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Crossover from ordinary to higher order Van Hove singularity in a honeycomb system: A parquet
renormalization group analysis
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We investigate the crossover from an ordinary Van Hove singularity (OVHS) to a higher order Van Hove
singularity (HOVHS) in a model applicable to Bernal bilayer graphene and rhombohedral trilayer graphene in
a displacement field. At small doping, these systems possess three spin-degenerate Fermi pockets near each
Dirac point K and K ′; at larger doping, the three pockets merge into a single one. The transition is of Lifshitz
type and includes Van Hove singularities. Depending on system parameters, there are either three separate
OVHS or a single HOVHS. We model this behavior by a one-parameter dispersion relation, which interpolates
between OVHS and HOVHS. In each case, the diverging density of states triggers various electronic orders
(superconductivity, pair density wave, valley polarization, ferromagnetism, spin, and charge density wave).
We apply parquet renormalization group (pRG) technique and analyze how the ordering tendencies evolve
between OVHS and HOVHS. We report rich system behavior caused by disappearance/reemergence and pair
production/annihilation of the fixed points of the pRG flow.
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I. INTRODUCTION

One of the key topics in the field of quantum mate-
rials is the interplay of different ordering tendencies for
interacting electrons. Usually, the most interesting results
come from regions of the phase diagram where multi-
ple phases are nearby and compete for the place on the
phase diagram. The well-known and well-studied exam-
ples are cuprates and Fe-pnictides/chalcogenides, in which
the competitors are antiferromagnetism, superconductivity,
pair-density-wave, charge density wave order (both real and
current-type), and nematicity (see e.g., [1–3]). Some more
recent examples of systems with multiple ordered states
are twisted bilayer graphene (TBG) [4–10], Bernal bilayer
graphene (BBG) [11,12], rhombohedral trilayer graphene
(RTG) [13,14], and other hexagonal/honeycomb systems
[15]. From theory perspective, the interplay between differ-
ent ordering instabilities is a complex problem. In strongly
correlated electron systems one has to rely on numerical
methods and on a comparison of the energies of particular
ordered states within, e.g., Hartree-Fock approximation (see
e.g., [16,17]). For weakly/moderately correlated metallic sys-
tems, the competition can be analyzed in a controllable way
if the polarizations in several different channels (particle-
particle and particle-hole ones) are logarithmically singular.
The examples are the interplay between superconductivity
and magnetism in Fe-pnictides, where superconducting and
antiferromagnetic polarizations are both logarithmic [18–20]
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(superconducting because of Cooper logarithm and antiferro-
magnetic because of different signs of dispersion of fermions
near a hole and an electron pocket), and the interplay between
superconductivity and diagonal (Q, Q) charge order in the
spin-fermion model for the cuprates, where both polarizations
are again logarithmic [21–24].

When perturbation theory contains logarithms, one can
attempt to sum up infinite perturbative series in (giL), where
gi are the couplings and L is the logarithmic factor, and neglect
terms that contain additional powers of gi without logarithms.
For the case when only a superconducting channel is loga-
rithmic, this amounts to summing up Cooper logarithms and
neglecting nonlogarithmic corrections. When there is more
than one logarithmic channel, the computational procedure
gets more involved as there are several “directions” in which
perturbative series in (giL) have to be extended. It turns out,
however, that these series can be expressed as a set of cou-
pled differential equations, known as parquet renormalization
group (pRG) equations [25–27] (for a general review on par-
quet RG for metals, see [28,29]). By solving the coupled set
of differential pRG equations and analyzing the pRG flow, one
can identify the channel (particle-particle or particle-hole) in
which the instability develops first. A conceptually similar
approach, called functional RG (fRG) is to divide a Fermi
surface into patches, instead of channels, and solve the set
of coupled differential equations for the running couplings
within patches (for a review, see [30], for fRG for RTG
see [31]).

The RG analysis (both pRG and fRG) has been applied
to fermions near a Lifshitz transition, in which its topology
changes [32–38]. At the transition, the fermionic density of
states diverges logarithmically, and polarizations in various
channels become logarithmically singular. This divergence is
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known as Van Hove singularity [39]. The superconducting
polarization generally diverges faster than other polarizations,
as L2; however, if there is a nesting, some particle-hole polar-
izations also diverge as L2. To treat the case of a nonperfect
nesting, Furukawa, Rice, and Salmhofer [32] suggested treat-
ing O(L) terms as L2 terms with phenomenological prefactors,
α j < 1. This way one can reduce logarithmical series to the
set of differential equations with variable L2 rather than L,
solve them, and identify the leading instabilities. If the same
instability wins in a sizable range of α j , one can reasonably
expect that this is the correct result, particularly because the
leading instability develops at a finite L ∼ 1/

√
g, when the

difference between L2 and L with a large prefactor is not
crucial.

