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ABSTRACT: Perovskite-sensitized photon upconversion (UC)
has the potential to improve a wide range of technologies including
photocatalysis and photovoltaics, by converting two low energy
photons into a single photon of higher energy. To date, perovskite-
sensitized UC has been studied by using nanocrystals in solution
and solid-state thin film bilayers using polycrystalline perovskite
films. While efficient UC has been achieved in thin film bilayers,
surface inhomogeneities and defects due to individual perovskite
crystal grains and grain boundaries may limit the overall
performance. However, one of the main issues in solid-state UC
is a limited number of viable triplet annihilators in the solid-state
due to unfavorable intermolecular interactions and competing
relaxation pathways. Here, we investigate the properties of mixed cation methylammonium formamidinium lead triiodide perovskite
single crystals using X-ray diffraction and optical spectroscopy and their subsequent incorporation and performance as triplet
sensitizers for triplet−triplet annihilation in solution-based rubrene. With the hybrid solid-state/solution approach presented here, a
wide number of potential annihilators can be rapidly be screened. In addition, the higher surface homogeneity and orders of
magnitude lower defect densities and higher stability of perovskite single crystals allow for potential improvements to interfacial
charge transfer processes and increases in UC performance due to reduced carrier trapping.

■ INTRODUCTION
Since their discovery in 1839, perovskite materials have
evolved into an incredibly broad class of materials with the
general formula ABX3.

1 Metal halide perovskites are an
emerging class of semiconductor materials with applications
including radiation detection,2 light emitting diodes,3 the
active layer in photovoltaics,4 and as triplet sensitizers in
photon upconversion (UC).5 The first use of a metal halide
perovskite as the light absorbing material in a solar cell was in a
study in 2009 by Kojima et al., which reported a power
conversion efficiency of 3.81%.6 Since then, the record
efficiency for single junction perovskite solar cells has
skyrocketed over 25% in 2021, rivaling commercial single
junction silicon cells.7,8 Their rapid increase in performance
can be attributed to a combination of their high defect
tolerance,9 long carrier diffusion lengths,10 and tunable optical
properties across the visible and near-infrared spectral region.11

In the general ABX3 formula, the A-site is a monovalent cation
(here: methylammonium (MA) and formamidinium (FA)), B
is a divalent Pb2+ cation, and X is a halide anion. Both single
crystals and polycrystalline thin films have been widely studied,
where single crystals generally exhibit lower defect densities,
long carrier lifetimes and diffusion lengths and a lower number
of grain boundaries.10,12,13

To date, bulk perovskite-sensitized triplet−triplet annihila-
tion (TTA) UC has primarily been studied within solution
processed polycrystalline bilayer thin films composed of a bulk
lead halide perovskite sensitizer coupled with a thin film of an
annihilator such as rubrene, 1-chloro-9,10-bis(phenylethynyl)-
anthracene, or naphtho[2,3-a]pyrene.5,14−17 TTA-UC is a
spin-allowed process in which an interaction between two spin-
triplets yields a singlet excited state and ground state.18,19,20

Since direct optical excitation to the triplet excited state is a
spin-forbidden process, triplet sensitizers are commonly
utilized to efficiently populate the annihilator triplet
state.21,22 In the case of bulk perovskite sensitizers,
recombination of free carriers results in the bound triplet
state on the organic molecule,23,24 while in the case of
(perovskite) nanocrystal sensitizers, often, the energy packet is
transferred in the form of a bound exciton.25−28
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Solution processing of the underlying perovskite film and the
subsequent organic film fabrication results in a wide variety of
environments which adds a level of complexity when building
an understanding of the upconversion mechanism and
nanoscale charge transfer processes.29 To improve the overall
understanding of charge transfer at the interface between the
perovskite and the annihilator, and the unclear role of surface
and bulk defects limiting charge extraction at the interface,29,30

we investigate perovskite single crystals (SCs) as triplet
sensitizers. In contrast to polycrystalline films, SC perovskites
have fewer grain boundaries and discontinuities or defects that
may affect the optical and electronic performance of the
devices, most of which are shielded by the high dielectric
constant.31 Previous studies have shown lower trap-state
densities and longer diffusion lengths and increased carrier
mobility for SCs compared to polycrystalline films,10

suggesting their potential to act as better sensitizers for
TTA-UC, since more charges may reach the interface within
their lifetime. Their single crystalline structure and lower defect
density as compared to polycrystalline perovskite thin films
provide a simplified surface for studying the fundamental
nanoscale charge transfer processes between perovskite
sensitizers and annihilator molecules.29

