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Abstract
By analytically solving the Bogoliubov–de Gennes equations we study the fermion bound
states at the center of the core of a vortex in a two-dimensional superconductor. The
superconducting states are induced via proximity effect between an s-wave superconductor
and the surface states of a strong topological insulator. The strong spin–orbit coupling locks
the spin perpendicular to the momentum (Rashba interaction). A zero-energy Majorana state
arises together with an equally spaced (Δ2

∞/EF) sequence of fermion excitations. The
spin–momentum locking is key to the formation of the Majorana state. We present analytical
expressions for the energy spectrum and the wave functions of the bound states. The wave
functions fall off exponentially with the distance ρ from the core of the vortex as
exp[−

∫ ρ

0 dρ′Δ(ρ′)/vF]. An analytic expression for the local density of states (LDOS) for the
bound states is obtained. The particle–hole symmetry is broken in the LDOS as a consequence
of the spin–orbit coupling. The spin-polarization of the bound states is discussed. We also
obtain the energy shifts of the bound states in a small magnetic field. A unitary transformation
relating the model with Rashba interaction to the Dirac Hamiltonian is presented.

Keywords: superconductivity, topological insulator, Majorana, bound states in vortex

(Some figures may appear in colour only in the online journal)

1. Introduction

Majorana fermions are unconventional quantum states with
non-abelian statistics and potential for quantum computing
[1]. The idea of storing quantum information in Majorana
states originates from Kitaev [2]. The generation of Majorana
bound states at surfaces of strong topological insulators (TI)
due to the proximity of an s-wave superconductor (S) has been
explored by Fu and Kane [3, 4] and Sau et al [5]. A platform
for the generation of Majorana zero modes is a heterostructure
consisting of a semiconducting thin film sandwiched between
an s-wave superconductor and a magnetic insulator [6, 7]. A
Majorana state also arises as a zero-energy bound state at the

∗ Author to whom any correspondence should be addressed.

core of a vortex as a consequence of the strong spin–orbit
coupling in the TI [1, 3, 5]. For a review see reference [8].

Following Fu and Kane [3, 4] numerous authors investi-
gated the surface states of a 3D TI with proximity induced
s-wave superconductivity in different geometries [5, 9–11].
Depending on the transparency of the TI/S junction the
induced superconducting gap is reduced compared to the par-
ent S gap. The induced gap is energy dependent, but is only
a weak function of energy for low-lying excitations, so that
we can consider Δ a constant. In the dirty limit the proximity
effect has been studied using the Eilenberger/Usadel formal-
ism [12–14] and the Majorana state with the Bogoliubov–de
Gennes (BdG) method for a supersymmetric σ model [15].

The electronic structure of a vortex in a 2D topological
superconductor has been investigated by numerous authors

1361-648X/20/035604+11$33.00 1 © 2020 IOP Publishing Ltd Printed in the UK

https://doi.org/10.1088/1361-648X/abba89
https://orcid.org/0000-0001-8979-0405
mailto:pschlottmann@fsu.edu
http://crossmark.crossref.org/dialog/?doi=10.1088/1361-648X/abba89&domain=pdf&date_stamp=2020-10-20


J. Phys.: Condens. Matter 33 (2021) 035604 H Deng et al

[5, 10, 11, 15–19] by solving the BdG equations. The strong
spin–orbit coupling leads to spin–momentum locking and a
zero-energy Majorana bound state, as a consequence of the
Berry phase. The low-energy excitations are equally spaced
by the amount of Δ2

∞/EF. Vortex bound states in a proximity-
induced topological superconductor on a spherical surface
have been studied in references [20, 21]. In this geometry the
boundary of the topological states is closed corresponding to a
vortex anti-vortex pair. Following the proposal by Fu and Kane
[3] in reference [5] the excitation gap in a line junction and a
trijunction pair linked by a line junction was considered. Durst
[22] obtained the scattering cross section for quasi-particles
with excitation energy greater that Δ∞ off the vortex states. A
possible application of non-abelian topological order in s-wave
superfluids of ultracold fermionic atoms has been proposed by
Sato et al [23].

It is interesting to notice that the problem is closely related
to vortex states in superconducting graphene [24]. The two
sublattices of the honeycomb structure are parametrized by
a pseudospin, which plays the role of the spin in the TI.
The BdG equations in superconducting graphene for energies
close to the Dirac points (considering the spin, pseudospin
and particle–holes) reduce to eight equations which decou-
ple into two equivalent subsets of four equations each. Each
subset is then equivalent to the present problem with Dirac
interaction [25].

In this paper we study the electronic structure of vortices
in superconducting surface states with strong spin–orbit cou-
pling. Most of the above mentioned calculations for the vortex
bound states are numerical evaluations of the energy eigen-
values. The purpose of this paper is to present analytical
expressions for the low-energy bound state eigenvalues and
the eigenfunctions close to the core of an isolated vortex. We
solve the BdG equations using the method employed by Car-
oli, de Gennes and Matricon (CdeGM) [26, 27] for a type II
s-wave superconductor. Here the BdG equations are solved (i)
for small distances ρ (compared to the correlation length ξ)
from the core of the vortex, where the superconductor order
parameter can be neglected since it vanishes at the center of the
core, and (ii) for larger distances, still smaller than ξ, but where
the order parameter needs to be taken into account. These two
solutions are matched at an intermediate radius. If the match-
ing condition is such that it is independent of the distance from
the vortex core, then we have a solution for the entire region
of the vortex. This condition as well determines the value of
the energy of the bound state inside the vortex core. This way
we obtain the entire low-energy spectrum of the bound states,
as well as the analytic expression of the corresponding wave
functions and the local density of states (LDOS).

We consider the metallic surface states of a 3D TI with
proximity induced s-wave superconductivity. We simplify
the model by directly introducing the superconducting order
parameter into the 2D electron gas, since the more tedious
problem consisting of the TI interacting with S has already
been studied [5, 10]. We consider a superconductor with strong
spin–orbit coupling locking spin perpendicular to the momen-
tum (Rashba coupling). The model and the analytic solution
for the wave functions are presented in section 2 and appendix

A. A zero-energy Majorana state is generated, as a conse-
quence of the strong spin–orbit coupling. The first excited
bound state above the zero-energy Majorana mode has energy
Δ2

∞/EF for EF � Δ∞. The Majorana state can be made more
robust by reducing EF [5, 11]. In appendix C we present an
analytic semiclassical approach showing that for EF = 0 the
first excited state has energy of the order of Δ∞.

In section 3 we obtain the analytical expression for the
LDOS of the bound states. We discuss the dependence of
the LDOS on the distance from the vortex center, the energy
and the temperature. The particle–hole symmetry is broken
in the LDOS as a consequence of the spin–orbit coupling.
The bound states are partially spin-polarized. This polariza-
tion depends on the distance from the center of the vortex. The
energy shift of the bound states with a small magnetic field is
also obtained.