In recent years, several groups [40–45] extended the pRG
analysis to higher order Van Hove singularity (HOVHS), in
which the density of states diverges by a power law. Shtyk
et al. argued [40] that by varying tight-binding parameters of
several hexagonal/honeycomb systems, one can move from
ordinary Van Hove singularity (OVHS) to HOVHS. For a
HOVHS, superconducting channel is no longer special as the
power-law divergent polarization in the particle-particle chan-
nel is comparable to polarizations in particle-hole channels. It
has been proposed [40,42,45] that one can still write a set of
pRG equations, keeping the same processes, which gave rise
to a logarithmic flow of the couplings for an OVHS, and taking
the derivative with respect to the power of a typical scale
instead of its logarithm. This approach is less rigorous because
the contributions from the processes, previously neglected
as nonlogarithmic, are of the same order as the ones from
formerly logarithmic processes, As a result, the one-to-one
correspondence with the perturbation theory, which exists for
pRG near an OVHS, is lost for a HOVHS. Still, a comparison
between the solution of HOVHS pRG equations and the direct
perturbation theory shows [42] that the difference is only
quantitative and can be small numerically. This justifies, at
least partly, the use of pRG for systems with HOVHS.

In this paper, we analyze the interplay between ordering
tendencies near OVHS and HOVHS for a system of fermions
on a honeycomb lattice. Specifically, we consider the model
of low-energy fermions in the vicinity of two valleys, K and
K ′. Such an electronic configuration emerges in BBG and
RTG in the presence of a finite displacement field [11–14].
The phase diagrams in OVHS and HOVHS limits are shown
in Fig. 1. In both systems, electronic configuration at small
hole/electron doping consists of three spin-degenerate small
pockets near K and three near K ′, while at larger doping
there is one spin-degenerate Fermi surface near K and one
near K ′ see Fig. 2(a). For noninteracting fermions, a topo-
logical transformation from three small pockets to one larger
Fermi surface occurs via a Lifshitz-type transition and is
accompanied by a Van Hove singularity. Depending on the
strength of the displacement field, it can be an OVHS, where
the three small pockets touch at three different k points, or
a single HOVHS, in which case the DOS has a power-law
singularity. As explained in Ref. [40], the case of HOVHS
separates two qualitatively different OVHS: the one at which
three small pockets merge at three Van Hove points at some
critical doping, leading to two annular Fermi surfaces at
larger doping, and the one at which another Fermi surface,

FIG. 1. The phase diagram in the OVHS limit (a) and HOVHS
limit (b). The variables are the ratios of the bare couplings defined
in Eq. (3). In the OVHS limit, the ordered states are spin-triplet
superconductivity (tSC) and pair density wave (PDW), and there is
a parameter range of asymptotically free Fermi gas with no order
(FG). In the HOVHS limit, the ordered states are ferromagnetism
(FM), superconductivity, degenerate between spin-triplet (tSC) and
spin-singlet (sSC), and valley polarization (VP), degenerate with spin
density wave (SDW) and charge density wave (CDW).

centered at K (K ′), develops before the small pockets merge,
and OVHS emerge where this new Fermi surface touches the
three original pockets, see Fig. 3. The HOVHS emerges at
the boundary separating two different types of OVHS, when
three OVHS merge at one point {see Figs. 2(b), 2(c), and
3, and Ref. [40]}. A Van Hove singularity, which can be
either ordinary or higher order, also emerges in the electronic
spectrum in twisted bilayer WSe2 either under a displacement
field [46,47], or in the presence of Dzyaloshinskii-Moriya
interaction [48].

For interacting fermions, the singularity in the density
of states near an OVHS or an HOVHS gives rise to the
emergence of electronic orders. We show that the ordering