While previous thin film perovskite-sensitized UC was
performed in a solid-state bilayer, here, we opt for a hybrid
solid-state sensitizer/solution-phase annihilator approach to be
able to directly compare different SCs without having
additional complications from different local molecular
environments in rubrene.32−34 While this hybrid approach is
not viable for subsequent photovoltaic applications, its
successful implementation indicates the strong promise of
solid-state perovskite sensitizers in heterogeneous photo-
catalytic applications such as solution-based triplet-driven
cross-coupling reactions.35−37

■ RESULTS AND DISCUSSION
Perovskite single crystals based on a 1:1 precursor ratio of
methylammonium (MA) and formamidinium (FA)
(MA0.5FA0.5PbI3) are grown based on the inverse temperature
crystallization (ITC) method adapted from Saidaminov et al.38

ITC is based on a property unique to perovskites, which was
initially attributed to an inverse relationship between the
solubility and temperature. In contrast to most solutes where
temperature increases commonly result in an increase in
solubility, the solubility of the perovskite precursors decreases
with increasing temperature in DMF or γ-butyrolactone
(GBL).38 In ITC, as the temperature of a concentrated

precursor solution is increased above 100 °C, the solubility
decreases and perovskite SCs will begin to grow, with typical
growth time varying between 30 min and 3 h. A study on the
growth mechanism done by Nayak et al. found that the crystal
growth was caused primarily by solvent decomposition at high
temperatures, increasing the pH of the solution, leading to the
disintegration of colloids containing undissolved precursor
resulting in a supersaturated solution.39 Here, GBL degrades to
γ-hydroxybutyrate (GHB), supplying the H+ needed to break
up the colloidal clusters of undissolved PbI2.
Figure 1a outlines the general process of ITC: the precursor

solution was heated under ambient conditions until the
perovskite SCs began to form. MA0.5FA0.5PbI3 SCs were
successfully grown using a solvent-assisted ITC method where
stock solutions of 1 M MAPbI3 and FAPbI3 were prepared in
GBL. Since MAPbI3 did not fully dissolve in GBL, the stock
solution volume was diluted with acetonitrile (ACN) to fully
dissolve the MAPbI3 precursor, which should also help to form
the desired n-type surface doping for efficient charge
extraction.29 Equal parts of the MAPbI3 and FAPbI3 precursors
were combined into a final MA0.5FA0.5PbI3 growth solution
that was heated to 120 °C, at which point small crystals began
to form and were subsequently harvested and stored in a
nitrogen environment until further use (Figure 1a).
The crystal structures of the resulting MA0.5FA0.5PbI3 SCs

were investigated by using an Oxford Diffraction Xcalibur-2
CCD single crystal diffractometer. At room temperature, the
X-ray data showed the expected cubic perovskite substructure
with lattice parameter a = 6.3224(5) Å at 295 K (Figure 1b).
Previous results have shown that MAPbI3 SCs grown via the
ITC method exhibit a cubic-to-tetragonal phase transition at
330 K due to the elevated temperatures associated with the
synthetic procedure.40 Twinning crystallographic effects, thus,
can stem from the loss of symmetry elements during this
transition.12,40 No tetragonal superstructure reflections are
observed at room temperature for the mixed cation
MA0.5FA0.5PbI3 grown here, indicating that it is still present
in a cubic crystal structure at this temperature, likely a result of
the mixed cation composition. Temperature-dependent X-ray
diffraction measurements indicate an apparent doubling along
all axes below the phase transition temperature of 257 K,
consistent with ordering of the FA/MA molecules in a multiply
twinned arrangement with an apparent cubic unit cell of
12.5278(9) Å (Table S1 and Figure S1). The superstructure
intensities in the (h,k,l = 1.5) measured at 100 K are shown in
Figure 1c which indicate a pseudocubic unit cell with a′ = 2a.

