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Quantum critical phase of FeO spans
conditions of Earth’s lower mantle

Wai-Ga D. Ho1,6, Peng Zhang2,6 , Kristjan Haule 3, Jennifer M. Jackson4,
Vladimir Dobrosavljević 1 & Vasilije V. Dobrosavljevic 4,5

Seismic and mineralogical studies have suggested regions at Earth’s core-
mantle boundary may be highly enriched in FeO, reported to exhibit metallic
behavior at extreme pressure-temperature (P–T) conditions. However,
underlying electronic processes in FeO remain poorly understood. Here we
explore the electronic structure of B1-FeO at extreme conditions with large-
scale theoretical modeling using state-of-the-art embedded dynamical mean
field theory (eDMFT). Fine sampling of the phase diagram reveals that, instead
of sharp metallization, compression of FeO at high temperatures induces a
gradual orbitally selective insulator-metal transition. Specifically, at P–T con-
ditions of the lower mantle, FeO exists in an intermediate quantum critical
state, characteristic of strongly correlated electronic matter. Transport in this
regime, distinct from insulating or metallic behavior, is marked by incoherent
diffusion of electrons in the conducting t2g orbital and a band gap in the eg
orbital, resulting in moderate electrical conductivity (~105 S/m) with modest
P–Tdependence as observed in experiments. Enrichment of solid FeO can thus
provide a unifying explanation for independent observations of low seismic
velocities and elevated electrical conductivities in heterogeneities at Earth’s
mantle base.

Earth’s lower mantle is thought to be composed primarily of bridg-
manite (Mg1−xFex)SiO3 and ferropericlase (Mg1−xFex)O, where x
~0.1–0.2, coexistingwithCaSiO3

1–3. Thesemajormineral phases behave
as insulating materials up to conditions of the lowermost mantle, with
electrical conductivities on the order of 100 to 102 S/m4,5, many orders
of magnitude lower than proposed conductivities of the metallic iron-
dominant core (~106 S/m) (e.g., refs. 6,7). Instead of a homogeneous
lower mantle, seismic observations over the last several decades have
robustly identified multi-scale structures across Earth’s core-mantle
boundary8,9. These structures have been grouped into two main cate-
gories: (1) two continent-scale “large low-seismic velocity provinces"
(LLSVPs), considered to be piles of heterogeneousmaterial or bundles

of thermochemically distinct mantle plumes10,11, and (2) numerous
mountain-scale “ultralow velocity zones", basal structures discovered
within and around the edges of LLSVPs, including at the roots ofmajor
mantle plumes like those that source volcanism atHawai’i, Iceland, and
the Gálapagos12–19.

Studies generally agree that the interpretation of these observed
structures requires strong compositional contrasts from the sur-
rounding average lower mantle and possibly the presence of partial
melt14,20,21. Recent interdisciplinarywork on ultralow velocity zones has
demonstrated that solid FeO-rich mineral assemblages, consisting of
iron-rich (Mg1−xFex)O (x ~0.8–0.95) coexisting with (Mg,Fe)SiO3 and
CaSiO3, can produce structures that satisfy the velocity reductions and
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topographies constrained by seismic observations and geodynamic
simulations22–26. Such strong iron enrichment, arising from crystal-
lization of the primordial magma ocean or chemical interactions with
the iron core, leads to several unique physical properties observed for
the very iron-rich (Mg,Fe)O phase, including high seismic anisotropy27,
remarkably low viscosity28, and experimental reports of moderately
elevated electrical conductivity (105 to 106 S/m)29,30, orders of magni-
tude higher than insulators (like typical mantle rocks) but lower than a
metal (like the liquid iron-rich core).