Experimentally, systems with large superconducting tran-
sition temperature are desirable. A Majorana zero mode was
detected via spin-selective Andreev reflections in the het-
erostructure Bi2Te3/NbSe2 [31] and with tunneling scanning
spectroscopy in monolayers of the high-temperature super-
conductor FeTe0.55Se0.45 [32]. Another model with strong
spin–orbit coupling locking the spin parallel to the momentum
(Dirac Hamiltonian) is also frequently invoked (see section 4).
The two models can be transformed into each other via a uni-
tary transformation, which is explicitly shown in section 4.
Conclusions follow in section 5.

2. Perpendicular spin and momentum locking:
Rashba interaction

2.1. Model

We consider the 2D Hamiltonian with spin–orbit coupling
given by the Rashba interaction and s-wave superconductivity
induced via proximity [13, 14]. The electron gas corresponds
to the surface states of a TI. The strong spin–orbit interaction
couples the spin perpendicular to the momentum. We consider
an isolated vortex, assuming a field perpendicular to the plane
with H � Hc2 and slightly larger than Hc1.

The wave function is a four-component spinor, Ψ (r) =
[ψ↑ (r) ψ↓ (r) ψ†

↑ (r) ψ†
↓ (r)]T, and the Hamiltonian is H =

1
2

∫
d2rΨ† (r) Ȟ⊥

B (r)Ψ (r), where

Ȟ⊥
B (r) =

[
ĥ (r) Δ̂ (r)

−Δ̂∗ (r) −ĥ∗ (r)

]
(1)

and

ĥ (r) = vFσ̂ ·
[(

p − e
c

A
)
× ez

]
− EF , (2)

Δ̂ (r) = Δ (r) iσ̂y , (3)

where ez is the normal vector to the plane.
Here we adopt polar coordinates, (ρ, θ), and write

Δ (r) = Δ(ρ)e−iθ, i.e. only one flux quantum is contained in
the vortex. Δ(ρ) is real, vanishes for ρ = 0, increases linearly
with ρ and saturates at the value Δ∞ for ρ larger than the
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coherence length ξ [28]. Using the same arguments as in refer-
ences [26, 27] the vector potential and the magnetic field can
be neglected for ρ < ξ in equation (2). In polar coordinates
ĥ (r) can be written as

ĥ(ρ, θ) =

⎡
⎢⎢⎣

−EF −ivF e−iθ

(
i
∂

∂ρ
+

1
ρ

∂

∂θ

)

ivF eiθ

(
i
∂

∂ρ
− 1

ρ

∂

∂θ

)
−EF

⎤
⎥⎥⎦ ,

(4)
and the field operators expanded as Ψ(ρ, θ) =
(2π)−1/2

∑
μΨμ(ρ)eiμθ, where μ is an integer to have a

single-valued wave function. The θ-phase of Δ (r) can
be eliminated via a gauge transformation, yielding a θ
dependence of the components of the spinor Ψμ of

f μ
j exp[−iθτ̂ z(1 + σ̂z)/2 + iμθ], j = 1, . . . , 4, (5)

where f μ
j is the amplitude of the component j. Applying the

spinor to ĥ(ρ, θ) we obtain

ĥμ(ρ) =

⎡
⎢⎢⎣

−EF vF

(
∂

∂ρ
+

μ

ρ

)

−vF

(
∂

∂ρ
− μ− 1

ρ

)
−EF

⎤
⎥⎥⎦ . (6)

The first order differential equations satisfied by f μ
j are

vF

(
∂

∂ρ
− μ− 1

ρ

)
f μ

1 (ρ)+Δ(ρ) f μ
3 (ρ)+ (E+EF) f μ

2 (ρ) = 0,

(7)

vF

(
∂

∂ρ
+

μ

ρ

)
f μ

2 (ρ) +Δ(ρ) f μ
4 (ρ) − (E + EF) f μ

1 (ρ) = 0,

(8)

vF

(
∂

∂ρ
+

μ+ 1
ρ

)
f μ

3 (ρ)+Δ(ρ) f μ
1 (ρ)− (E−EF) f μ

4 (ρ) = 0,

(9)

vF

(
∂

∂ρ
− μ

ρ

)
f μ

4 (ρ) +Δ(ρ) f μ
2 (ρ) + (E − EF) f μ

3 (ρ) = 0.

(10)

These equations are similar to those in reference [10], where
the Dirac Hamiltonian (rather than the Rashba interaction) was
employed.

2.2. Majorana state

The zero-energy Majorana bound state is obtained from
equations (7)–(10) for E = μ = 0. We denote ρ̃ = kFρ. The
structure of the equations leads to the solution [10]

f M
1 (r) = CJ1(ρ̃)e−K(ρ̃) e−iθ,

f M
2 (r) = −CJ0(ρ̃)e−K(ρ̃),

f M
3 (r) = CJ1(ρ̃)e−K(ρ̃) eiθ,

f M
4 (r) = −CJ0(ρ̃)e−K(ρ̃),

(11)

where C is a normalization constant and K(ρ̃) =∫ ρ̃

0 dxΔ(x)/EF. The corresponding wave function is

Ψ̂M = C
∫

d2r e−K(ρ̃)
[
J1(ρ̃)e−iθψ↑ (r) − J0(ρ̃)ψ↓ (r)

+ J1(ρ̃)eiθψ†
↑ (r) − J0(ρ̃)ψ†

↓ (r)
]
. (12)

It is easily verified that Ψ̂M = Ψ̂†
M and hence the state is a

Majorana fermion. The counterpart to this Majorana fermion
is placed in the plane far away from the axis of the vortex (large
ρ) and hence not a solution of this problem [17].

2.3. Energies and wave functions

The solution for the general case is presented in appendix A.
For the energy of the bound states we obtain

Eμ = μ

∫ ∞

0
dx e−2K(x) Δ(x)

x

/∫ ∞

0
dx e−2K(x). (13)

Since the main contribution to the integrals is for ρ � ξ, where
Δ(x) is linear in x, we arrive at Eμ ≈ μΔ′/kF, where Δ′ =
dΔ/dρ ≈ Δ∞/ξ ≈ kFΔ

2
∞/EF and hence

Eμ ≈ μ
Δ2

∞
EF

. (14)

Approximate expressions for the amplitudes of the wave
functions are given by

f μ
1 (r) = C′Jμ−1(ρ̃)e−K(ρ̃) ei(μ−1)θ,

f μ
2 (r) = C′Jμ(ρ̃)e−K(ρ̃) eiμθ,

f μ
3 (r) = −C′Jμ+1(ρ̃)e−K(ρ̃) ei(μ+1)θ,

f μ
4 (r) = C′Jμ(ρ̃)e−K(ρ̃) eiμθ,

(15)

and the energy wave function with energy E = Eμ is then

ψ̂E = C′
∫

d2r e−K(ρ̃)
[
Jμ−1(ρ̃)e−iθψ↑ (r) + Jμ(ρ̃)ψ↓ (r)

− Jμ+1(ρ̃)eiθψ†
↑ (r) + Jμ(ρ̃)ψ†

↓ (r)
]

eiμθ . (16)

For μ �= 0 the wave function corresponds to a fermion opera-
tor with Eμ �= 0, while for μ = 0 we have the Majorana state
wave function consistent with equation (12) up to an overall
minus sign (by noticing that J−1(ρ̃) = −J1(ρ̃)), which can be
absorbed into the normalization constant C′.