Figure 1. (a) Schematic of the ITC single crystal growth method with photograph of representative perovskite single crystals. (b) Single crystal
diffraction pattern along the (h,k,l = 0) plane of MA0.5FA0.5PbI3 collected at 295 K. (c) Single crystal diffraction pattern along the (h,k,l = 1.5) plane
of MA0.5FA0.5PbI3 collected at 100 K. The corresponding h and k axes are labeled for both patterns.
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Figure S2 shows the 100 K (h,k,l = 0.5) plane for the
MA0.5FA0.5PbI3 SC.
Figure 2a supports the successful growth of the desired

MA0.5FA0.5PbI3 perovskite with a peak emission centered at
∼800 nm, comparable to the report by Kim et al. for a similar
composition.41 To highlight the role of surface carrier
recombination on the triplet generation process, two perov-
skite SCs with distinctly different PL decay dynamics are
highlighted in following. The SC perovskite PL decays are fit to
a triexponential function to capture the complex underlying
dynamics in the first 1.5 μs:

= + +I(t) A e A e A e1
t/

2
t/

3
t/1 2 3

The resulting lifetimes, amplitudes, and amplitude-weighted
average lifetimes =ave

A
A

i i

i
are tabulated in Table 1.

SC1 has a higher PL intensity (Figure 2a) than SC2. It also
exhibits a relatively short PL lifetime, as it is fully decayed after
2 μs (τave = 104 ns) (Figure 2b).39 In contrast, SC2 has a lower
PL intensity, which is in agreement with the observed rapid
early time component which can be attributed to rapid surface
recombination, trapping, or diffusion of carriers away from the
surface,39,42 and a, thus, a shorter amplitude-averaged carrier
lifetime (τave = 77 ns). However, after this 1.5 μs window, SC2
continues to decay with an additional monoexponential late-
time component of τ4 = 1.3 μs until it is fully decayed after 6
μs, indicating a low bulk trap density.
The same perovskite SCs were then placed in a 19 mmol/L

(10 mg/mL) rubrene solution dissolved in chlorobenzene for
studies of interfacial charge extraction resulting in UC.5,29

Chlorobenzene is chosen as the solvent for rubrene since it is a
common antisolvent for perovskite fabrication and our
previous results indicate it minimally impacts the UC
performance or the perovskite properties (compare Figure
S3).29 In both cases, early time quenching of the PL decay
dynamics indicates successful charge extraction at the perov-
skite surface, despite rubrene being present in solution and not
as a solid-state layer as in previous studies.5,43 Hence, charge
transfer and subsequent triplet formation must occur rapidly
during either a diffusion-based collision of rubrene and the

perovskite SC, or the charge transfer process happens while
rubrene briefly dynamically adsorbs to the surface of the SC.
Our previous results indicate that triplets are generated on a
subnanosecond time scale44�a significantly shorter time scale
than the expected time for adsorption/desorption and diffusion
of rubrene in solution.
To ensure that the quenching of the perovskite PL results in

spin-triplet states on rubrene and that TTA-UC occurs
successfully, the emission spectrum is taken under 780 nm
excitation. The resulting upconverted PL peaking at ∼560 nm
of the hybrid system is shown in Figure 3, highlighting the
successful triplet sensitization in rubrene, followed by TTA-
UC.