FIG. 2. (a) Band dispersion near K and K ′ points. At low doping
(left), there are three smaller electron pockets (cyan circles) around
K and three around K ′. At high doping (right), the three pockets
merge into a single Fermi surface. [(b),(c)] A zoomed-in sketch of
the dispersion at the VH point in the OVHS case (b) and in the case
of HOVHS (c). The red dots represent the VH points, and the arrows
denote the direction in which they move throughout the crossover
from OVHS to HOVHS. The dispersion at K ′ can be obtained by
rotating (b) and (c) by 60 degrees.
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FIG. 3. The sketch of the three scenarios for the Fermi surface evolution between three small pockets near K (K ′) and one larger pocket at
K (K ′), (three panels, depending on the strength of the displacement field). In each row, the doping increases from left to right, and Van Hove
points are labeled as the red dots. In a weak displacement field (top panel), as doping increases, a new pocket emerges at K (K ′), and at Van
Hove doping, the three original pockets touch the center one, creating three OVHS. At larger doping, there is a singular Fermi surface. In a
critical displacement field (middle panel), the three pockets touch each other at a single point, creating a HOVS. In a strong displacement field
(bottom panel) the three pockets increase upon doping and touch each other at Van Hove filling, creating again three OVHS. At larger doping,
there are two annular Fermi surfaces.

tendencies for a system with OVHS significantly differ from
those in a system with HOVHS (see Fig. 1). Specifically,
for HOVHS, the ordered states, which develop in different
parts of the phase diagram, are superconductivity, degenerate
between spin-triplet and spin-singlet, and valley polarization,
degenerate with spin and charge density waves [40,42,45]. For
OVHS, the ordered states are spin-triplet superconductivity
and pair-density wave. We analyze how the ordering tenden-
cies evolve as the system is tuned from an OVHS towards a
HOVHS.

To carry out this analysis, we consider a somewhat sim-
plified model of the electronic dispersion, in which there is
a single VHS at K and at K ′, and tune the VHS between
OVHS and HOVHS. Within such a model, the system can de-
velop superconductivity, spin and valley polarizations, charge
and spin-density wave orders with momenta K − K ′ ≡ 2K ,
and pair-density wave with the same momentum. In the full
model with three pockets, these are the orders that preserve
C3 rotational symmetry between the pockets. The order that
we cannot detect within our approximation, is nematic-like
symmetry breaking between the three small pockets. Such
symmetry breaking has been reported in the experiments on
BBG [11,12,49]. The data, however, indicate that nematicity

develops only when there is a stronger spin or valley order of
one of the types that we can detect within our model.

We model the dispersion by ε
(±)
k = γ k2cos2θ ±√

(1 − γ 2)k3cos3θ , where the + sign is K and − for
K ′, k is the deviation from either K or K ′, and θ is the
angle with respect to, say kx direction. We use γ as the
tuning parameter. The limits γ = 1 and γ = 0 describe
an OVHS and a HOVHS, respectively. In our analysis,
we focus on the intermediate regime γ � 1, where the
electronic dispersion has sizable contributions from both
momentum-even (k2 cos 2θ ) and momentum-odd (k3 cos 3θ )
terms. We calculate the susceptibilities in different channels,
derive and solve the pRG equations for the flow of the
couplings, and determine how the leading and subleading
ordering tendencies evolve as the system is tuned from OVHS
to HOVHS. We find that the changes in the phase diagram are
topological in nature and originate from multiple appearances
and disappearances and pair production and annihilation of
the fixed and saddle points of the RG flow.

II. THE MODEL AND ORDER PARAMETERS

We consider a system on a honeycomb lattice, consisting
of two independent patches located at K and K ′ points in
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FIG. 4. The Fermi surface of Eq. (2) near the K ′ point (at ε−
k = 0) for (a) γ = 1, (b) γ = 0.8, (c) γ = 0.6, (d) γ = 0.4, (e) γ = 0.2, and

(f) γ = 0. The Fermi surface at around K is the mirror image of the Fermi surface at K ′.

the hexagonal Brillouin zone. We assume that at a given
displacement field, the system is at critical doping, when there
is a Van Hove singularity at the Fermi level. The free-fermion
Hamiltonian is

H2 =
∑

k

(ε (+)
k c†

k+K ck+K + ε
(−)
k d†

k+K ′dk+K ′ ), (1)

where c and d operators correspond to fermions near the K
and K ′ points, respectively, and k is the deviation from either
K or K ′, For an OVHS, the fermionic dispersion is around a
Van Hove point, ε

(±)
k , starts as k2, and is symmetric between

K (ε (+)
k ) and K ′ (ε (−)

k ). For a HOVHS, the dispersion starts
as k3 and is antisymmetric between K and K ′. We model the
dispersion in the intermediate case by introducing a single
tunable parameter γ ,

ε
(±)
k = c1γ k2cos2θ ± c2

√
(1 − γ 2)k3cos3θ, (2)

where θ is the angle with respect to, say kx direction, and
c1, c2 are constants, which we set to one below by rescaling
the momentum k. We show the corresponding Fermi surface
in Fig. 4. The dimensionless parameter γ varies in the range
0 � γ � 1, where γ = 1 corresponds to OVHS and γ = 0 to
HOVHS.