The accuracy andorigin of these intermediate conductivity values,
and the electronic phase diagrams of FeO and iron-rich (Mg,Fe)O
more broadly, represent a poorly understood and controversial topic
in high-pressure physics and deep Earth science. An insulator-metal
transition has been proposed for FeO frommeasurements of relatively
high conductivity (~105 S/m) with weak P–T dependence above
~60GPa29. In contrast, similarly high conductivity was reported for
(Mg0.2Fe0.8)O and (Mg0.05Fe0.95)O but interpreted as insulating beha-
vior up to ~130GPa30. Meanwhile, standard electronic-structure theory
methods focus at T =0 K, and are not able to properly capture thermal
effects, which often dominate in the vicinity of the insulator-metal
transition31,32. Such extreme fragility of electronic states is especially
pronounced in “strongly correlated"33 electronic systems34–36, often
featuring tightly-bound d or f orbitals37. Here the Coulomb repulsion
between pairs of electrons confined to the same orbital takes center
stage, typically resulting in very strong electron-electron scattering and
poor conduction at elevated temperature38. Given these complications,
several fundamental open questions arise regarding the insulator-
metal transition (IMT) in B1-FeO at high pressures: (1) Is there a sharp
IMT at high temperature, in the regime characteristic of Earth’s deep
mantle? (2) What is the mechanism of electronic transport (i.e., the
dominant form of scattering) in this regime? (3) How do orbital
selectivity39 and the associated spin-crossover affect the transition
region? (4) What are the consequences of these phenomena for the
magnitude and P–T dependence of electrical conductivity across deep
Earth conditions?

Knowledge of electronic processes in FeO at extreme conditions
and consequences for transport properties is essential for under-
standing phenomena at Earth’s core-mantle boundary, including
electromagnetic coupling of the core and mantle and heat flow
through this region. To that end, we employ a state-of-the-art
“embedded DMFT" (eDMFT) ab initio approach40 that combines
dynamicalmeanfield theory (DMFT)methods41,42 and standarddensity
functional theory (DFT) with full charge self-consistency. While some
valuable steps in this direction have been taken in previous work29,43–45,
sufficiently detailed and systematic study of the transition region has
not been performed, preventing a clear understanding of the impor-
tant open questions at hand. Using this approach, we systematically
survey the electronic structure of cubic B1-FeO, the crystal structure
relevant to Earth’s lower mantle conditions46. An expansive data set
featuring calculations at more than 350 temperature-volume condi-
tions (see Supplementary Materials) finely samples the phase diagram
up to conditions of Earth’s inner core (300GPa, 5000K). This detailed
information allows us to accurately determine and physically interpret
the boundaries of different transport regimes across the phase
diagram.

Results and discussion
Three distinct electronic phases of B1-FeO
Our theoretical calculations reveal three distinct electronic phases in
the high-P–T phase diagram of B1-FeO (Fig. 1). At ambient conditions
and low degrees of compression, FeO behaves as a Mott insulator, in
which both the t2g and eg orbitals exhibit large band gaps at the Fermi
energy on the order of several eV and electrons remain bound to their
respective nuclei29,45. In contrast, at large degrees of compression, FeO
exists as a strongly correlated metal, where one or both the d orbital

band gaps are closed, producing a characteristic “quasiparticle" den-
sity of states (DOS) peak at the Fermi energy (see also Fig. 2, rightmost
panels)29,45.

At intermediate degrees of compression and sufficiently high
temperatures, FeO exists in a “quantum critical" (QC) state, which is
notably different from either an insulator or a metal. Here, the t2g
gap has closed to form a conducting band, but unlike in a con-
ventional metal, the density of states at the Fermi energy is sig-
nificantly reduced, with a marked absence of quasiparticles (Fig. 2,
bottom row). Instead of traveling as coherent waves with minimal
scattering as in ametal, electrons in the QC state exhibit incoherent
diffusion marked by strong electron-electron scattering with a
short mean-free path at the scale of atomic spacing. In this regime,
the eg gap remains open and FeO remains in the high-spin state,
with four d electrons in the t2g orbital (Fig. 3). We stress that the QC
phase arises only at finite temperatures above the insulator-metal
phase coexistence region, terminating at the critical end-point Tc

~370 K; the insulator-metal transition assumes first-order character
at T < Tc.

