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Engineering Anomalously Large Electron Transport in
Topological Semimetals
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Anomalous transport of topological semimetals has generated significant
interest for applications in optoelectronics, nanoscale devices, and
interconnects. Understanding the origin of novel transport is crucial to
engineering the desired material properties, yet their orders of magnitude
higher transport than single-particle mobilities remain unexplained. This work
demonstrates the dramatic mobility enhancements result from phonons
primarily returning momentum to electrons due to phonon-electron
dominating over phonon–phonon scattering. Proving this idea, proposed by
Peierls in 1932, requires tuning electron and phonon dispersions without
changing symmetry, topology, or disorder. This is achieved by combining de
Haas - van Alphen (dHvA), electron transport, Raman scattering, and
first-principles calculations in the topological semimetals MX2 (M = Nb, Ta
and X = Ge, Si). Replacing Ge with Si brings the transport mobilities from an
order magnitude larger than single particle ones to nearly balanced. This
occurs without changing the crystal structure or topology and with small
differences in disorder or Fermi surface. Simultaneously, Raman scattering
and first-principles calculations establish phonon–electron dominated
scattering only in the MGe2 compounds. Thus, this study proves that
phonon-drag is crucial to the transport properties of topological semimetals
and provides insight to engineer these materials further.
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1. Introduction

Predictions and observations of novel elec-
tronic and optoelectronic responses have
generated great interest in topological ma-
terials due to their potential for device ap-
plications and interconnects.[1–3] The car-
rier mobility, incorporating the carrier life-
time and effective mass in a semiclassical
picture, is thus one of the most crucial as-
pects for charge and heat conductivity and
dissipation in real devices. Figure 1a shows
the measured single particle and transport
mobility of various topological semimetals
taken from literature[4,5] as well as our re-
sults for NbGe2. The transport mobility is
directly determined from the longitudinal
and Hall resistance. At the same time, the
single particle lifetime and mass are ex-
tracted from the field and temperature de-
pendence of the quantum oscillations (see
Section Electronic Properties in this arti-
cle and Quantum Oscillations section of
the Supporting Information). One partic-
ularly perplexing aspect of the transport
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Figure 1. a) Measured transport (blue) and single particle (red) mobilities for various topological semimetals.[4,5] Despite significant differences in
topology, symmetry, and bulk band structures, these materials exhibit orders of magnitude higher transport than single particle mobilities. b) (top)
Scattering diagram for a momentum relaxing scattering event of a single electron in a normal metal. Here, an electron scatters with a phonon, which
then scatters with other phonons, dissipating the momentum of the electron into heat. (bottom) Scattering diagram for a momentum-conserving
scattering event of a single electron in a phonon-electron fluid. Here, an electron scatters with a phonon, causing it to lose momentum. The phonon
then scatters with another electron, effectively returning the momentum of the first electron. c) Cartoon schematic of electron scattering pathways in
a normal metal (top) and those in a phonon-electron fluid (bottom). The faucet represents an electric field providing energy and momentum to the
electrons. The momentum of these electrons can be lost either by defect scattering or into the phonon bath. From here, anharmonic phonon decay
transfers the energy and momentum into heat. However, if the phonon–electron scattering overwhelms the phonon–phonon, the momentum is instead
returned to the electron bath, greatly enhancing bulk transport.

in topological semimetals is the three orders of magnitude
larger transport (μT) mobilities than their single particle (μQ)
ones. Such enhancements in the transport mobility could pave
the way to future low-loss electronic interconnects, but this is
currently limited to low temperatures. Thus, there is an urgent
need to uncover the origin of these extreme transport mobili-
ties. Some potential explanations have been proposed, ranging
from symmetry, topological protection, and chirality-protected
backscattering.[4] Nonetheless, experiments have not directly
demonstrated how a specific material property, when removed,
eliminates this behavior.

Such experiments are crucial as the apparent universality of
the anomalous transport in semimetals calls into question the
previous potential explanations. For example, if the mechanism’s
origin results from topology, explaining materials such as WP2
where the Weyl node is over 300 meV below the Fermi surface is
challenging. It is also unclear why such a mechanism would work
in materials with different quantum geometries, as anomalous
transport appears in Dirac (Cd3As2), type-I (TaAs), and type-II
(WP2,WTe2, NbGe2) Weyl semimetals (Figure 1a). Furthermore,
these materials possess different crystal structures, symmetries,
and Fermi surfaces of widely varying sizes. However, some Ra-
man scattering experiments suggest a common factor in a few of
these materials: phonon–electron exceeds the phonon–phonon
scattering.[6–11]

Unlike normal metals, this scenario suggests topological
semimetals are in the regime of phonon–electron fluids. Specif-
ically, the phonons primarily decay into electron-hole pairs via
phonon–electron scattering rather than into the acoustic contin-
uum via phonon–phonon scattering.[6,12] To see how this affects
transport, consider the fate of momentum imparted by an elec-