3. Local density of states of the bound states

Given the wave functions and energy eigenvalues the one
particle Green’s function for spin component σ is[29]

Gσ
ω(r, r′) =

∑
μ

(
uσ
μ (r) uσ∗

μ (r′)
ω + i0 − Eμ

+
vσμ (r) vσ

∗
μ (r′)

ω + i0 + Eμ

)
, (17)

3
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Figure 1. LDOS of the bound states in the vortex as a function of energy ω for three positions from the center of the core: (a) at the center
(ρ̃ = 0.0), (b) at ρ̃ = 1.0 and (c) ρ̃ = 3.0. The three curves in each panel represent different temperatures: T = 0.05 (black), T = 0.1 (red)
and T = 0.2 (blue). Note that the height of the peaks decreases dramatically with T. In the limit T → 0 the peaks are delta-functions. We
chose K = 0.01ρ̃2. All energies are in units of Δ2

∞/EF and the LDOS is in arbitrary units but the same for all three panels. Note that the
LDOS is not particle–hole symmetric.

where u and v are the wave functions for particles and holes,
i.e. correspond to the functions f μ

j (r). The LDOS is given by
the imaginary part of the Green’s function for r′ → r

N(ω, ρ) =
∑
μσ

(
|uσ

μ(ρ)|2δ(ω − Eμ) + |vσμ(ρ)|2δ(ω + Eμ)
)
.

(18)
For finite temperature the δ function is to be replaced by minus
the derivative of the Fermi function [16]. Hence, with increas-
ing temperature the peaks broaden. Similar expressions (with-
out the sum over σ) for the LDOS for each spin projection can
be obtained from equation (17).

For our model with Rashba interaction the LDOS is then
proportional to (up to a normalization constant for the spinor)

N(ω, ρ̃) ∝
∑
μ

[(
Jμ−1(ρ̃)2 + Jμ(ρ̃)2

)
δ(ω − Eμ)

+
(
Jμ+1(ρ̃)2 + Jμ(ρ̃)2

)
δ(ω + Eμ)

]
e−2K(ρ̃).

(19)

This quantity is measurable via scanning tunneling
microscopy (STM) by fine-tuning the energy ω at a dis-
tance ρ from the core of the vortex. The zero energy Majorana
state corresponds to μ = 0 and E0 = 0. Equation (19) is
invariant under the transformation μ→−μ (i.e. Eμ →−Eμ)
and the simultaneous interchange of the particle and hole
amplitudes, u ↔ v. However, it is interesting to notice that
the LDOS is not particle–hole symmetric.

The latter can be understood with the aid of equation (6).
For down-spin the effective angular momentum of the elec-
tron is μ, while for up-spin electrons it is (μ− 1). On the other
hand, for down-spin holes it is still μ, but for up-spin holes it
is (μ+ 1). Hence, there is a difference between electrons and
holes with up-spin and consequently the particle–hole sym-
metry is broken. The origin of this asymmetry is the Rashba
spin–orbit interaction. Hence, the LDOS must be asymmetric
as a function of ω.

The LDOS as a function of energy is shown in figure 1 for
three distances from the center of the vortex. As a function of
ρ the LDOS falls off exponentially due to K(ρ̃). The LDOS
also decreases rapidly as a function of temperature. The Majo-
rana state (μ = 0) has always the same intensity as the μ = 1

Figure 2. Intensities of the peaks as a function of kFρ for several μ.
In general the intensity decreases with ρ̃ and μ, but not necessarily
monotonically.

peak. In general, the LDOS is symmetric about ω = 0.5. At
the center of the vortex core (ρ̃ = 0) there are only two peaks,
namely μ = 0 and 1, as a consequence of the Bessel func-
tions, Jn(ρ̃), which are zero as ρ̃→ 0 for n �= 0. More peaks
appear at finite ρ̃. For larger ρ̃ the intensity does not neces-
sarily decrease monotonically with μ as a consequence of the
oscillations of the Bessel functions. For instance in figure 1(c)
(ρ̃ = 3) the μ = 2 peak has higher intensity than the μ = 1
state. This can be understood with the plot of the intensities
as a function of ρ̃ presented in figure 2. For kFρ = 3 the Majo-
rana peak (and the μ = 1 peak) has a smaller intensity than the
μ = 2 and 3 peaks. But for larger energies the intensity of the
peaks decreases rapidly. The main maxima of the LDOS form
concentric circles about the center of the core with their radius
increasing with μ.

Interesting is also the spin-polarization of the peaks in the
LDOS. This is simple at the center of the vortex, ρ̃ = 0, where
the μ = 0 line (Majorana zero mode) has down-spin and the
μ = 1 peak up-spin polarization. For larger ρ̃ the peaks have
finite intensity for both spin components, see e.g. figure 3
for ρ̃ = 1. The polarization of the peaks should be of interest
for spin-selective spectroscopic measurements. Note that the
down-spin LDOS is particle–hole symmetric.
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Figure 3. Spin-polarized LDOS (arbitrary units) of the bound states
in the vortex as a function of energy ω for ρ̃ = 1.0 from the center of
the core, (a) up-spin and (b) down-spin polarization. The
polarization is consequence of the spin–orbit interaction. The three
curves in each panel represent the temperatures T = 0.05 (black),
T = 0.1 (red) and T = 0.2 (blue). The sum of the up-spin and
down-spin LDOS yield the total LDOS shown figure 1(b). Again,
K = 0.01ρ̃2 and all energies are in units of Δ2

∞/EF.

The effect of the Zeeman Hamiltonian,

HZ = μBH

[
σz 0
0 −σz

]
, (20)

on the bound state energy levels can be determined perturba-
tively using the bound state wave functions, equation (15). To
first order the result is,

ΔEZ
μ =

μBH
∫∞

0 dρ̃ρ̃ e−2K(ρ̃)
(
J2
μ−1(ρ̃) − J2

μ+1(ρ̃)
)∫∞

0 dρ̃ρ̃ e−2K(ρ̃)
(
J2
μ−1(ρ̃) + 2J2

μ(ρ̃) + J2
μ+1(ρ̃)

) .
(21)

Using Δ(ρ̃) � (Δ2
∞/EF)ρ̃ we have K(ρ̃) = (Δ2

∞/E2
F)ρ̃2/2. In

this case the integrals in (21) can be carried out analytically
and, in the limit Δ∞/EF � 1, we find

ΔEμ � μ
Δ2

∞
E2

F

μBH. (22)

Note that the energy of the μ = 0 MZM is unchanged, reflect-
ing its topological protection. For μ �= 0, we find the magni-
tude of the energy shifts increase with increasing μ, but since

μBH � μBHc2 � EF these shifts are very small when com-
pared to the bound state energies Eμ � μΔ2

∞/EF. The gaps are
thus not significantly altered.