Temperature-dependent forms of the IMT
The physical nature of the insulator-metal transition in FeO and the
range of pressures spanning the QC region depend strongly on the
range of temperatures considered. At low temperatures (T ≤ Tc), FeO
transitions directly from a Mott insulator to an “orbitally selective"
metal aroundΔv ~20% (corresponding to P ~58GPa46). Here the closure
of the t2g gap leads to the immediate formation of a quasiparticle peak
at the Fermi energy in the t2g orbital (see Fig. 2, top row), while the eg
gap remains open. These quasiparticle states are remarkably fragile to
thermal excitations, and are suppressed around the “Brinkman-Rice"
temperature TBR (see Fig. 1), marking the crossover to theQCphase. As
TBR increases with compression, the insulator-metal transition is
“smeared out", producing an increasingly wider QC “fan" at
Tc < T≲ 2000K. The left boundary of the QC region corresponds to a
temperature scale where the Mott gap is smeared through thermally
activated processes (see Supplementary Materials for precise defini-
tion of the corresponding crossover lines shown in Fig. 1).
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This behavior becomes qualitatively different at very high tem-
peratures. At T ≳ 2000K, the quasiparticles are unable to form in the
t2g orbital before compression causes the closure of the eg gap, around
Δv ~34%. Further compression leads to the onset of spin crossover
phenomena and simultaneous formation of a correlated metal, with
robust quasiparticles forming in both sectors. The spin crossover
extends over a wide compression range with weak temperature
dependence (Fig. 3) as previously observed47, and is marked by a
partial charge transfer from the eg to the t2g orbital, with one electron
remaining in the eg orbital and a drop in the magnetic moment from 4
to ~1.5 Bohr magneton. Unlike T≲ 2000K, where the QC region gra-
dually broadens with increasing temperature, here the transition to a
quasiparticle metal occurs immediately after the eg gap closure and
spin crossover onset, leading to a Brinkman-Rice line with weak tem-
perature dependence and an abridged pressure extent for theQC “fan"
at high temperatures. Orbital selectivity and the associated spin
crossover phenomena thus dramatically affect the form of the
insulator-metal transition behavior at these very high temperatures,
producing markedly weak temperature dependence of all physical
quantities within the QC region.

We relate our findings to existing knowledge on the experimental
phase diagram of FeO by presenting our results as a function of pres-
sure, where pressure is calculated at each volume-temperature condi-
tion using the experimentally determined equation of state for
B1-FeO46, as shown in Fig. 4. Here we include experimentally estimated
phase boundaries for different crystal structures46, as well as the
melting curve48.Wenote that thephase coexistence region,whereboth
insulating and metallic phases are present at T < Tc ~370K (omitted in
Fig. 4, see Fig. 1), is predicted to lie at the center of the experimentally
estimated stability field for rhombohedrally distorted rB1-FeO. In
addition, we observe that the Brinkman-Rice line below ~2000K,

marking the onset of an orbitally selective metal, traces the experi-
mentally reported B1-B8 transition boundary. These observations raise
further questions regarding the relationship between insulator-metal
transitions and crystal structures in strongly correlated systems, which
merit further investigation but are beyond the scope of this study.

Consequences for transport properties
The three electronic phases identified for FeO in this study exhibit
highly distinct transport properties (Fig. 4). Conductivity in the insu-
lating state is relatively low (~100–103 S/m) and increases with tem-
perature, as expected for thermal activation. In the correlatedmetallic
state, conductivity is large (~106–108 S/m) and decreases with increas-
ing temperature. In contrast, conductivity in the QC state lies at
intermediate levels (~104–105 S/m) and displays remarkably weak
dependence on both pressure and temperature. As discussed above,
transport in the QC state is a consequence of a (poorly) conducting t2g
band that lacks the presence of coherent quasiparticles. Unlike in a
quasiparticle metal, where the mean-free path for electron-electron
scattering is generally much longer than the lattice spacing, con-
ductivity in the QC state lies around the Mott-Ioffe-Regel (MIR) limit
(~105 S/m) characterized by a short mean-free path comparable to the
lattice spacing38. Physically, the electrons exhibit Brownian-style dif-
fusive motion caused by strong and frequent scattering.