tric field to the electrons. In a normal metal devoid of Umk-
lapp scattering, an electron loses momentum by scattering off a
defect or a phonon[13] (top of Figure 1b). The momentum im-
parted to the phonon is then lost to other phonons via anhar-
monic phonon–phonon scattering. As such, phonon-scattering
is typically momentum relaxing, as the electrons lose net mo-
menta via electron–phonon scattering to the phonon bath, which
is then dissipated into heat via phonon–phonon scattering (top
of Figure 1c). However, the phonon can also scatter into an-
other electron (bottom of Figure 1b), giving its momentum to an-
other electron, producing a net momentum-conserving process.
As described by Peierls,[14] if the phonon–electron scattering rate
(Γph−e) is greater than the phonon–phonon one (Γph−ph), then the
phonons would enhance charge transport by returning the mo-
mentum to the electron bath (bottom of Figure 1c). This means
a single electron may scatter often, having a reduced single-
particle lifetime. However, the momentum-conserving scattering
of the phonon–electron fluid nearly cancels the resistive con-
tribution of phonons, enhancing the measured transport mo-
bility. Such a mechanism was proposed to explain the resistiv-
ity of some simple metals;[15–17] however, the phonon lifetimes
and scattering mechanisms were never directly probed. Indeed,
to properly investigate this possibility, one needs to measure
the phonon scattering while systematically tuning the phonon–
phonon or phonon–electron joint density of states. This must be
done without large changes in the system’s disorder or affect-
ing its topology and symmetry. This has proven to be a signifi-
cant challenge. For example, efforts focused on germanium and
silicon alloys to tune between dominant phonon–phonon and
phonon–electron scattering suffered from large changes in defect
scattering.[18,19]
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Figure 2. a) Single particle and transport mobility of all four compounds in the MX2 family. As the series evolves from NbGe2 to TaSi2, a clear trend
emerges with the transport mobility (μT) decreasing dramatically despite larger single particle mobilities (μQ). Inset shows the crystal structure of the MX2
compounds. b) The experimental (m∗

exp) and theoretical (m∗
theory

) quasiparticle effective masses plotted as a function of dHvA frequencies. A substantial

enhancement in the experimental masses over the DFT calculated ones is observed in the MGe2, but not in the MSi2. Nonetheless, the overall change
in mass between the materials does not explain the trends in mobilities.

The MX2 family of materials provides a unique solution to test
the role of phonon–electron scattering in electron transport with
minimal changes in other material properties. Indeed, these ma-
terials are established type-II Weyl semimetals, with relatively
large transport mobilities and evidence for a phonon-electron
fluid in NbGe2.[12,20] Furthermore, recent calculations suggest
that phonon–electron coupling differs dramatically between the
germanides and silicides.[21] With this in mind, we carefully mea-
sured their single particle and transport mobilities. As shown in
Figure 2a, we find the MGe2 compounds are similar to other
topological semimetals with an order of magnitude difference
between μT and μQ for NbGe2. Upon moving to TaGe2, we ob-
serve the transport mobility is reduced by a factor of two, de-
spite the single particle mobility doubling. Nonetheless, TaGe2
has a similar trend to the Nb analog with μT ≫ μQ, suggesting
it is on the border between anomalous and normal metal trans-
port. Upon moving to the MSi2 compounds, we observe nor-
mal metallic transport with nearly equal quantum and transport
mobilities. At first glance, this is rather surprising as all four
compounds have nearly identical anharmonicity (as determined
by phonon frequency shifts shown in Figures S9–S12, Support-
ing Information), crystal structures, and symmetry shown in the
inset of Figure 2a (Space group 180, as determined by X-ray
shown in Table S5, Supporting Information). Furthermore, as
shown by the good agreement between density functional the-
ory (DFT) calculations and the dHvA measurements discussed
later, along with the band dispersions (see Figures S14–S15,
Supporting Information) and the topological quantum chemistry
database,[22–25] the materials share similar Fermi surfaces and
topologies. The dHvA and transport results discussed in the sec-
tion “Electronic Properties” also indicate similar electronic dis-
order, consistent with the temperature-dependent X-ray diffrac-
tion and Raman linewidth. However, as we reveal through mea-
surements of the phonon scattering rates, Hall resistivity, quan-
tum oscillations, and first-principles calculations of the phonon

self-energies, the change from germanium to silicon results in
a switch from phonon–electron to phonon–phonon dominated
scattering. This results from subtle changes in the acoustic mode
bandwidth and electronic band structure near the Fermi level.
We, therefore, provide strong evidence that phonons are at the
heart of the remarkable transport behavior in semimetals.

2. Electronic Properties

We began our investigation by determining the electron mobili-
ties for each material. Specifically, transport mobilities were ex-
tracted from the longitudinal and Hall resistivities. De Haas - van
Alphen (dHvA) experiments were also performed to determine
the single particle lifetimes and effective mass, whose ratio is
taken to be the single-particle or quantum mobility. Specifically,
we studied the dHvA quantum oscillations as a function of mag-
netic field and temperature to determine the effective mass and
quantum lifetime simultaneously (See Section: Quantum Oscil-
lation Data, Supporting Information for details). These experi-
ments allowed us to investigate whether changes in the electronic
properties alone can explain the anomalous transport behavior
(μT ≫ μQ), specifically Fermi surface differences, carrier densi-
ties, or single particle mobilities (i.e., disorder). The longitudinal
and transverse resistivity (𝜌xx and 𝜌xy) were measured from 2 to
300 K with varying the magnetic field from 0 to 9 T. The full data
sets at 2 K are shown in Figure S1 (Supporting Information). Due
to the established weak anisotropy in the low-temperature trans-
port in these materials,[12,26] we choose to focus on 𝜌xx, 𝜌xy and
the appropriate dHvA responses. The transport mobility, μT, was
obtained through a three-band model fit to both 𝜌xx and 𝜌xy si-
multaneously according to the following expressions[27,28]

𝜎xx(H) =
𝜌xx(H)

𝜌2
xx(H) + 𝜌2

xy(H)
=
∑

i

𝜎i

1 + 𝜇2
i H2

(1)
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𝜎xy(H) =
𝜌xy(H)

𝜌2
xx(H) + 𝜌2

xy(H)
=
∑

i

𝜎i𝜇iH

1 + 𝜇2
i H2

(2)

where the conductivity of each band (𝜎i) is related to its trans-
port mobility (μi) through 𝜎i = niqiμi with qi = ±e for a hole or
electron band. Adding more bands to the model did not pro-
duce additional meaningful information. For the results shown
in Figure 2a, we used an average of all μi to obtain the transport
mobility μT for each MX2 compound.