Similarly, the effect on the bound state energies of the cou-
pling of the field to the orbital degrees of freedom, described
by the vector potential contribution to the Hamiltonian which
has so far been neglected,

HO =

⎡
⎣−vF�σ ·

(e
c
�A × êz

)
0

0 vF�σ ·
(e

c
�A × êz

)
⎤
⎦ , (23)

can be taken into account perturbatively. Taking �A(ρ) =
1
2ρHêθ, the first-order energy shifts we find are,

ΔEO
μ = −

2μ eH
mc

∫∞
0 dρ̃ρ̃ e−2K(ρ̃)J2

μ(ρ̃)∫∞
0 dρ̃ρ̃ e−2K(ρ̃)

(
J2
μ−1(ρ̃) + 2J2

μ(ρ̃) + J2
μ+1(ρ̃)

) .
(24)

Taking K(ρ̃) = (Δ2
∞/E2

F)ρ̃2/2 as above, the integrals in
equation (24) can again be carried out analytically. In the limit
Δ∞/EF � 1 we find,

ΔEO
μ � −μ

eH
2mc

. (25)

Again, the topologically protected MZM is unaffected and
the magnitude of the energy shifts are seen to grow with
μ. These energy shifts can safely be neglected provided
eH/(mc) � Δ∞/E2

F which should hold for the relevant case of
H � Hc2.

Experimentally, heterostructures of Bi2Te3/NbSe2 (refer-
ences [30, 31]) and monolayers of the high-temperature super-
conductor FeTe0.55Se0.45 on SrTiO3(001) (references [32–34])
were investigated. Both systems have the advantage of rel-
atively large superconducting transition temperatures. Note
that for both systems only one peak is observed, which is
an indication that the first excitation energy is of the order
of Δ. In a particularly careful study on Bi2Te3/NbSe2 a
Majorana zero mode was detected in a vortex with spin-
selective Andreev reflection [31]. The zero-bias peak of the
tunneling differential conductance at the vortex center is sub-
stantially higher when the tip polarization and the exter-
nal magnetic field are parallel rather than antiparallel to
each other, providing direct evidence of a Majorana zero
mode.

For the iron-based superconductor, using scanning tun-
neling spectroscopy, a sharp zero-bias peak was observed
inside the vortex core that does not split when moving away
from the vortex center [32]. The evolution of the peak under
varying magnetic field, temperature, and tunneling barrier is
consistent with a nearly pure Majorana bound state. In ref-
erence [33] two distinct classes of vortices were found, dif-
fering by a half-integer level shift in the energy spectra of
the vortex bound states. The level shift is directly tied to the
presence (absence) of a zero-bias conductance peak. More
recently zero-energy bound states simultaneously appearing
at both ends of a 1D atomic line defect were discovered
[34].

5
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4. Relation to the Dirac Hamiltonian

4.1. Model

Another popular system to study bound states in a vortex is
the 2D Dirac model with s-wave superconductivity induced
via proximity [3, 10, 16]. The electron gas corresponds to the
surface states of a TI. The strong spin–orbit interaction cou-
ples the spin parallel to the momentum. As before we con-
sider an isolated vortex, assuming the field perpendicular to
the plane. The four-component spinor Ψ and the Hamiltonian
H are defined as in section 2 but with

Ȟ‖
B (r) =

[
ĥ (r) Δ̂ (r)

−Δ̂∗ (r) −ĥ∗ (r)

]
(26)

and
ĥ (r) = vFσ̂ ·

(
p − e

c
A
)
− EF. (27)

In polar coordinates Δ (r) = Δ(ρ)e−iθ and

ĥ(ρ, θ) =

⎡
⎢⎢⎣

−EF −ivF e−iθ

(
∂

∂ρ
− i∂

ρ∂θ

)

−ivF eiθ

(
∂

∂ρ
+

i∂
ρ∂θ

)
−EF

⎤
⎥⎥⎦ ,

(28)
As in section 2 we expand the field operators in partial waves
eiμθ, where μ is an integer to have a single-valued wave func-
tion. The θ-phase of Δ (r) can be eliminated via a gauge trans-
formation. The θ dependence of the components of the spinor
Ψμ are again given by equation (5) and applying the spinor to
ĥ(ρ, θ) we have

ĥ(ρ, θ) =

⎡
⎢⎢⎣

−EF −ivF e−iθ

(
∂

∂ρ
+

μ

ρ

)

−ivF eiθ

(
∂

∂ρ
− μ− 1

ρ

)
−EF

⎤
⎥⎥⎦ .

(29)
The first order differential equations satisfied by the ampli-
tudes f μ

j are

− ivF

(
∂

∂ρ
− μ− 1

ρ

)
f μ

1 (ρ) −Δ(ρ) f μ
3 (ρ) − (E + EF) f μ

2 (ρ) = 0,

(30)

− ivF

(
∂

∂ρ
+

μ

ρ

)
f μ

2 (ρ) +Δ(ρ) f μ
4 (ρ) − (E + EF) f μ

1 (ρ) = 0,

(31)

− ivF

(
∂

∂ρ
+

μ+ 1
ρ

)
f μ

3 (ρ)+Δ(ρ) f μ
1 (ρ)− (E−EF) f μ

4 (ρ) = 0,

(32)

− ivF

(
∂

∂ρ
− μ

ρ

)
f μ

4 (ρ) −Δ(ρ) f μ
2 (ρ) − (E − EF) f μ

3 (ρ) = 0.

(33)

These equations are similar to those in references [10,
16], where slightly different model definitions have been
considered.

4.2. Spin rotation transformation

We now present the unitary transformation mapping
the Hamiltonian with parallel spin–momentum locking
(section 4), Ȟ‖

B (equation (27)), onto the model with
Rashba interaction (perpendicular coupling, section 2), Ȟ⊥

B

(equation (2)). Consider the four-dimensional unitary matrix

U =

[
ei(π/4)σz 0

0 e−i(π/4)σz

]

=

[
(1 + iσz)/

√
2 0

0 (1 − iσz)/
√

2

]
. (34)

It is now straightforward to show that Ȟ⊥
B = UȞ‖

BU†,

UȞ‖
BU† =

[
ei(π/4)σz 0

0 e−i(π/4)σz

] [
σx px + σy py − EF iσyΔ

−iσyΔ
∗ −(σx px + σy py)∗ + EF

] [
e−i(π/4)σz 0

0 ei(π/4)σz

]

=

[
(−σy px + σx py) − EF iσyΔ

−iσyΔ
∗ −(−σy px + σx py)∗ + EF

]
= Ȟ⊥

B . (35)

The wave functions, including the phase factors B j, for the two
types of spin–momentum lockings also transform according to
U.