Robustness of theoretical results
The theoretical results we have obtained reveal that at temperatures
on the scale of thousands of Kelvin, the insulator to metal crossover
displays a significant intermediate regime, in close analogy to what is
generally expected for quantum criticality34,49,50. Although there are
several aspects of our work that may shift the precise location of the
crossover, the general topology of the phase diagram would not be
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affected. Our result was obtained for specific values of the interaction
parameters U and J, which we fixed to the values expected under
ambient conditions51. We did so to avoid deliberate “fine-tuning" of
input parameters, although we do expect that these interactions
should display some volume/pressure dependence. Still, these details
should not affect the qualitative and even the semi-quantitative
aspects of our results. Similarly, the presence of small concentrations
of Fe vacancies or small amounts of Mg substitutions could slightly
displace the crossover line positions.We emphasize, however, that the
characteristic scale of the electrical conductivity set by the Mott-Ioffe-
Regel limit in the QC regime (~105 S/m) should be a robust feature of
our results. In particular, the modest pressure and temperature
dependence of transport in the QC regime suggests that small shifts in
the crossover line positions due to the effects discussed above will not
affect the key finding that FeO exhibits intermediate values of elec-
trical conductivity (~105 S/m) at lowermost mantle conditions. Fur-
thermore, various other physical mechanisms (such as different forms
of magnetic order) that often play out at low to ambient temperatures
(T ~101–102 K) are expected to benegligible at theT ~103 K levels thatwe
consider here. In this sense, the single-site DMFT theory we adopt,
which deliberately ignores such magnetic correlations, should be
regarded as an accurate solution to the electronicmany-body problem
under conditions relevant to Earth’s interior.

Comparison to previous results
We quantitatively compare general trends and magnitudes of trans-
port obtained from our theoretical calculations to previous experi-
mental measurements. A shock compression study also reported

conductivities on the order of 105.5–106 S/m for pressures between 72
and 155 GPa and at elevated but unconstrained temperatures52. Static
compression experiments reported weak temperature dependence of
electrical resistance when heating up to ~2500K in the pressure range
~40–80GPa and when heating above ~2000K from 80 to 125 GPa29.
The QC region determined in our study spans these P–T conditions
and provides a physical basis for the observed weak temperature
dependence. Our findings suggest that very shallow minima in
resistivity-temperaturemeasurements from these experiments should
not be interpreted as marking the location of a sharp insulator-metal
transition but could stem from secondary effects, such as phonon
(lattice) interactions or defect mobility. In addition, the same experi-
ments reported a plateau in conductivity at around 105 S/m along a
pressure range of ~60–120GPa for T = 1850K29 (Fig. 5). These mea-
surements of a conductivity plateau (weak pressure dependence) and
magnitudes around the Mott-Ioffe-Regel limit (~105 S/m) (Fig. 5) are
now clearly explained and supported by the global phase diagram
determined in this study, and in particular by the existence of the QC
region. Overall, the electronic phase diagram and consequent
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transport properties determined for B1-FeO in this study provide a
clear physical explanation for experimental reports on the material’s
conductivity. Our theoretical results capture much of the same fea-
tures as those reported in previous theoretical works performed by
using DFT+DMFT methods for B1-FeO29,44,45,53, although our expansive
canvassing of the entire phase diagram provides qualitatively updated
insight and interpretation. Specifically, we demonstrate that a clearly
defined intermediate regime arises between the insulator and the
metal, with distinct spectral and transport signatures.