The full Hamiltonian includes four-fermion interactions,
allowed by symmetry. A simple experimentation shows that
there are three different interaction terms: interaction be-
tween fermionic densities within each valley, interaction
between densities in different valleys, and intervalley ex-
change (Refs. [14,40,42,45,50,51])

H4 =
∑

k,k′,q,q′
g1c†

k+K dq+K ′d†
k′+K ′cq′+K + g2c†

k+K cq+K d†
k′+K ′dq′+K ′

+ g4(c†
k+K cq+K c†

k′+K cq′+K + d†
k+K ′dq+K ′d†

k′+K ′dq′+K ′ ).

(3)

The momentum conservation in each term is implied (k +
k′ = q + q′). We use the same notations for the couplings

gi with i = 1, 2, 4, as in [33,40]. The pair hopping interac-
tion in the form g3(c†

k+K c†
k′+K dq+K ′dq′+K ′ + H.c) is forbidden

because K − K ′ = 2K is not a reciprocal lattice vector. For
generality, we do not assume a particular sign of the cou-
plings, nor set the coupling g1 for the exchange interaction
with momentum transfer Q to be smaller than the couplings g2

and g4 for intrapocket and interpocket density-density interac-
tions with small momentum transfer. The results for the BBG
and RTG, in which gi > 0 and g1 � g2, g4, can be extracted
from our generic phase diagrams below.

To study the ordering tendencies within the pRG, we in-
troduce all possible order parameters involving fermions near
K and K ′. In the particle-hole channel, they are given by the
expectation values of fermionic bilinears

� = 〈 f †
i,kTi jSkl f j,l〉, (4)

where fi, j are the fermion operators near K or K ′. Here
i, j = 1, 2 are spin indices, and Ti j is either a Kronecker
delta δi j or a spin Pauli matrix 	σi j acting in spin space,
while k, l = 1, 2 are valley indices, and Skl is also either a
Kronecker delta δkl or an isospin Pauli matrix 	σkl acting in the
valley space. These order parameters can also be reexpressed
in terms of the generators of SU(4), as direct products of
Pauli matrices acting in spin and valley spaces [51,52]. The
total number of possible order parameters is 15; seven with
zero momentum transfer and eight with momentum transfer
±Q. The order parameters with zero momentum trans-
fer are valley polarization �V P = 〈d†

αdα〉 − 〈c†
αcα〉 and 3 ×

2 = 6 intravalley ferromagnetic orders 	�KM = 〈c†
α 	σα,βcβ〉

and 	�K ′M = 〈d†
α 	σα,βdβ〉. The latter two are coupled by g1,

hence the global ferromagnetic and global antiferromagnetic
orders 	�KM ± 	�K ′M are competitors. The order parame-
ters with momentum ±Q are two-complex charge density
wave (CDW) �CDW(Q) = 〈c†

αdα〉, �CDW(−Q) = 〈d†
αcα〉 and

3 × 2 = 6 complex spin density wave (SDW) 	�SDW (Q) =
〈c†

α 	σαβdβ〉 and 	�SDW (−Q) = 〈d†
α 	σαβcβ〉.
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TABLE I. Order parameters in particle-particle and particle-hole
channels. The total number of order parameters is 19; 15 in the
particle-hole channel and four in the particle-particle channel.

t/sSC 〈cαdβ〉 ± 〈cβdα〉
sPDW iσ y

αβ〈cαcβ〉; iσ y
αβ〈dαdβ〉

r/iCDW 〈c†
αδαβdβ〉 ± 〈d†

αδαβcβ〉
r/iSDW 〈c†

α 	σαβdβ〉 ± 〈d†
α 	σαβcβ〉

VP 〈c†
αcα〉 − 〈d†

αdα〉
FM/AFM 〈c†

α 	σαβcβ〉 ± 〈d†
α 	σαβdβ〉

In the particle-particle channel, we define �SC
αβ = 〈c†

αd†
β〉

for Cooper pairs with zero total momentum and �KPDW
αβ =

〈c†
αc†

β〉 and �K ′PDW
αβ = 〈d†

αd†
β〉 for pair density wave (PDW)

with net momentum ±Q, where Q = K − K ′ ≡ 2K . The
spin triplet/singlet superconducting order parameters can be
obtained by adding/subtracting �SC

αβ and �SC
βα . The order pa-

rameters �SC
αβ are coupled, hence spin-singlet/valley-triplet

and spin-triplet/valley-singlet states are competitors. The two
PDW order parameters �KPDW and �K ′PDW are not coupled
in the absence of pair hopping and develop simultaneously.
Within our simplified model with a single Van Hove point
at K (K ′) and momentum-independent four-fermion interac-
tion, only spin-singlet s-wave PDW is possible; the coupling
for spin-triplet PDW vanishes. The total number of particle-
particle order parameters is 4 (�SC

αβ,�SC
βα,�KPDW

αβ ,�K ′PDW
αβ ).