5. Conclusions

We studied the bound states in the core of a vortex of a two-
dimensional topological superconductor with Rashba interac-
tion by solving the BdG equations following the procedure

outlined by CdeGM [26]. The electron gas corresponds to the
surface states of a TI with the superconductivity induced via
proximity effect from a nearby s wave superconductor [3, 5, 9,
10]. The momentum and the spin are locked perpendicularly
due to the strong spin–orbit interaction. However, the results
for the bound states in the core of the vortex are independent
of the kind of spin–orbit coupling (as long as it is strong), e.g.
parallel or perpendicular spin–momentum locking. In subsec-
tion 4.2 we present the unitary transformation connecting the

6
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Hamiltonians for parallel and perpendicular spin and momen-
tum locking (spin-rotation). The characteristic energy scale for
the spacing of the energy levels is Δ2

∞/EF.
The calculation yields a string of fermion bound states

with energy Eμ, μ �= 0 and a bound state with Majorana
statistics for μ = 0 and E = 0. While in previous studies the
results are mainly numerical, we obtained analytical expres-
sions for the energy spectrum and the wave functions. The
wave functions consist of products of a Bessel function and
an exponential decay as function of the distance to the core
of the vortex. The characteristic function determining the fall
off is exp[−

∫ ρ

0 dρ′Δ(ρ′)/vF]. Given the wave functions we
obtained an analytic expression of the LDOS for the bound
states. This quantity is, in principle, experimentally acces-
sible via STM [32]. The maximum LDOS of the Majorana
state is at ρ = 0, while for larger μ the maxima as func-
tion of ρ form concentric circles with a radius that increases
with μ.

The main difference between the ordinary superconductor
and the topological superconducting gas is the spin-locking.
In the latter in a closed path the spin is forced to follow the
momentum giving rise to a non-trivial Berry phase of 1/2.
This converts the half-integer quantum numbers into integer
ones and opens the possibility to the existence of a Majorana
fermion.

We studied the LDOS as a function of external frequency,
temperature and distance from the center of the vortex. The
peaks in the LDOS decrease rapidly with temperature due to
the smearing of the Fermi function. Outside the vortex-core,
the height of the peaks also decreases fast with the distance
from the vortex core. It is interesting to notice that the parti-
cle–hole symmetry is broken in the LDOS as a consequence
of the spin–orbit coupling. This can be traced to equation (6).
The bound states are partially spin-polarized. For instance, the
Majorana peak is a pure down-spin state at the core of the vor-
tex (ρ̃ = 0), but becomes partially polarized away from the
center. The polarization of all states depends on the distance
from the vortex core.

The energy shift of the bound states in a small mag-
netic field (Zeeman and orbital contributions) has also been
obtained. The topologically protected MZM is unaffected by
the magnetic field. The magnitude of the energy shifts grows
with μ, but is small compared to Δ2

∞/EF, so that the gaps
are not significantly altered. This is consistent with our initial
assumption in section 2.1.

The experimental search for Majorana zero modes
was successful in two systems, namely, heterostructures
of Bi2Te3/NbSe2 [30, 31] and monolayers of the high-
temperature superconductor FeTe0.55Se0.45 on SrTiO3(001)
[32, 33]. Both systems have the advantage of relatively large
superconducting transition temperatures.

Within the range of validity of the present calculation
(|E| � Δ∞ � EF), the gap between the Majorana state and
the first excited fermion state is rather small, even for high-Tc

superconductors. Hence, very low temperatures are required,
unless EF is reduced to close to the apex of the Dirac Hamil-
tonian. Although this is beyond the validity of our results,
we do not expect qualitative changes in the results. Indeed

it has been numerically shown in references [5, 11] that the
first excited state above the Majorana bound state can have an
excitation energy of the order of Δ∞. This would be a neces-
sary condition for the use of this Majorana state in quantum
computing.

In appendix C we present a semiclassical approach for the
excited states. For EF � Δ∞ we reproduce the results above,
while for EF ≈ 0 we obtain the first excited state at

√
2Δ∞.

This value is about 50% larger than previous numerical cal-
culations in reference [5, 11]. Our result is expected to be
an overestimate since quantum fluctuations are neglected. The
electronic spectrum of the vortex is then sufficiently robust for
applications in quantum computing.

An alternative way to enhance the gap between the Majo-
rana zero mode and the first excitation and thus to stabilize the
Majorana state is to introduce a cylindrical hole in the super-
conductor [10, 11]. A similar approach using a heterostructure
consisting of a magnetic insulator, a TI and a superconduc-
tor was proposed by Sau et al [6]. The carved hole serves as
a pinning center for a vortex. Inside the hole the supercon-
ductor order parameter is zero. The number of trapped flux
quanta is fine-tuned by the magnetic field perpendicular to
the plane. Only for an odd number of trapped flux quanta
is there a Majorana zero-mode. If the superconductor con-
sists of an island a second Majorana fermion emerges at the
edge of the island. In the case of our models the conjugated
Majorana state lies in the plane far away from the core of the
vortex.
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Appendix A. Solution of the Bogoliubov–de
Gennes equations

Using the method by CdeGM [26, 27] the equations are solved
(i) for small distances ρ, and (ii) for larger distances (but
smaller than ξ). These two solutions are then matched at an
intermediate radius, ρc. If the matching condition is such that
it is independent of the distance from the vortex core, the solu-
tion is valid for the entire region of the vortex. This condition as
well determines the values of the energies of the bound states
inside the vortex core.

A.1. Solution for ρ < ρc

It is convenient to convert the first order differential equations,
(7)–(10), into second order ones. From equation (7) we can
express f μ

2 (ρ) and insert it into equation (8). Similar substitu-
tions can be done for the remaining equations. Defining qp =
(EF + E)/vF and qh = (EF − E)/vF (for particles and holes,

7
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respectively) we obtain[
∂2

∂ρ2
+

1
ρ

∂

∂ρ
− (μ− 1)2

ρ2
+ q2

p

]
f μ

1

=
qp

vF
Δ(ρ) f μ

4 −
(

∂

∂ρ
+

μ

ρ

)
Δ(ρ)
vF

f μ
3, (36)

[
∂2

∂ρ2
+

1
ρ

∂

∂ρ
− μ2

ρ2
+ q2

p

]
f μ

2

= −qp

vF
Δ(ρ) f μ

3 −
(

∂

∂ρ
− μ− 1

ρ

)
Δ(ρ)
vF

f μ
4, (37)

[
∂2

∂ρ2
+

1
ρ

∂

∂ρ
− (μ+ 1)2

ρ2
+ q2

h

]
f μ

3

=
qh

vF
Δ(ρ) f μ

2 −
(

∂

∂ρ
− μ

ρ

)
Δ(ρ)
vF

f μ
1, (38)

[
∂2

∂ρ2
+

1
ρ

∂

∂ρ
− μ2

ρ2
+ q2

h

]
f μ

4

= −qh

vF
Δ(ρ) f μ

1 −
(

∂

∂ρ
+

μ+ 1
ρ

)
Δ(ρ)
vF

f μ
2 . (39)

Since Δ(ρ) increases linearly from zero, we may neglect
Δ(ρ) for ρ < ρc. The solutions for ρ < ρc are then

f μ
1 (qpρ) = Aμ

1 Jμ−1(qpρ),

f μ
2 (qpρ) = Aμ

2 Jμ(qpρ),

f μ
3 (qhρ) = Aμ

3 Jμ+1(qhρ),

f μ
4 (qhρ) = Aμ

4 Jμ(qhρ),

(40)

where Jν(z) are Bessel functions. The constants Aμ
j are not

all independent. Substituting the solution (40) into the first
order differential equations we have Aμ

1 = Aμ
2 and Aμ

3 =
−Aμ

4 . The constants A1 and A4 are independent for Δ =

0, but become coupled when Δ �= 0, namely, A1 =
√

1 + Ẽ

and A4 =
√

1 − Ẽ, where Ẽ = E/(vFkF) (see part A.3 of
appendix A).