To ascertain the single-particle mobility μQ for each MX2 com-
pound, we turned to quantum oscillations probed via dHvA.
Here, we measured the magnetic torque in each MX2 sample
subjected to a magnetic field from 0 to 41 T at T = 300 mK. All
four compounds showed rich patterns of oscillations with sev-
eral frequencies, each corresponding to one branch of the Fermi
surface. Using a detailed analysis shown in the Supporting In-
formation (Figures S1 and S2, Supporting Information), we ex-
tracted the relaxation time on each Fermi surface 𝜏 j. We then de-
termined the quantum mobility through 𝜇j = qj𝜏j∕m∗

j with qj and
m∗

j being the sign and effective mass of carriers on each cyclotron
orbit.[29] The individual quantum mobilities for each branch of
the Fermi surface are tabulated in Tables S1 through S4 (Sup-
porting Information). Similar to the transport mobility μT, the
average of these mobilities was taken as μQ in the histograms of
Figure 2a.

As described earlier, the results of these experiments demon-
strate the germanides reveal anomalous transport (μT ≫ μQ) mo-
bilities, while the silicides have nearly normal metallic responses
(μT ≈ μQ). Thus, we carefully evaluated the quantum oscillation
data with density functional theory based first-principles calcu-
lations. Specifically in Figure 2b, we plot the experimentally de-
termined and first-principles calculated effective masses versus
the dHvA frequencies for each orbit observed. We find excel-
lent agreement between all four materials’ calculated and mea-
sured frequencies, though there is a discrepancy in the effec-
tive masses for the germanides discussed below. As shown in
Figure S4 (Supporting Information), while the calculated Fermi
surfaces are very similar, there are some slight differences be-
tween the silicides and germanides. Specifically, the separate
pockets in the first two bands in the silicides are absent in the ger-
manides. However, these small differences cannot consistently
explain the trend in the mobilities. The experimentally deter-
mined single particle mobilities are relatively similar between
TaGe2, NbSi2, and TaSi2. This is in spite of the fact that the
transport mobility for TaGe2 is nearly double that found in the
silicides. In addition, the μQ for NbGe2 is far lower than the
rest, yet it possesses a far greater transport mobility. This in-
dicates changes in disorder, and the size of the Fermi surface
cannot explain the drastic changes between the germanides and
silicides.

Returning to the mobilities, we further investigated the role of
the effective mass of the carriers and, thus, the density of states
at the Fermi level. Similar to our previous study of NbGe2,[12]

we found that TaGe2 also shows an enhancement in the exper-
imentally measured effective mass m∗

exp compared with the DFT
theoretical values m∗

theory. Since these materials possess weak elec-
tronic correlations and are non-magnetic, phonon–electron inter-
actions are the prime suspects for the observed mass enhance-

ment. Interestingly, this enhancement is largely suppressed in
the silicides, consistent with their transport behavior returning
to that of a normal metal.

To see whether the effective masses can explain the electronic
transport (μT), let us quantitatively examine the differences be-
tween the germanides and silicides. Starting with the evolution
from NbGe2 to TaGe2, we note a twofold increase in the single
particle mobility μQ. This occurs alongside a similar size reduc-
tion in the effective masses for nearly all orbits. Effective masses
nearly half that of NbGe2 are also seen in the silicides. In ad-
dition, as mentioned earlier, the silicides reveal nearly identical
single particle mobilities as TaGe2. Thus, the changes in sin-
gle particle mobilities across the MX2 series can primarily be
attributed to the effective mass. This is consistent with nearly
similar levels of disorder for all four compounds. Nonetheless,
the transport mobilities μT in MSi2 are also reduced by a fac-
tor of two from those found in TaGe2. Taken together, it ap-
pears a consistent explanation for the transport and single par-
ticle mobilities cannot be found in the disorder or changes in
the electronic structure alone. A key takeaway is that the high
transport mobilities, which are insensitive to the single parti-
cle scattering, also imply dominant forward scattering or pro-
cesses where the momentum from collisions is returned to
the electrons.

3. Phonon Scattering Mechanisms

To explore the role of phonons in the anomalous electronic trans-
port of the MX2 series, we turned to Raman spectroscopy. This
tool is excellent for measuring phonon frequencies, linewidths,
and symmetries versus temperature. With this information, we
can uncover subtle changes in the lattice structure, anharmonic-
ity, and dominant scattering pathways for each material.[30–32] As
such, Raman spectroscopy provides a high-resolution probe into
the behavior of the optical modes and has already been used to
investigate novel states and phonon–electron coupling in topo-
logical materials.[6,7,11,33–35] By careful analysis of the tempera-
ture dependence of the Raman linewidths, we can determine
the decay mechanisms involved for the optical phonons in each
compound. Here, we rely on the distinct temperature dependen-
cies of phonon–phonon, defect, and phonon–electron scattering
(Figures 3 and 4a).