We present 4 + 15 = 19 order parameters in Table I.

III. PHASE DIAGRAM IN THE TWO LIMITS

To set the stage for our pRG analysis, we first present
the results in the two limiting cases of OVHS (γ = 1) and
HOVHS (γ = 0). The phase diagram in the HOVHS limit has
been previously obtained in [40,42,45]. The phase diagram in
the OVHS limit has been obtained in [37]. Our phase diagram
disagrees with theirs (see the next section for the reasoning).

The phase diagram in the two limits is presented in Fig. 1.
Here and in subsequent figures we use the ratios of the bare
couplings g2/g1 and g4/g1 as the two variables for the phase
diagram.

In the OVHS case, there are three regions in the phase
diagram. In the top right corner, all the couplings flow to zero,
and the system asymptotically behaves like a free Fermi gas

(FG). In the rest of the phase diagram the leading instability is
either s-wave pair-density-wave (PDW) or spin-triplet super-
conductivity (tSC).

In the HOVHS case, order develops for all ratios of g2/g1

and g4/g1. There are three types of order, depending on the
bare couplings: ferromagnetism (FM), superconductivity, de-
generate between spin-triplet and spin-singlet (sSC), or valley
polarization (VP) degenerate with spin-density-wave (SDW)
and charge-density-wave (CDW).

We see that the ordered states are very different in the two
cases. Our goal is to understand how the ordering tendency
evolves as our tuning parameter γ changes between γ = 0
(OVHS) and γ = 1 (HOVHS). To address this, below we
apply pRG procedure at varying γ .

IV. GENERAL PARQUET RG SCHEME

The general pRG scheme is the two-stage procedure
[19,20,53,54]. In the first stage, one obtains and solves the
set of coupled pRG equations for the coupling gi. The renor-
malizations hold in both particle-particle and particle-hole
channels, and can be graphically represented as running in
two orthogonal directions (this is why the method is called
“parquet” RG). In the second stage, one introduces infinitesi-
mally small bare order parameters �

j
0 and obtains and solves

pRG equations for running � j using the running couplings
gi as inputs. This allows one to obtain the corresponding sus-
ceptibilities. The strongest ordering tendency is for the order
parameter with the largest susceptibility.

The pRG equations for gi are expressed in terms of polar-
ization bubbles—the fermionic loops in particle-particle and
particle-hole channels. We start our discussion of the pRG
flow by analyzing the polarization bubbles and their depen-
dence on the parameter γ .

A. Polarization bubbles

Because in our simplified model the Van Hove points are
located at K and K ′ relevant susceptibilities are at zero mo-
mentum and momentum Q = K − K ′. There are four relevant
polarization bubbles 
ph(0), 
ph(Q), 
pp(0), and 
pp(Q).
For our purposes, it is convenient to define all 
i(k) as posi-
tive. We have


ph(0) = − T

(2π )2

∑
ω

∫
d2k

(iω − ε+
k )2

= − T

(2π )2

∑
ω

∫
d2k

(iω − ε−
k )2

,


ph(Q) = − T

(2π )2

∑
ω

∫
d2k

(iω − ε+
k )(iω − ε−

k )
, (5)


pp(0) = T

(2π )2

∑
ω

∫
d2k

(iω − ε+
k )(−iω − ε−

−k )
,


pp(Q) = T

(2π )2

∑
ω

∫
d2k

(iω − ε+
k )(−iω − ε+

−k )
= T

(2π )2

∑
ω

∫
d2k

(iω − ε−
k )(−iω − ε−

−k )
.
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(a) (b)

FIG. 5. (a) Polarization bubbles evaluated at T = 10−4 as functions of γ —the control parameter for the crossover from OVHS to HOVHS
(γ = 1 for OVHS and γ = 0 for HOVHS). (b) The polarizations normalized to 
pp(0), di(k) = 
i(k)/
pp(0), which we used in the pRG
equations. Scattered dots are the numerical results and solid curves are the fits to approximate analytical expressions (see Appendix D). Black
dots, analytic results in the two limits, Eqs. (6) and (7).