A.2. Solution for ρ > ρc

Δ plays a relevant role for ρ > ρc. We write the solution as
a product of a Hankel function times an envelope function,
f j(ρ̃) = B j[H(1)

μ (ρ̃)g j(ρ̃) + c.c.], where the Bj are constants.
Here we use Bardeen et al’s [29] choice for the order of
the Hankel function, while CdeGM [26] considered H(1)

m with

m =
√
μ2 + 1

4 . Both are viable ways to proceed. We postu-

late B1 = B2 = −B3 = B4 = 1
2 B, where B is the normalization

constant equated to one for simplicity. The relative phases of
the Bj are the same as in equation (40). The verification that
this choice of B j is the correct one follows in part A.3 of this
appendix, where we match the wave function for ρ < ρc to
ρ > ρc. We introduce again the dimensionless variables

ρ̃ = kFρ, Ẽ = E/(kFvF) and Δ̃ = Δ/(kFvF), and further
assume that for ρ � ξ, dΔ(ρ̃)/dρ̃ = Δ′, where Δ′ is a
constant.

Next we insert the ansatz for f j(ρ̃) into equations (36)–(39),
use the differential equation satisfied by the Hankel func-
tion and divide the equations by H(1)

μ (ρ̃). The quantity
[dH(1)

μ (ρ̃)/dρ̃]/H(1)
μ (ρ̃) is obtained using the asymptotic expan-

sion of H(1)
μ (ρ̃) for large argument (see appendix B)

1

H(1)
μ (ρ̃)

dH(1)
μ (ρ̃)

dρ̃
∼ − 1

2ρ̃
+ i. (41)

Note that the next order in the expansion in equation (41) does
not add relevant terms to the order in 1/ρ̃ considered here.
This way we arrive at the following four coupled second order
differential equations for the functions g j(ρ̃):

d2g1

dρ̃2
+ 2i

dg1

dρ̃
+

[
Ẽ2 + 2Ẽ +

2 μ− 1
ρ̃2

]
g1

= Δ̃(1 + Ẽ)g4 + Δ̃
dg3

dρ̃
+

[
2 μ+ 1

2ρ̃
+ i

]
Δ̃g3,

(42)

d2g2

dρ̃2
+ 2i

dg2

dρ̃
+
[
Ẽ2 + 2Ẽ

]
g2

= Δ̃(1 + Ẽ)g3 − Δ̃
dg4

dρ̃
+

[
2 μ− 3

2ρ̃
− i

]
Δ̃g4,

(43)

d2g3

dρ̃2
+ 2i

dg3

dρ̃
+

[
Ẽ2 − 2Ẽ − 2 μ+ 1

ρ̃2

]
g3

= −Δ̃(1 − Ẽ)g2 + Δ̃
dg1

dρ̃
−
[

2 μ− 1
2ρ̃

− i

]
Δ̃g1,

(44)

d2g4

dρ̃2
+ 2i

dg4

dρ̃
+
[
Ẽ2 − 2Ẽ

]
g4

= −Δ̃(1 − Ẽ)g1 − Δ̃
dg2

dρ̃
−
[

2 μ+ 3
2ρ̃

+ i

]
Δ̃g2.

(45)

Equations (42)–(45) are solved perturbatively. To zeroth order
we have, keeping the dominant terms,

2i
d

dρ̃

⎡
⎢⎢⎣

g(0)
1

g(0)
2

g(0)
3

g(0)
4

⎤
⎥⎥⎦ = Δ̃

⎡
⎢⎢⎣

g(0)
4

g(0)
3

−g(0)
2

−g(0)
1

⎤
⎥⎥⎦+ iΔ̃

⎡
⎢⎢⎣

g(0)
3

−g(0)
4

g(0)
1

−g(0)
2

⎤
⎥⎥⎦ , (46)

while the remaining terms in equations (42)–(45) will be
treated in first order perturbation, g(1)

j . The solution of
equation (46) is

g(0)
1 (ρ̃) = C e−K(ρ̃), g(0)

2 (ρ̃) = −iC e−K(ρ̃),

g(0)
3 (ρ̃) = −C e−K(ρ̃), g(0)

4 (ρ̃) = −iC e−K(ρ̃),
(47)

8
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where K(ρ̃) =
∫ ρ̃

0 dxΔ̃(x) has been defined before, C = eiγ and
γ is to be determined.

The equations for g(1)
j are

2i
d

dρ̃

⎡
⎢⎢⎣

g(1)
1

g(1)
2

g(1)
3

g(1)
4

⎤
⎥⎥⎦− Δ̃

⎡
⎢⎢⎣

g(1)
4

g(1)
3

−g(1)
2

−g(1)
1

⎤
⎥⎥⎦− iΔ̃

⎡
⎢⎢⎣

g(1)
3

−g(1)
4

g(1)
1

−g(1)
2

⎤
⎥⎥⎦

= − d2

dρ̃2

⎡
⎢⎢⎣

g(0)
1

g(0)
2

g(0)
3

g(0)
4

⎤
⎥⎥⎦−

⎡
⎢⎢⎢⎢⎢⎣

(Ẽ2 + 2Ẽ +
2 μ− 1

ρ̃2
)g(0)

1

(Ẽ2 + 2Ẽ)g(0)
2

(Ẽ2 − 2Ẽ − 2 μ+ 1
ρ̃2

)g(0)
3

(Ẽ2 − 2Ẽ)g(0)
4

⎤
⎥⎥⎥⎥⎥⎦

+ Δ̃Ẽ

⎡
⎢⎢⎣

g(0)
4

g(0)
3

g(0)
2

g(0)
1

⎤
⎥⎥⎦+ Δ̃

d
dρ̃

⎡
⎢⎢⎣

g(0)
3

−g(0)
4

g(0)
1

−g(0)
2

⎤
⎥⎥⎦+

Δ̃

2ρ̃

⎡
⎢⎢⎣

(2 μ+ 1)g(0)
3

(2 μ− 3)g(0)
4

−(2 μ− 1)g(0)
1

−(2 μ+ 3)g(0)
2

⎤
⎥⎥⎦ .