The upconverted PL intensity in TTA-UC systems follows a
unique power dependency: at low incident powers, triplets
predominately decay through pathways other than the desired
TTA-UC leading to a quadratic dependence of the PL
intensity on the incident power.45,46 Above the critical
intensity threshold Ith, TTA-UC is the dominant triplet
decay pathway, the UC process becomes efficient, and the
power dependency reverts to linear. As a result, the intensity
threshold can be found on a log−log plot of the upconverted
power dependency vs. incident power as the intersection of a

Figure 2. (a) Steady-state PL spectra under 405 nm excitation at 29.6 W/cm2 for SC1 and SC2 with images of each respective crystal. Normalized
perovskite PL decay dynamics for SC1 (b) and SC2 (c) under an inert atmosphere (lighter color) and in a 19 mmol/L rubrene solution in
chlorobenzene (darker color). Triexponential fits for the neat MA0.5FA0.5PbI3 SC are included as light gray traces. The PL decays were performed
under 780 nm excitation at 125 kHz and at a power density of 7.88 mW cm−2.

Table 1. Amplitudes (A), Decay Components (τ), and Amplitude Weighted Lifetimes for the MA0.5FA0.5PbI3 SCs Based on a
Triexponential Fitting

A1 τ1 (ns) A2 τ2 (ns) A3 τ3 (ns) τave (ns) A4 τ4 (μs)
SC1 0.32 19.8 0.51 111 0.1 330 104 − −
SC2 0.59 4.4 0.27 71 0.08 664 77 0.03 1.3

Figure 3. Upconverted PL of MA0.5FA0.5PbI3 SCs in rubrene taken
under 780 nm excitation at 194 W cm−2. Photograph of successful
upconverted PL from a MA0.5FA0.5PbI3 SC in a 19 mmol/L rubrene
solution under 780 nm excitation.
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slope α = 2 and α = 1. However, the use of perovskite
sensitizers complicates this relationship as the nonlinear
dependence of the perovskite PL intensity Iα must be
considered.5,47−49 The power dependency of the perovskite
PL is in the range of 1 < α < 2, due to the competition of
monomolecular trap-assisted recombination and bimolecular
nongeminate free-carrier recombination. Hence, the Ith
describing the UC process is found at the crossing point of
slopes ∼2α and α.
The power dependency of the perovskite SC PL prior to the

addition of rubrene and after the addition of rubrene is shown
in Figure 4a,b for the previously described SC1 and SC2. The

lower slope of SC1 compared to SC2 can be explained by an
increased amount of monomolecular trap-assisted recombina-
tion in the more trap-rich perovskite SC1. The corresponding
UC PL power dependence is depicted in Figure 4c,d. Clearly
observable is that SC1 shows a distinct slope change from α =
3.6 to 1.6, leading to Ith = 1.05 W cm−2. SC2 on the other hand
experiences a lower Ith = 331 mW cm−2 due to a slope change
from α = 2.4 to α = 1.7. Considering the slope of α = 2 × 1.7 is
not reached, this can be seen as an upper bound for the Ith, or
indicates disorder in the system, such that some regions are
resulting in efficient UC, while others are still below the
intensity threshold. Interestingly, we find overall brighter UC
(at high power densities) for SC1 despite a higher intensity
threshold. However, at low (solar-relevant) power densities
below the intensity threshold, SC2 outperforms SC1.
Comparing the results of several additional single crystals
(Figure S4 and S5), we find no clear correlation between the
Ith value and the overall UC intensity or the underlying

perovskite PL intensity. A higher slope of the underlying
perovskite PL intensity, however, can allow the UC PL
intensity to increase more rapidly at higher incident powers,
leading to comparable yields despite a higher Ith value.

■ CONCLUSION
In conclusion, MA0.5FA0.5PbI3 single crystals were successfully
grown through a modified ITC process and structurally and
optically characterized. Successful triplet generation at the
perovskite SC/rubrene solution interface and subsequent
TTA-UC in rubrene are demonstrated, yielding a 560 nm
emission under 780 nm excitation. Additional studies will be of
interest to distinguish between collision-based charge transfer
and adsorption-based triplet generation mechanisms. In
addition, further optimization of the hybrid system promises
higher yields of TTA-UC. Importantly, this approach of hybrid
UC at a mixed solid/liquid interface indicates that triplet states
can be generated at the solid perovskite/liquid triplet acceptor
interface for use in heterogeneous catalysis, enabling the
decoupling of the solid-state triplet sensitizer and the reaction
mixture. As a result, additional purification steps to remove the
sensitizer from the reaction product will not be necessary.
Future studies investigating triplet-based cross-coupling
reactions are of interest.