Because the dispersion starts with k2, or even k3, the momen-
tum integral is formally singular and has to be regularized. We
use temperature regularization, i.e., evaluate the momentum
integral at q = 0 or Q and a finite T , and set either log 1/T
or 1/T 1/3 (for HOVHS) as our pRG scale (see below). Eval-
uating the momentum integral at a finite T , we obtain in the
OHVS limit (γ = 1)


ph(Q) = 
ph(0) = 1

4π2
log(2.26/T ),


pp(Q) = 
pp(0) = 1

8π2
log2(a/T ), a = O(1),

(6)

and in the HOVHS limit (γ = 0)


ph(Q) = 
pp(0) = 3X,
ph(0) = 
pp(Q) = X,

X ≈ 0.07

T
1
3

(7)

(see Appendices A and C for details). The authors of Ref. [37]
evaluated the polarization bubbles 
(q) at q = 0 and q = Q
right at T = 0 and obtained 
ph(0) = 0 because of the double
pole. We believe that the polarization bubbles relevant to pRG
have to be computed at a finite external energy scale. As a
check, we computed the polarization bubbles 
ph/pp(q) at
T = 0 but q different from 0 or Q and used q as the pRG
parameter. We obtained the same results as with temperature
regularization.

For 0 < γ < 1, we evaluate polarization bubbles numeri-
cally at T = 10−4. We present the results for the four 
’s in
Fig. 5 as functions of γ . For convenience of calculations, we
fitted the numerical results by analytical functions (solid lines
in the fits) (see Appendix D). The use of scaling functions is
advantageous as the ratios of polarization bubbles are given
by ratios of analytic functions and can be easily evaluated
without extensive numerical integration.

B. pRG equations

We see Fig. 5 that the intervalley particle-particle bubble

pp(0) is the largest for all values of γ . It is then convenient to
define L = 
pp(0) as our RG scale. That is define ġi = dgi

dL =
dgi

d
pp(0) . For other 
’s, we introduce the ratios di(k) = d
i (k)
d
pp(0) .

For practical applications, increasing L amounts to lowering
the temperature.

The one-loop pRG equations for the running gi are ob-
tained in a standard way, by evaluating one-loop diagrams for
the renormalization of the four-fermion vertices, differentiat-
ing with respect to L, and replacing the bare internal vertices
by the running ones, at the scale L. The equations are

ġ1 = 2g1(g2 − g1)dph(Q) + 2g1g4dph(0) − 2g1g2,

ġ2 = g2
2dph(Q) + 2(g1 − g2)g4dph(0) − (

g2
1 + g2

2

)
,

ġ4 = −g2
4dpp(Q) + (

g2
1 + 2g1g2 − 2g2

2 + g2
4

)
dph(0).

(8)

The boundary condition is at L = 0, where the couplings are
bare.

We see that the coupling g1 is self-generated, i.e., ġ1 = 0 if
g1 = 0. For this reason, g1 does not change sign under pRG.
This property allows us to study the pRG flow in the space of
x2 = g2/g1 and x4 = g4/g1. The equations for running x2 and
x4 are

ẋ2 = g1
{
x2

2dph(Q) + 2(1 − x2)x4dph(0) − (
1 + x2

2

)
− x2[2(x2 − 1)dph(Q) + 2x4dph(0) − 2x2]

}
,

ẋ4 = g1
{−x2

4dpp(Q) + (
1 + 2x2 − 2x2

2 + x2
4

)
dph(0)

− x4[2(x2 − 1)dph(Q) + 2x4dph(0) − 2x2]
}
.

(9)

As defined, di(k) in Eqs. (8) and (9) are functions of L. The ex-
ception is the case of HOVHS (γ = 0), where all 
i(k) scale
as 1/T 1/3, and di(k) are just numbers [d
i(k)/d
pp(0) =

i(k)/
pp(0)]. Below we follow Refs. [29,32,33] and replace
d
i(k)/d
pp(0) by 
i(k)/
pp(0) for all values of γ . For the
OHVS this amounts to replacing the ratios that scale as 1/

√
L

by some small numbers from Fig. 5. We refer the reader to
Refs. [29,32,33] for justification.