In the case of phonon–phonon scattering, we consider the
decay of an optical phonon into two or more acoustic modes,
illustrated in Figure 4b. The Klemens model describes the re-
sulting temperature dependence of the linewidth.[36] It is char-
acterized by a monotonically decreasing linewidth with reduced
temperature that gives way to low-temperature saturation due to
the phonon’s Bose statistics. As such, the phonon–phonon decay
linewidth (Γph−ph) is typically modeled by a Bose-Einstein distri-
bution (nB) function at half (or one-third) of the frequency of the
original mode 𝜔0 (to account for energy and momentum conser-
vation)

Γph−ph(T) = A
(
1 + 2nB

(
𝜔0∕2, T

))
+ B

(
1 + 3nB(𝜔0∕3, T)

+3(nB(𝜔0∕3, T))2
)

(3)
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Figure 3. Temperature dependence of the Raman linewidths for A1 (upper panel) and E2 (lower panel) modes in a) MSi2 and b) MGe2. Measured
data are shown in black, the blue curve is a fit to the phonon–electron decay model, while the red curve is the typical anharmonic phonon–phonon
contribution. The black line is a sum of both contributions and gives the total fit. We see clear evidence of phonon–phonon dominated linewidths in
MSi2 and phonon–electron dominated linewidths in MGe2.

To this end, we measured the Raman response of the entire
MX2 family from 10 to 300 K with temperature steps of 10 K. The
linewidths versus temperature extracted from fitting the spectra
are shown in Figure 3 for representative modes (see the Support-
ing Information Section for details of the fitting procedures). Fo-
cusing first on the MSi2 compounds shown in Figure 3a, we see
nearly temperature-independent linewidths from 10 to 50 K. This
is followed by a monotonically increasing linewidth that is ap-
proximately tripled by 300 K. This temperature dependence is a

typical signature of phonon–phonon scattering and is primarily
described by the Klemens model.

A qualitatively different behavior is observed in the MGe2 com-
pounds (Figure 3b). Here, the linewidths begin to broaden al-
most immediately with increasing temperature, reaching a max-
imum value of one and a half to two times larger than the low-
temperature linewidths. This is followed by a high-temperature
saturation or a decreasing linewidth, sometimes reduced back to
its low-temperature value. As the Klemens model of anharmonic

Figure 4. a) Schematic of phonon decay into an electron-hole pair plotted on the band structure of NbGe2. 𝜔0 is the phonon energy, and the orange
arrow is 𝜔A, the separation of the occupied state from the Fermi level. The blue arrow represents an electron-hole excitation of the same energy as
the incident phonon. b) Cartoon schematics of the decay of an optical phonon into a pair of acoustic phonons, conserving energy and momentum.
c) Phonon–electron (Γph−el) and phonon–phonon (Γph−ph) contributions to the Raman linewidths at 10 K of every phonon mode in NbGe2, TaGe2,
NbSi2 and TaSi2. The phonon–electron contribution heavily dominates the MGe2 linewidths, while the phonon–phonon contribution dominates the
MSi2 linewidths.
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phonon-phonon decay follows a Bose-Einstein temperature de-
pendence, it fails to explain linewidths that decrease with in-
creasing temperature. This implies that there are scattering path-
ways other than phonon–phonon decay dominating the phonon
linewidths. Indeed, these follow the established pattern of dom-
inant phonon-electron scattering in semimetals.[6,11,12,37] In this
case, as illustrated in Figure 4a, the optical phonons decay into
an electron-hole excitation (i.e., a pair of Fermions). As such,
the probability of scattering is sensitive to the occupation of
the initial and final state of the electron involved. We there-
fore model the temperature dependence of phonon linewidths
(Γph−e) dominated by phonon–electron scattering by the differ-
ence between the Fermi functions (nF) of the electron and hole
following[6,12]

Γph−e ( T) = C

∞

∫
−∞

d𝜔A [ nF (ℏ𝜔A) − nF (ℏ𝜔A + ℏ𝜔0)]e
− (𝜔A−𝜇)2

2𝜎2 (4)

here, 𝜔0 is the low-T phonon energy, and the difference in the
two Fermi functions represents the decay into an electron-hole
pair. The quantity 𝜔A represents the separation of the lowest
band to the Fermi level. In this work, we added a subtle yet
important detail to the model, namely using a Gaussian dis-
tribution about 𝜔A. Simply taking the difference between two
Fermi functions implies that there is only one location in the
electronic band structure where the optical phonon can decay
into an electron-hole excitation. Furthermore, at elevated tem-
peratures, the occupation function usually has a finite smear-
ing factor. By introducing a Gaussian distribution about 𝜔A and
writing the fit as a convolution between this term and the dif-
ference in the Fermi functions of the electron and hole, we can
account for multiple allowable excitations (Figure 4a) and cap-
ture the entire 3D Fermi surface. Indeed, we found this sig-
nificantly improved our model to more accurately describe the
range of temperature-dependent phonon lifetimes we observe. It
is important to note that this model still doesn’t perfectly capture
the anomalous phonon linewidths. Namely, modes for which
linewidths decrease with increasing temperature typically show
an overshoot at their peak. As one can see in Figure 3b, the A1
mode of NbGe2 and E2 mode of TaGe2 both have this feature.
One aspect of the model that leads to this is the temperature in-
dependence of 𝜔0 in Equation (4). This assumes that the energy
of the phonon is constant. However, as revealed by the frequency
shifts shown in Figures S9– S12 (Supporting Information), the
phonon energy deviates from 𝜔0 at finite temperatures. In ad-
dition, as we assume a simple Gaussian distribution for 𝜔A our
modeling of the distributions of the initial state of the electron
with respect to the Fermi level does not fully capture the true band
structure.