(48)

Inserting our solutions for g(0)
j into equation (48), and with the

ansatz g(1)
1 = Ca1 e−K , g(1)

2 = −iCa2 e−K , g(1)
3 = −Ca3 e−K

and g(1)
4 = −iCa4 e−K , we obtain

2i
d

dρ̃

⎡
⎢⎢⎣

a1

−ia2

−a3

−ia4

⎤
⎥⎥⎦− 2iΔ̃

⎡
⎢⎢⎣

a1

−ia2

−a3

−ia4

⎤
⎥⎥⎦− Δ̃

⎡
⎢⎢⎣
−ia4

−a3

ia2

−a1

⎤
⎥⎥⎦− iΔ̃

⎡
⎢⎢⎣
−a3

ia4

a1

ia2

⎤
⎥⎥⎦

=

(
Δ̃

ρ̃
− Δ̃2

)⎡⎢⎢⎣
1
−i
−1
−i

⎤
⎥⎥⎦−

⎡
⎢⎢⎢⎢⎢⎢⎣

(
Ẽ2 + 2Ẽ +

2 μ− 1
ρ̃2

)
−i(Ẽ2 + 2Ẽ)

−
(

Ẽ2 − 2Ẽ − 2 μ+ 1
ρ̃2

)
−i(Ẽ2 − 2Ẽ)

⎤
⎥⎥⎥⎥⎥⎥⎦

+ Δ̃Ẽ

⎡
⎢⎢⎣
−i
−1
−i
1

⎤
⎥⎥⎦− Δ̃2

⎡
⎢⎢⎣
−1
i
1
i

⎤
⎥⎥⎦+

Δ̃

2ρ̃

⎡
⎢⎢⎣
−(2μ+ 1)
−i(2μ− 3)
−(2μ− 1)
i(2μ+ 3)

⎤
⎥⎥⎦ .

(49)

Since all the terms are proportional to e−K(ρ̃), this factor has
been cancelled out. After cancellations of Δ̃2-terms, the dif-
ferential equations for a j are

2
d

dρ̃

⎡
⎢⎢⎣

a1

−ia2

−a3

−ia4

⎤
⎥⎥⎦+ Δ̃

⎡
⎢⎢⎣

(a3 + a4) − 2a1

(a3 + a4) − 2a2

(a1 + a2) − 2a3

(a1 + a2) − 2a4

⎤
⎥⎥⎦

= −

⎡
⎢⎢⎢⎢⎢⎢⎣

i

(
Ẽ2 + 2Ẽ +

2 μ− 1
ρ̃2

)
i(Ẽ2 + 2Ẽ)

i

(
Ẽ2 − 2Ẽ − 2 μ+ 1

ρ̃2

)
i(Ẽ2 − 2Ẽ)

⎤
⎥⎥⎥⎥⎥⎥⎦
+ Δ̃Ẽ

⎡
⎢⎢⎣
−1
−1
1
1

⎤
⎥⎥⎦

+
Δ̃

2ρ̃

⎡
⎢⎢⎣

i(2μ− 1)
−i(2μ− 1)
−i(2μ+ 1)
i(2μ+ 1)

⎤
⎥⎥⎦ . (50)

These equations decouple by taking linear combinations:

2
d

dρ̃
(a1 − a2) − 2Δ̃(a1 − a2) = i

2μ− 1
ρ̃2

+ i
Δ̃

ρ̃
(2μ− 1),

2
d

dρ̃
(a3 − a4) − 2Δ̃(a3 − a4) = −i

2μ+ 1
ρ̃2

− i
Δ̃

ρ̃
(2μ+ 1),

d
dρ̃

(a1 + a2 + a3 + a4) = 2iẼ2 − i
1
ρ̃2

,

d
dρ̃

(a1 + a2 − a3 − a4) − 2Δ̃(a1 + a2 − a3 − a4)

= 4iẼ + i
2μ
ρ̃2

− 2Δ̃Ẽ.

(51)

The integration of the decoupled differential equations yields

a1−a2 = −i(μ− 1
2

)
∫ ∞

ρ̃

dx exp[K(ρ̃)−K(x)]

[
1
x2

+
Δ̃(x)

x

]
,

(52)

a3 − a4 = i(μ+
1
2

)
∫ ∞

ρ̃

dx exp[K(ρ̃) − K(x)]

[
1
x2

+
Δ̃(x)

x

]
,

(53)

a1 + a2 + a3 + a4 = 2iẼ2ρ̃+
i
ρ̃

, (54)

a1 + a2 − a3 − a4

= −i
∫ ∞

ρ̃

dx exp[2K(ρ̃) − 2K(x)]

[
4Ẽ +

2 μ

x2

]

− 2
∫ ρ̃

0
dx exp[2K(ρ̃) − 2K(x)]ẼΔ̃(x). (55)

The first term in equation (54) and the last term in equation (55)
are of third order in the small parameters Δ̃(ρ̃), Ẽ and ρ̃ and can
be neglected. The remaining two integrals can be simplified by
integrating by parts∫ ∞

ρ̃

dx exp[2K(ρ̃) − 2K(x)]
[
Ẽ +

μ

2x2

]

= −Ẽρ̃+
μ

2ρ̃
+

∫ ∞

ρ̃

dx exp[2K(ρ̃) − 2K(x)]

×
[

2Δ̃(x)Ẽx − μΔ̃(x)
x

]
,

∫ ∞

ρ̃

dx exp[K(ρ̃) − K(x)]

[
1
x2

+
Δ̃(x)

x

]
=

1
2ρ̃

.

(56)
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It is straightforward to solve the above equations for the a j:

a1 = i

(
Ẽρ̃− 2 μ− 1

2ρ̃

)
− i
∫ ∞

ρ̃

dx exp[2K(ρ̃) − 2K(x)]

× Δ̃(x)
[
2Ẽx − μ

x

]
, (57)

a2 = iẼρ̃− i
∫ ∞

ρ̃

dx exp[2K(ρ̃) − 2K(x)]Δ̃(x)
[
2Ẽx − μ

x

]
,

(58)

a3 = −i

(
Ẽρ̃− 2 μ+ 1

2ρ̃

)
+ i
∫ ∞

ρ̃

dx exp[2K(ρ̃) − 2K(x)]

× Δ̃(x)
[
2Ẽx − μ

x

]
, (59)

a4 = −iẼρ̃+ i
∫ ∞

ρ̃

dx exp[2K(ρ̃) − 2K(x)]Δ̃(x)
[
2Ẽx − μ

x

]
.

(60)

The common integral term in equations (57)–(60) is zero and
defines the bound state energy.

A.3. Matching of wave functions

The final step consists in matching the solution for small ρ̃
and large ρ̃ at a distance ρ̃c from the core of the vortex. The
condition that this matching is independent of ρc determines
a unique wave function valid for all ρ̃ and the energy of the
bound state.

