYA or ssPINE that require a plethora of multidimensional spectra, 
[10,11] some of which such as CANCX and CONCX may be challenging 
to obtain for noncrystalline samples, ASAP only need 3DNCACX and 
NCOCX spectra. It largely eliminates the laborious efforts in sequential 
assignments of congested NCOCX spectra, so long as the accuracy of 
peak picking in NCOCX and RTAs in the better resolved NCACX spec
trum can be guaranteed. With ASAP, the sequential assignments of large 
proteins that lack premium spectral resolution for ssNMR can be reduced 
to days. It relieved the resolution cap for assignment capped by the more 
congested NCOCX spectrum to the NCACX spectrum. 
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