C. Fixed trajectories of pRG flow

In general, the pRG flow in the x2 − x4 plane is determined
by the location of fixed trajectories, when all gi either diverge
or vanish, but the ratios of the couplings tens to finite val-
ues. In terms of x2 = g2/g1 and x4 = g4/g1, which we will
be using, these fixed trajectories are fixed points, satisfying
ẋ2 = 0 and ẋ4 = 0. There are three generic possibilities for
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fixed points: a stable fixed point, an unstable fixed point, and
a saddle point (half-stable fixed point). The stability of a fixed
point is determined by the eigenvalues of the matrix(

dẋ2/dx2 dẋ2/dx4

dẋ4/dx2 dẋ4/dx4

)
. (10)

A stable fixed point has two negative eigenvalues, an unstable
fixed point has two positive eigenvalues, and a half-stable
fixed point has one positive and one negative eigenvalue.

We label the fixed points in the (x2, x4) plane as (c2, c4).
Substituting g2 = c2g1 and g4 = c4g1 into Eq. (8), we obtain
three equations in the form

ġ1 = fi(c2, c4)g2
1, i = 1, 2, 4. (11)

The set of equations f1(c2, c4) = f2(c2, c4) = f4(c2, c4) de-
termines the values c2 and c4. Then, if fi(c2, c4) > 0, all the
couplings diverge upon pRG at some scale L0, where the
temperature corresponding to L0 defines the critical temper-
ature. Near L = L0, gi ∼ 1/(L0 − L). If fi(c2, c4) < 0, all the
couplings tend to zero under pRG.

Besides fixed points, there can be also fixed lines on the
(x2, x4) plane, specified by x4 = ξx2. Such lines define the
asymptotic direction or pRG flow at x2, x4 → ±∞, i.e., when
the magnitude of g2 and g4 becomes parametrically larger than
g1. The slope ξ can be obtained by substituting ẋ4 = ξ ẋ2 into
Eq. (9) and taking the limit |x2|, |x4| → ∞. We find

ξ =
dph(Q) − 1 ±

√
24dph(0)2 + (dph(Q) − 1)2 − 8dph(0)dpp(Q)

6dph(0) − 2dpp(Q)
.

D. The flow of the order parameters

The candidate order parameters �i are listed in Sec. II. The
generic equation for the flow of �i is [19,53]

�̇i = λi�
i, (12)

where the couplings λi = di(k)gi are linear combinations of
the products of g1, g2, and g4 and the ratios of the polarization
bubbles. These couplings can be obtained by solving ladder
equations for the order parameters [50]. At the boundary, �i

0
is an infinitesimally small bare order parameter. An instabil-
ity towards a finite �i occurs when one or more couplings
gi diverge as gi ∼ 1/(L0 − L). The order parameter �i then
generally diverges as

�i ∼ �i
0

(L0 − L)βi
.

The corresponding susceptibility χi is obtained by solving
dχi

dL = �2 (Refs. [19,53]) and scales as χi ∼ 1
(L0−L)2βi−1 . The

leading instability is determined by the largest critical expo-
nent βi.

In the particle-particle channel, the order parameters with
momentum q = 0 satisfy [50]

�̇SC = g2�
SC + g1(�SC )∗. (13)

By adding/subtracting the equations for �̇SC and its complex
conjugate, we find the couplings in the sSC / tSC channels are

λt/sSC = −(g2 ∓ g1).

For PDW, we have

�̇PDW = g4dpp(Q)�PDW. (14)

The equation is the same for PDW with 2K and 2K ′. In the
particle-hole channel the test order parameter vertices satisfy

[50,55]

�̇SDW (Q) = dph(Q)g2�
SDW (Q),

�̇SDW (−Q) = dph(Q)g2�
SDW (−Q),

�̇CDW(Q) = dph(Q)(g2 − 2g1)�CDW(Q),

�̇CDW(−Q) = dph(Q)(g2 − 2g1)�CDW(−Q),

�̇V P = dph(0)(2g2 − g1 − g4)�V P,

�̇KM = dph(0)(g4�
KM + g1�

K ′M ),

�̇K ′M = dph(0)(g4�
K ′M + g1�

KM ).

(15)

We then obtain

λCDW(Q) = λCDW(−Q) = dph(Q)(g2 − 2g1),

λSDW (Q) = λSDW (−Q) = dph(Q)g2.

The coupling constants for SDW and CDW order parameters
at momentum transfer Q are the same as for those at −Q.
This just reflects the two-component nature of CDW and SDW
order parameters.

Further,

λV P = dph(0)(2g2 − g4 − g1),

and

λFM/AFM = dph(0)(g4 ± g1),

for the couplings of global ferromagnetism and global antifer-
romagnetism. We list the couplings in Table II.

V. RESULTS

We solved the pRG equations for the running couplings gi

for arbitrary γ between 0 and 1, used gi to obtain susceptibil-
ities for various order parameters, found the largest exponent
λi and identified the leading ordering tendencies for various
x2 and x4.