Let us now turn to understanding the qualitative nature of
phonon–electron-dominated linewidths. Their behavior is ex-
plained in the following manner. The initial state must be pop-
ulated for the electron to be excited to a different band. As the
temperature increases, the lower band has a larger thermal pop-
ulation of electrons, leading to an increasing linewidth. Eventu-
ally, the states in the upper band begin to get filled while the
lower band is emptied. This leads to high-temperature satura-
tion and a decreasing linewidth as the interband transition be-

comes increasingly Pauli-blocked. As such, the maximum in the
phonon–electron scattering rate varies for different modes de-
pending on their energy and the relative electronic states involved
(see Figure 3; Figures S5 and S7, Supporting Information). A
special case occurs when the initial state of the electron is at
the Fermi level. There, at base temperature, the lower band is
fully occupied, such that temperature will lower the probability
of the phonon–electron decay. This produces a maximum for the
linewidths at low temperatures that decreases with increasing
temperature, as is seen for the E2(4) phonon mode in NbGe2.[12]

Before turning to the implications of our findings, we first
consider an alternative explanation for the observed anomalous
linewidth behavior in the germanides. As shown in the first panel
of Figure 3b, below 100 K, it is possible to fit the MGe2 linewidths
to a model of anharmonic decay, as indicated by the black dashed
line. This fit would suggest that the Ge compounds have stronger
anharmonic scattering than their Si counterparts. This is consis-
tent with what would be expected for a heavier atom. The sudden
change in the linewidths in the 100−150 K temperature range
might result from a dramatic change in the lattice at these tem-
peratures. However, such a structural change is straightforwardly
excluded from our X-ray diffraction and Raman measurements
(See Figure S3 and Table S5, Supporting Information).

Alternatively, this effect could result from a dramatic shift in
the lattice expansion as a function of temperature. Indeed, such
effects have been reported in graphene,[31] although there was no
indication that the linewidths deviate from phonon–phonon de-
cay as seen in the germanide compounds (see Supporting Infor-
mation). Instead, graphene has an inflection point in the energy
shifts of the optical phonons due to a negative thermal expan-
sion coefficient. As shown in the supplemental Figures S9– S12
(Supporting Information), we found that in the MGe2 and MSi2
compounds, the energy shift of every phonon follows the typical
phonon–phonon scattering behavior with no unusual character-
istics. We also observe that the magnitude of the shift is nearly
the same for all compounds, ranging from 0.2−1 meV, indicating
similar anharmonicity for all four compounds. This implies that
the behavior of the phonon linewidths does not originate from
changes in the lattice. Furthermore, X-ray diffraction data reveal
the lattice constants for all four compounds change by at most
0.5% (Table S5, Supporting Information) in this range, decreas-
ing with temperature as expected.

4. Impact of Phonon Dynamics on Transport

To quantify the difference in the dominant phonon scattering
mechanism between the compounds, we fit the linewidths to
the sum of Equations (3) and (4). This accounts for the pos-
sibility of the optical modes decaying into both electrons and
phonons. The fits for each mode were obtained by first assuming
an additive contribution from both scattering processes. This was
based on the general assumption, following Matthiesen’s rule,
that the contributions from different scattering mechanisms are
additive.[38] However, due to their electronic and phononic disper-
sions, the electron–phonon scattering is expected to have strong
momentum dependence.[21] Thus, in the phonon drag regime,
the phonon linewidths may not be a manifestation of the direct
summation of scattering strength.[38]
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Figure 5. a) Calculated versus measured phonon frequencies for NbGe2 and NbSi2. The black line indicates the ideal agreement. b) Phonon–phonon
joint density of states (JDOS) for NbGe2 and NbSi2 which show nearly equal spectral weight despite reduced acoustic bandwidth in NbGe2. c) Phonon–
electron JDOS for NbGe2 and NbSi2 which shows approximately 20% larger phase space for phonon–electron decay in NbGe2 than NbSi2. d) Phonon
dispersions of NbGe2 and NbSi2 are shown in red and blue, respectively, showing approximately double the acoustic bandwidth for NbSi2 than NbGe2.
e,f) Calculated phonon–phonon lifetimes at 10 K for NbGe2 and NbSi2, respectively.

Knowing this, we still choose to be conservative in our esti-
mation of the scattering rates and assume that linewidths show-
ing characteristics of phonon–electron decay had as large of a
contribution as possible from phonon-phonon scattering and
vice-versa. That is to say, for the germanides, we first start by fit-
ting to the Klemens model and gradually reduce the amount of
phonon–phonon scattering as we increase the contribution from
the phonon–electron coupling. We followed the same process for
modes that show typical phonon–phonon decay behavior but in
the opposite direction. This analysis allows us to determine the
dominant scattering pathway for each mode without assuming
that there is only one decay process at play, and was done for ev-
ery resolvable phonon mode in each material.

The value of Γph−ph and Γph−e at 10K from our fits are sum-
marized in Figure 4c. Here, we plot the low-temperature Raman
linewidths of all four of the MX2 compounds with the contri-
bution from phonon–electron scattering in the top half of the
plot and the phonon–phonon scattering contribution in the lower
half of the plot. We focus on the low-temperature values as these
are consistent with the temperature at which the mobilities are
measured. Similar trends are seen at higher temperatures (see
Figure S13, Supporting Information).