Implications for Earth’s interior
We find that the electrical conductivity of FeO at lower mantle con-
ditions exhibits intermediate values (104–105 S/m) relative to the
insulating mantle and metallic core. The lower mantle features con-
ductivity magnitudes of 100 to 102 S/m based on experimental and
geomagnetic constraints. Experiments on the major lower mantle
phases bridgmanite4, ferropericlase5, and post-perovskite54 have
reported conductivities from 100 to at most 103 S/m, similar to
experiments on the hydrous silicate phase D55, as well as on pyrolite
and mid-ocean ridge basalt (MORB) rocks56 that represent the average
lower mantle and subducted oceanic crust, respectively (Fig. 5). These
values are in good agreement with depth profiles for conductivity,
determined fromgeomagnetic observations57–59. For themetallic outer
core, theoretical computations have reported conductivities for liquid

iron alloys around 106 S/m7,60,61, similar to experimental measurements
on solid iron and iron alloys at high P–T conditions6,62–64. The inter-
mediate conductivity values for FeO at lowermost mantle conditions
(~105 S/m) are robust even for small amounts of Mg substitution (up to
20%), based on experimental results30, suggesting that iron-rich
(Mg,Fe)O in the lowermost mantle would exhibit a unique signature
of electrical conductivity relative to coexisting materials.

Interestingly, the base of Earth’s mantle has been suggested to
exhibit a unique signature of moderate electrical conductivity, higher
than the bulk mantle but lower than outermost core fluid (Fig. 5), that
affects electromagnetic coupling of the mantle and core and thus
Earth’s rotation and magnetic fields. Specifically, variations in the
length of day over periods of several decades, as well as nutations of
Earth’s rotation axis on the diurnal timescale, are best explained by a
mantle basal layer 1 km thick with conductivity 105 S/m65. Further, low
temporal variations of Earth’s magnetic field in the Pacific region have
recently been attributed to a non-uniform conducting layer at the
mantle base with higher conductance levels in the Pacific, estimated at
6–9 × 108 S compared to 108 S for a global average layer66. This elevated
conductance could be approximately explained by 20–30 km thick
structures with conductivity ~105 S/m covering around one-third of the
mantle base on the Pacific, compatible with typical heights and
detection locations of ultralow velocity zones14.

Separately, independent seismic observations of the mantle base
combined with geodynamic and mineralogical constraints have
recently shown that ultralow velocity zones can be quantitatively
explained by highly FeO-rich solid material24–26. Geodynamic work has
further suggested that thesemountain-scale structuresmay form from
a thin layer23,67 that could be difficult to detect seismically68. The bulk
conductivity of such features would depend on the interconnection of
moderately conductive FeO in the assemblage, which is poorly con-
strained. However, the remarkably low viscosity of the material (1012

Pa-s) at lowermost mantle conditions28 and its relatively high abun-
dance in ultralow velocity zones suggested by recent work
(~20–40%)8,25,26 supports the possibility of interconnected networks of
iron-rich (Mg,Fe)O and resulting bulk conductivity similar to 105 S/m.

A solid FeO-rich mineralogy could thus provide a unifying expla-
nation for constraints on Earth’s mantle base from both seismic ima-
ging as well as independent observations of temporal variations in
Earth’s rotation and magnetic field. FeO-rich structures could further
imply heterogeneous thermal conductivity at the core-mantle
boundary, instead of homogeneous heat flow out of the core
assumed in some models of mantle dynamics69,70. Using the
Wiedemann-Franz law and our calculated conductivity of ~2 × 105 S/m,
we estimate an electrical contribution to the thermal conductivity of
~17W/m-K for FeO at the core-mantle boundary. This value is around
two to four times larger than the reported thermal conductivity of the
average pyrolitic lowermost mantle71. By a direct calculation of the
electrical and the thermal conductivity, recent work on Hubbard
models suggested72 that the Lorentz number defining theWiedemann-
Franz law should be somewhat lower at high temperatures, as com-
pared to the conventional value. Nevertheless, our general conclusions
should remain qualitatively valid. Solid FeO-rich ultralow velocity
zones may thus represent regions of high thermal conductivity at
Earth’s mantle base, which could promote the generation of long-lived
mantle plumes, influence convection dynamics, and affect crystal-
lization processes in the core73–75.