The solutions for ρ̃ > ρ̃c are now given by f μ
j (ρ̃) =

B j[H(1)
μ (ρ̃)g j(ρ̃) + c.c.], where the coefficients B j are defined

at the beginning of part A.2 of this appendix. They have to
be matched at ρ̃c to f μ

j (ρ̃) given by equation (40) for ρ̃ < ρ̃c

with the prefactors defined in part A.1 of this appendix using
a similar procedure to reference [26]. The functions gj were
calculated consistently to first order of perturbation and can
be written as an exponential, i.e. g j(ρ̃) ∝ exp[−K(ρ̃) + a j(ρ̃)],
which remains correct to first order. To match the wave func-
tions we employ the asymptotic expansions for the Bessel
and the Hankel functions given by equations (67) and (68) in
appendix B.

There are three factors in f j depending on ρ̃: (i) the
1/

√
ρ̃c-dependence in the Bessel and Hankel functions, (ii) the

phase factors of the form exp[i(1 ± Ẽ)ρ̃c], and (iii) the factors
exp{i[(μ± 1)2 − 1/4]/[2ρ̃c]}. Note that the complex conju-
gated function for ρ̃ > ρ̃c is also a solution, involving the Han-
kel function of the second kind. Both solutions are needed to
complete the matching.

We explicitly work out the matching for the function f μ
1 ;

the other three functions follow similarly. For ρ̃ < ρ̃c we have

f μ
1 (ρ̃c) = A1Jμ−1(qpρ)

= A1

√
2

π(1 + Ẽ)ρ̃c
cos

[
(1 + Ẽ)ρ̃c −

π(μ− 1)
2

− π

4
+

(μ− 1)2 − 1
4

2(1 + Ẽ)ρ̃c

]
, (61)

while for ρ̃ > ρ̃c we obtained

f μ
1 (ρ̃c) = [H(1)

μ (ρ̃c)g1(ρ̃c) + c.c.]

=
1
2

√
2
πρ̃c

{
exp

[
i

(
γ + Ẽρ̃c −

(2μ− 1)
2ρ̃c

+ ρ̃c −
πμ

2
− π

4
+

μ2 − 1
4

2ρ̃c

)]
+ c.c.

}
e−K(ρ̃c).

(62)

In equation (62) the phase γ arises from C, the next two
terms in the exponential are due to a1 and the remainder is
consequence of the Hankel function.

From comparing these two expressions it follows that A1 =√
1 + Ẽ and γ = π/2. As in reference [26] we neglect Ẽ in the

denominator of the last term in equation (61), because Ẽ � 1,
and the factor e−K(ρ̃c) in equation (62). The two expressions are
then equivalent and the matching is satisfied for a large interval
of ρ̃c.

The above hinges on the vanishing of the common integral
term in equations (57)–(60), which determines the energy of
the bound state, i.e.∫ ∞

ρ̃c

dx exp[2K(ρ̃) − 2K(x)] Δ̃(x)
[
2Ẽx − μ

x

]
= 0. (63)

At this point we can take ρ̃c → 0 in the lower integration limit
and integrate the first term by parts. This leads to expression
(13) for the energy in section 2.

Appendix B. Asymptotic expansion for Bessel and
Hankel functions

For large argument the asymptotic expansions for Bessel and
Hankel functions are given by [35]

Jν(z) =

√
2
πz

[cos(ω)
∞∑

k=0

(−1)k a2k(ν)
z2k

− sin(ω)
∞∑

k=0

(−1)k a2k+1(ν)
z2k+1

, (64)

H(1)
ν (z) =

√
2
πz

eiω
∞∑

k=0

ik
ak(ν)

zk
, (65)

where ω = z − 1
2νπ − 1

4π and

ak(ν) =
(4ν2 − 12)(4ν2 − 32) · · · (4ν2 − (2k − 1)2)

k!8k
. (66)

Here we are interested in real positive z. The above expressions
can be resummed into the argument of one circular function.
Keeping only terms to order 1/z in the argument of the circular
function we obtain

Jν(z) =

√
2
πz

cos

[
z − πν

2
− π

4
+

ν2 − 1
4

2z

]
, (67)
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H(1)
ν (z) =

√
2
πz

exp

[
i

(
z − πν

2
− π

4
+

ν2 − 1
4

2z

)]
.

(68)

These equations are exact to this order. CdeGM [26] neglected
the − 1

4/(2z) in the last term, which is still correct for suffi-
ciently large ν.

Appendix C. Semiclassical approach

The electronic structure at the core of a vortex calculated by
CdeGM’s can be obtained with semiclassical arguments [5].
In this appendix we present a simple approach for the low-
est energy bound states beyond the limitation |E| � EF used
above. Our starting point is again the BdG equations, but to
simplify we use a two-component spinor with components
u (r) and v (r). The relativistic energy of the bound electron
is Erel = vp, where v is the group velocity. We assume the
momentum p can be written as the sum of the radial momen-
tum pρ and the angular momentum pl. Semiclassically, the
bound electron is assumed to follow a circular orbit of radius ρ,
so that we may neglect pρ and pl = μ/ρ, whereμ is the angular
momentum about the z-axis.

The BdG equations can then be written as[
E − vμ/ρ+ vkF −Δ(ρ)

−Δ(ρ) E + vμ/ρ− vkF

](
u
v

)
= 0. (69)

For a nontrivial solution the determinant has to be zero

E2 − v2

(
μ

ρ
− kF

)2

−Δ(ρ)2 = 0, (70)

and has roots equal to

E± = ±

√
v2

(
μ

ρ
− kF

)2

+Δ(ρ)2. (71)

Minimizing the energy with respect to ρ we obtain the radius
of the orbit in the confinement potential Δ(ρ) = ρΔ∞/ξ.

We analyze two special limits, (i) large EF and (ii) EF = 0.
For large EF the radius with minimal energy is given approxi-
mately by ρ = μ/kF and

E± = ±Δ∞
ξ

μ

kF
= ±μ

Δ2
∞

vkF
, (72)

where ξ = v/Δ∞. This agrees with the non-relativistic case of
CdeGM, where μ is a half-integer. For the relativistic situation
μ is an integer and we obtain the correct excited states. For
μ = 0 we get E = 0 as for the Majorana bound state, but for
the wrong reasons, since we neglected the zero point motion
for the angular and radial motions.

If EF = 0 the minimum of the energy is given by ρ =√
μvξ/Δ∞ =

√
μξ =

√
μv/Δ∞ and the energy is

E± = ±
√

2 μvΔ∞/ξ = ±
√

2 μΔ∞. (73)

Hence the radius of the orbit for μ = 1 is ξ, i.e. the coher-
ence length or radius of the vortex, and the excitation energy

is 21/2Δ∞. This is comparable with numerical calculations by
Sau et al [5] and Rakhmanov et al [10], although our estimate
is roughly 50% larger (we neglect quantum fluctuations) for a
slightly different model.
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