It is important to note that this is not a plot of phonon–
phonon or phonon–electron scattering strength but instead
shows how much each scattering mechanism contributes to
the total linewidth of the phonons. In particular, since the
phonon–electron scattering in MGe2 is expected to be strongly
momentum-dependent,[21] large deviations in Matthiesen’s rule
are expected. Specifically, rather than different scattering contri-

butions being additive, the total scattering rate is instead domi-
nated by the primary scattering mechanism.[38] This is directly
seen in the Raman data summarized in Figure 4c, where the
dominance of momentum-dependent phonon–electron scatter-
ing leads to the germanide linewidths appearing to only have con-
tributions from phonon–electron scattering.

To confirm this assertion, we turn to our first-principles
calculations of the phonon–phonon scattering, indicating that
the germanides and silicides have nearly equal strength of
phonon–phonon scattering (see: Figure 5e,f). Turning to the
silicide linewidths summarized in Figure 4c, we see that they
are now dominated by phonon–phonon scattering. Unlike the
germanides, this is not because of a violation of Matthiesen’s
rule, but rather due to the phonon-electron scattering being
significantly weaker than phonon–phonon scattering. To en-
sure the accuracy of our results, we have also performed EPW
electron–phonon coupling using Wannier functions calculations
for NbGe2 and NbSi2, which are consistent with the NbGe2
linewidths being dominated by phonon–electron scattering. In
contrast, the calculations show the NbSi2 linewidths are dom-
inated by phonon–phonon scattering, primarily due to much
weaker phonon–electron scattering. Details of these calculations
can be found in the Supporting Information).

Having established the nature of the phonon scattering in the
MX2 family, we now attempt to correlate the phonon scattering
with the anomalous transport in NbGe2 and TaGe2. From the
Raman (Figure 4c) and transport (Figure 1a) data for the MX2
family, we see the phonon–electron fluid vanishing as the ma-
terial is tuned from germanium to silicon. Raman linewidths of
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NbGe2 revealed the strongest relative phonon–electron coupling,
and correspondingly, it has the largest bulk transport mobility. As
we move to TaGe2 we start to see that the phonon–electron fluid
is on the verge of disappearing. Indeed, while Γph−e > Γph−ph, for
the average phonon–electron scattering rate across all modes, the
ratio is lower in TaGe2 than NbGe2. The phonon–phonon scatter-
ing becomes dominant upon replacing the germanium with sili-
con, and the phonon–electron fluid vanishes. Since the phonons
no longer return momentum to the electron bath, the transport
mobility is reduced by half an order of magnitude as we return
to a normal metal state.

The transport and Raman results clearly reveal a correlation be-
tween the dominant phonon–electron scattering and high trans-
port mobility in NbGe2 and TaGe2. This enhancement of trans-
port when phonon–electron rather than phonon–phonon path-
ways dominate phonon scattering is consistent with the phonon–
electron fluid first described by Peierls in 1932.[14] To the best of
our knowledge, this is the first direct demonstration that remov-
ing only the dominance of phonon–electron scattering results in
a dramatic reduction in transport mobilities.

5. Tipping the Balance Between Phonon-Phonon
and Phonon-Electron

We now turn to the electron and phonon dispersions to under-
stand the absence of a phonon-electron fluid in the silicides.
As discussed earlier, our first-principles calculations are in good
agreement with the experimental dHvA results. Furthermore, the
electronic band dispersion and Fermi surfaces alone cannot ex-
plain the difference in transport between the silicides and ger-
manides. This is consistent with previous works indicating that
the MGe2 and MSi2 compounds have similar electronic band
dispersion.[21]

To validate our calculations, we first compared our measured
phonon energies to those calculated from first principles. The re-
sults of this comparison are shown in Figure 5a, where we see a
good agreement for NbGe2 and NbSi2. With confidence that the
first principles calculation accurately captures these materials, we
calculate the acoustic phonon dispersions as the low-temperature
phonon-mediated transport is primarily governed by the acous-
tic phonons. The resulting dispersions are shown in Figure 5d.
We find that the acoustic phonons extend to roughly 4THz (16
meV) in NbGe2, and to 6 THz (25 meV) in NbSi2 due to its lighter
group 14 element. We calculated the phase space for both ma-
terials to determine if the reduced bandwidth alone is respon-
sible for greater phonon–electron scattering in NbGe2. We start
with the phonon–phonon joint density of states (JDOS) and con-
sidered two types of scattering events: up conversion and down
conversion. Namely, one phonon mode can decay into two lower-
frequency branches or interact with another phonon branch and
generate a mode with a higher frequency. They are evaluated via:

N1(q,𝜔) = 1
N

∑

𝜆𝜆′
Δ(−q + q′ + q′′)

[
𝛿(𝜔 + 𝜔′

𝜆
− 𝜔′′

𝜆
) − 𝛿(𝜔 − 𝜔′

𝜆
+ 𝜔′′

𝜆
)
]

(5)