Methods
The eDMFT algorithm we use40–42 starts with the calculation of the
eigen-energies and the eigen-wavefunctions of the crystal by solving
the DFT equations. Next, the correlated orbital subset is projected out
as “quantum impurities" by a real-space projectors without down-
folding, while the uncorrelated orbitals are treated byDFT, and act as a
mean-fieldbathon thequantum impurities, resulting in a hybridization

Fig. 5 | Electrical conductivity of FeO comparedwith other Earth and planetary
materials. a Solid lines are calculated in this study, while symbols show previous
electrical conductivity experiments on Fe0.96O

29, (Mg0.05Fe0.95)O and
(Mg0.20Fe0.80)O

30, and (Mg0.81Fe0.19)O
5, all color-coded by temperature.

bConductivities as a functionof depth in the Earth along the geotherm. Solid line is
FeO (this study); gray lines show geomagnetic constraints on bulkmantle electrical
conductivity (dashed58, dotted59, dot-dash57); points show experimental reports for
bridgmanite (perovskite)4, post-perovskite54, pyrolite, and MORB56; blue shading
shows theoretical reports for liquid iron alloys7,60,61; gray shading shows the con-
ductivity range of a proposed thin layer at the mantle base65.
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between the two. The hybridization functions are determined self-
consistently by solving the DMFT equation. The quantum impurities
are solved by the hybridization expansion continuous time quantum
Monte Carlo (CTQMC)76,77 method. The modified charge density
derived from combined DFT and DMFT equations is then used as the
input of the next DFT iteration. The eDMFT algorithm iterates until full
convergence of the charge density, the impurity self-energies, and the
lattice Green’s function etc are achieved. Finally, the maximum
entropy method78 is employed to analytically continue the Green’s
function and the self-energy from the Matsubara frequency to the real
frequency axis. The linear augmented plane wave method is used as a
basis, as implemented in WIEN2K package79, and the local density
approximation (LDA)80 to the exchange and correlation functional is
employed in the DFTpart.We use a double-counting scheme81 which is
known to be exactwithin the LDAexchange and correlation functional.
In each DMFT iteration a huge number (~2.8 × 1010) of Monte Carlo
updates is used to reduce the statistical error. AMonkhorst-Packmesh
of at least 12 × 12 × 12k −points is used in the calculation. At the
ambient pressure the energy window for projection of the correlated
states is ± 10 eV around the Fermi energy. At high pressure the energy
window is expanded so that the same number of bands are included
for projection as done at ambient pressure. Only the Fe-3d electrons
are treated as correlated with Coulomb interaction U = 10.0 eV and
Hund’s coupling J = 1.0 eV, which is based on previous constrained
DMFT calculations of FeOat ambient pressure51. Throughout the paper
we fix the Coulomb interaction U and the Hund’s coupling J as volume
independent. Although increased pressure should reduce U and J in
real FeO material, it will only quantitatively tune the results in the
paper, such as the exact position of the insulator-metal transition.

Data availability
The theoretical data presented in the figures can be found in the
Source Data files, which are provided with this paper and in a Zenodo
data repository (https://doi.org/10.5281/zenodo.10307816). The full
set of theoretical data generated during this study are available from
the corresponding author upon reasonable request. Source data are
provided with this paper.

Code availability
The eDMFT code we utilized in this paper was developed by Kristjan
Haule, and it is publicly available from Kristjan Haule’s website (http://
hauleweb.rutgers.edu/tutorials/index.html). This site also has the
appropriate tutorials associated with this code.
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