■ MATERIALS AND METHODS
Single Crystal Synthesis. Single Crystals of MA0.5FA0.5PbI3 were

prepared and grown using a solvent-assisted inverse temperature
crystallization method (ITC).50 The 1 M stock solutions of
methylammonium lead triiodide (MAPbI3) and formamidinium lead
triiodide (FAPbI3) were separately prepared in γ-butyrolactone
(GBL). The solutions were then diluted to 0.5 M with acetonitrile
(ACN) to fully dissolve the precursors. Equal volumes of MAPbI3 and
FAPbI3 precursors in GBL/ACN were then combined into 4 mL vials
and heated slowly until crystal formation began (∼120 °C). Crystals
were then removed from the solution and stored in an inert
atmosphere (<0.5 ppm of O2 and H2O).
Single Crystal X-ray Diffraction. The SC-XRD measurement

was carried out using an Oxford Diffraction Xcalibur-2 diffractometer
equipped with a Sapphire2 detector and Mo Kα = 0.71073 Å, where
the sample was under continuous nitrogen flow at room temperature.
The analysis of the scanned frames to identify the peaks and
subsequently calculate the unit cell and symmetry was performed
using the CrysAlisPro software.51 The initial results of this analysis
were used to determine the structure using Crystals software.52

Steady-State Optical Spectroscopy. For spectroscopy,
MA0.5FA0.5PbI3 SCs were placed into 300 μL cuvettes under an
inert atmosphere for optical characterization. Following character-
ization of the SC under inert atmosphere, 25 μL of 19 mmol/L of
rubrene in chlorobenzene (CB) was added to the cuvette.
Steady-state PL spectra were measured by using an Ocean Insight

emission spectrometer (HR2000+ES). A 405 nm continuous wave
(CW) laser (PicoQuant LDH-D-C-405) connected to a PicoQuant
laser driver (PDL 800-D) was used with a 650 nm long pass filter to
measure the near-infrared perovskite PL. A 780 nm CW laser
(PicoQuant LDH-D-C-780) connected to a PicoQuant laser driver
(PDL 800-D) with a 700 nm short pass filter was used to measure the
upconverted PL.
Time Resolved Photoluminescence Spectroscopy. Time-

resolved photoluminescence (TRPL) decay dynamics were collected
via time-correlated single-photon counting (TCSPC) using a pulsed
780 nm laser (PicoQuant LDH-D-C-780) at a repetition frequency of
125 kHz. A 780 nm notch filter was used to remove excess laser
scatter. For perovskite decay dynamics, an 800 nm long pass filter was
used in addition to a 780 nm notch filter. For power dependent PL
intensity measurements, a 780 nm CW laser (PicoQuant LDH-D-C-
780) was used, and the PL intensity was integrated for 20 s. In the

Figure 4. (a) Power-dependent perovskite PL intensity (>800 nm)
for the SC1 under inert atmosphere (lighter color) and in the rubrene
solution (darker color). (b) Power dependence of the upconverted PL
intensity (610−680 nm) of SC1 fit with a slope change from α = 3.6
to α = 1.6 yields a threshold intensity, Ith = 1.05 W/cm2. (c) Power-
dependent perovskite PL intensity for SC2 under inert atmosphere
(lighter color) and in the rubrene solution (darker color). (d)
Upconverted PL intensity power dependence of SC2 with a slope
change from α = 2.4 to α= 1.7 yields a threshold intensity, Ith = 331
mW/cm2. All power dependent measurements were taken under 780
nm excitation.
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TRPL and the power dependent measurements, the sample emission
was focused onto a single photon counting avalanche diode (Micro
Photon Devices), and photon arrival times were recorded by using a
MultiHarp 150 event timer. The spot size for the 780 nm laser was
determined using the razor blade method (90:10).
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