N2(q,𝜔) = 1
N

∑

𝜆𝜆′

Δ(−q + q′ + q′′)𝛿(𝜔 − 𝜔′
𝜆
− 𝜔′′

𝜆
) (6)

here, Δ(−q + q′ + q″) = 1 if −q + q′ + q″ = k (the reciprocal lat-
tice vector), and otherwise Δ(−q + q′ + q″) = 0. Figure 5b shows
the JDOS for NbGe2 and NbSi2. Intriguingly, despite the rela-
tively higher acoustic bandwidth in NbSi2 (Figure 5b), we find
the integrated JDOS is fairly similar to that of NbGe2. This may
result from a phonon continuum in these materials. Indeed, un-
like other compounds with an optical gap, the acoustic modes
continuously evolve into the optical ones. It is important to note
that for any given energy, the JDOS of NbGe2 and NbSi2 are
not necessarily equal. This is a very important detail for two rea-
sons: 1) the low-energy acoustic phonons govern transport, and
2) it is the JDOS at the energies relevant to the electronic excita-
tions near the Fermi surface that determine whether the phonons
will primarily scatter with other phonons or with electrons. This
motivated us to calculate the phonon-electron JDOS to quan-
tify the overlap between the phonon structure and the elec-
tronic structure (shown in 5c.) Before discussing this calculation,
we first identify the phonon lifetimes resulting from phonon–
phonon scattering. The results at 10 K for NbSi2 and NbGe2 are
shown in (Figure 5e,f), with the 300 K results shown in the Sup-
porting Information. Consistent with our JDOS calculations, at
low energies relevant to low-temperature transport, we find that
the phonon–phonon lifetimes for NbGe2 and NbSi2 are nearly
equal.

We now turn to calculating the phase space for phonon-
electron scattering following

N(𝜔) =
g2

s

NkN′
k

g(𝜇)2
∑

k,k′ ,b,b′ ,𝛼

𝛿(ℏ𝜔 − ℏ𝜔𝛼

k−k′ )𝛿(𝜇 − 𝜀b
k)𝛿(𝜇 − 𝜀′bk ) (7)

where 𝜖k, b denotes the electronic state with band index b and
wavevector k,𝜔 the phonon frequency with mode index 𝛼, and the
prefactors are employed for the single-particle DOS renormaliza-
tion. Figure 5c shows the ph-e scattering phase space for both
NbGe2 and NbSi2, as a function of phonon frequency. For both
compounds, the scattering phase space for all-optical phonon
modes is significant and distributed relatively evenly. Integrat-
ing over the phonon frequency yields roughly ≈20% larger phase
space for phonon–electron scattering in NbGe2. This larger phase
space for phonon–electron scattering also dramatically reduces
phonon lifetimes in NbGe2. Specifically, consistent with previous
reports,[21] we find the low energy phonon–electron lifetimes at
300 K in NbGe2 are ≈0.1 ps, whereas in NbSi2 they are ≈10 ps.
This should be compared with the phonon–phonon lifetimes
for both compounds at 300K (shown in Figure S6, Supporting
Information), which are 10 picoseconds. Thus, our calculations
show the scattering rates of the acoustic modes have a ratio of
𝜏ph−el/𝜏ph−ph ≈ 10−1 for NbGe2, while it is nearly unity for NbSi2.
We want to emphasize that it is this balance of phonon–phonon
versus phonon–electron rates and not the strength of phonon–
electron coupling that is responsible for the formation of the
phonon–electron fluid. When the system is in a regime where the
phonon–electron phase space is larger than the phonon–phonon
phase space, the phonon–electron lifetimes are dramatically re-
duced, and the phonons will primarily scatter with electrons,
therefore conserving the momentum of the electron bath and en-
hancing transport.
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Hence, our calculations confirm our experimental findings
that phonon–electron scattering dominates in the germanides,
while the silicides reside in the normal regime of phonon–
phonon scattering. Furthermore, this occurs alongside the
change from anomalous to normal metal transport without
changes in topology, symmetry, or lattice structure and with
nearly similar disorder and Fermi surface. We have, therefore,
established that removing the dominant phonon–electron scat-
tering alone results in the removal of anomalous transport mo-
bilities. Hence, phonons are central to the enormous electron
transport in topological semimetals. Our study also reveals that
the dramatic difference between germanides and silicides can-
not easily be attributed to the electronic or phonon properties
alone. Indeed, the enhanced phonon–electron scattering in the
germanides results from subtle details of both the electronic
and phonon dispersions. Specifically, phonon decay into an elec-
tronic excitation near the Fermi level is only possible if the
phonon energy and momentum match what is needed to ex-
cite an electron-hole pair (i.e., kinematic constraints). Here, this
overlap appears to be reduced by tuning the orbital extent and
mass of the ligand atom (Ge to Si). In particular, our calcula-
tions indicate that upon going from silicon to germanium, the
increased mass reduces the acoustic phonon bandwidth while
the enhanced spin-orbit coupling tunes the Fermi surface. These
combine to produce a larger phase space for phonon–electron
scattering.

6. Moving Forward

Though the quantum geometry of the electronic structure is not
a contributing factor in the MX2 series, the topological semimetal
state appears to be a common host for a coupled phonon–electron
fluid. Combining heavy atoms with strong SOC and light atoms
with extended orbitals is an established path to create a good
topological metal. Along these lines, it seems the main fac-
tor that is critical for forming a phonon–electron fluid overlaps
with that of topological semimetals and includes both 1) heavy
atoms (in this case, to reduce acoustic phonon bandwidth) and
2) a second atom with extended orbitals to optimize the scat-
tering phase space. However, it seems the light atom must be
selected carefully to maintain the delicate balance between the
phonon and electron dispersions. Indeed, for the MX2 series,
the silicon atom in TaSi2 and NbSi2 still enables a topologi-
cal semimetal but slightly enhances the phonon–phonon scat-
tering phase space while also dramatically reducing the over-
laps in the electronic and lattice dispersions. Since NbGe2 and
TaGe2 are already very close to the “tipping point”, as soon as the
relative phase spaces for scattering invert, the phonon–electron
fluid disappears with a dramatic reduction in the transport
mobility.

Having an accurate understanding of the origin of the unique
transport behavior in topological semimetals allows us to ex-
ploit the material properties that bring us into this transport
regime. For example, if the acoustic bandwidth can be further
reduced or an optical-acoustic gap can open, such as the case in
WP2,[6] this would prevent the growth of phonon–phonon scat-
tering at high temperatures. As such, the phonon–electron fluid,
and thus, large transport mobilities, could be extended to higher
temperatures. Similarly, given the large difference in the mean

free paths between electrons and phonons, it is unclear how the
phonon–electron fluid will be modified when these systems are
reduced to the nanoscale. Indeed, these materials were shown
to be promising candidates for electronic interconnects.[39] The
strong enhancement of electron transport via phonons in these
materials also suggests the phonon–electron fluid could be ex-
ploited via coherent phonon pumping to create novel states of
matter.[2,40] Furthermore, a natural conclusion of our work is
that the quantum geometry near the Fermi surface is not cen-
tral to the anomalous transport in topological semimetals. This
is a surprising result, especially given recent calculations sug-
gesting quantum geometry is crucial for understanding enhance-
ments in phonon–electron coupling.[21,41] We note that our find-
ings do not necessarily support the conclusion that phonon–
electron coupling is largely enhanced in these materials. Rather,
the phonon–electron fluid emerges from tipping the balance
between phonon–electron and phonon–phonon scattering. As
such, the mechanisms proposed may not lead to enhancements
in superconductivity or the formation of polarons. There have
also been reports that phonons can induce topological transitions
in Dirac materials.[42] Nonetheless, further work is needed to see
if the intricate interplay between the phonons and electrons in
these systems means materials with topological phonons also re-
veal novel transport behavior.[43,44]

7. Experimental Section
Crystal Growth: Single crystals of MX2 were synthesized by chemical

vapor transport (CVT) technique with iodine as the transport agent. The
starting elements were all high-purity powders mixed in stoichiometric ra-
tios with 50 mg of iodine, and sealed in silica tubes under a vacuum. The
best conditions was found to make high-quality crystals were to place the
tubes inside a box furnace (minimal temperature gradient) and keep it at
900 °C for one month.

Electrical Transport Measurement: Resistivity and Hall effect were mea-
sured using a standard four-probe technique using the Quantum Design
PPMS Dynacool instrument. The heat capacity was measured using PPMS
with a relaxation time method on a piece of poly-crystalline sample cut
from sintered pellets.

Quantum Oscillation: Quantum oscillation experiments under contin-
uous fields up to 41 T were performed at the National High Magnetic Field
Laboratory in Tallahassee, Florida. A piezo-resistive cantilever technique
was used to measure the dHvA effect (Piezo-resistive self-sensing 300 ×
100 μm cantilever probe, SCL-Sensor. Tech.). A 3He cryostat was used for
high-field experiments at temperatures down to 0.3 K.

Density Functional Theory: Density functional theory (DFT) calcula-
tions with the full-potential linearized augmented plane-wave (LAPW)
method were implemented in the WIEN2k code[45] using the Perdew-
Burke-Ernzerhof (PBE) exchange-correlation functional[46] and spin-orbit
coupling (SOC). The basis-size control parameter was set to RKmax = 8.5,
and use 20000 k-points to sample the k-space. The Fermi surface from
Xcrysden was obtained, combined with the DFT band structure calcula-
tions. The Supercell K-space Extremal Area Finder (SKEAF) program[47]

was applied to find dHvA frequencies and effective masses of different
Fermi pockets.[28,48]

Raman Scattering: All data was taken from 10 to 300 K using a 532nm
laser in a backscattering configuration. For each of the samples that were
measured, three spectra were taken at each temperature to allow for the
removal of cosmic spikes and the data was averaged to provide a single
spectrum for each temperature. To extract the temperature-dependent be-
havior of the phonons, each phonon mode was fit to a Voigt profile. The
resulting energies and linewidths were then fit to our combined models
for phonon-electron and anharmonic scattering.
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Computational Details: For the weighted joint density of states (JDOS)
and refractive index evaluations, separate DFT calculations were car-
ried out using the implementation in JDFTx.[49] Fully relativistic ultrasoft
pseudo-potentials[50,51] for the PBEsol exchange-correlation functional[52]

were used, as well as a uniform 6 × 6 × 8 k grid for the six-atom standard
primitive unit cell, an energy cutoff of 28 Hartrees, Fermi-Dirac smear-
ing with a 0.01 Hartree width, and a 3 × 3 × 2 phonon supercell. Maxi-
mally localized Wannier functions[53,54] were similarly obtained to inter-
polate quantities for Monte Carlo Brillouin zone integration on finer k
and q meshes.[55] Each transition contributing to the JDOS at that tran-
sition energy was weighted by the factor nF(Ek, n, T)−nF(Ek, m, T), where
nF(E, T) was the Fermi-Dirac distribution function, and the transition oc-
curs between energies Ek, n and Ek, m at the momentum k for two bands
indexed by n and m.

Supporting Information
Supporting Information is available from the Wiley Online Library or from
the author.
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