We first present the results and discuss how we obtained
them below and in Appendix E. The behavior at γ = 1 and
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TABLE II. The couplings for various order parameters in terms
of running gi. An order parameter may develop only when the corre-
sponding coupling is positive.

t/sSC −(g2 ∓ g1)
sPDW −dpp(Q)g4

CDW dph(Q)(g2 − 2g1)
SDW dph(Q)g2

VP dph(0)(−g4 − g1 + 2g2)
FM/AFM dph(0)(g4 ± g1)

γ = 0 is shown in Fig. 1. We show the evolution of the phase
diagram with γ in Fig. 6. Each modification of the phase dia-
gram develops at a particular γ , listed in the figure. We see that
the evolution starts at γ very close to 1, i.e., already a small
deviation from the OVHS changes the phase diagram and or-
dering tendencies. Another change of the ordering tendencies
happens at γ near 0.1 ∼ 0.2. Comparing with Fig. 5(b), we
see that the first change is caused by rapid drop of dpp(Q),
while the second is caused by crossing of dpp(Q) and dph(Q).

In practical terms, as γ decreases from 1, first the boundary
between tSC and PDW states rotates until it becomes vertical,
and simultaneously the FG region is replaced by tSC order.
Next, the PDW order is replaced by the VP order. Then
susceptibilities for tSC and sSC become degenerate. At even
smaller γ , the FM phase is created at the top of the phase
diagram. Finally, at γ = 0+, the VP phase in the bottom right
corner becomes degenerate with CDW and SDW.

0.997

0.21 0.14

0.09

FIG. 6. The evolution of the phase diagram between OVHS and
HOVHS. We describe the evolution in the text.

We now show the flow of the couplings, from which the
evolution of the phase diagram has been extracted. We will see
that the crossover between OVHS and HOVHS involves the
disappearance and emergence of fixed points of the RG flow
via (i) fixed points approaching infinity and (ii) pair creation
or annihilation of fixed points.

We display the evolution of the flow in various panels in
Fig. 7. For γ = 1 [panel (a)], there is a stable fixed point P1,
an unstable fixed point P2, and two half-stable fixed points
P3 and P4. Once γ decreases, the half-stable fixed point P3

quickly moves towards the lower left corner [panel (b)] and
at γ = 0.9984 reaches (−∞,−∞) [panel (c)]. At infinitesi-
mally smaller γ , P3 reemerges at (+∞,+∞), now as a stable
fixed point [panel (d)] (the positive eigenvalue changes sign
and becomes negative). For simplicity, we keep the same
notation P3 for the reemerging fixed point; this does not imply
that the re-emerged fixed point describes the same ordered
state as the one that disappears. At γ = 0.997, the fixed points
P3 and P4 annihilate [panel (e)]. We show how this happens in
more detail in Fig. 13 in Appendix E. After annihilation, the
pRG flow everywhere in the upper part of the phase diagram
is towards the stable fixed point P1 [panel (f)]. Next, at smaller
γ , the stable fixed point P1 starts moving towards (−∞,−∞)
[panel (g)]. It reaches (−∞,−∞) at γ = 0.14 [panel (h)],
reappears at (+∞,+∞) as a half-stable fixed point (one of
the eigenvalues becomes positive, another remains negative),
and starts moving towards the unstable point P2 [panel (i)].
After that, the pRG flow in the left part of the phase diagram is
towards (−∞,−∞). In this flow, g2 becomes parametrically
larger than g1, which leads to degeneracy between sSC and
tSC (see Table II). At even smaller γ , a pair of fixed points
P5 and P6 is created at γ = 0.09 [panel (j)], and starts mov-
ing apart [panel (k)]. After that, the structure of fixed points
becomes the same as in the limit of HOVHS [panel (l)].

The evolution of the fixed points gives rise to the evolution
of the ordering tendencies. The leading ordering tendency,
the one with the largest coupling λi, is displayed by the
corresponding color in the phase diagram in Fig. 7. The
computation of λi based on the pRG results for gi is straight-
forward. We discuss the details in Appendix E and here show,
as an example, the flow of the couplings λi in various channels
in the OVHS limit, γ = 1 (Fig. 8) and in the HOVHS limit,
γ = 0 (Fig. 9).

Application to BBG and RTG

For practical applications to BBG and RTG, we use the fact
that bare couplings g2 and g4 are positive and nearly equal
and are larger than bare g1, as g2 and g4 are the interactions
with near-zero momentum transfer, while g1 is the interaction
with momentum transfer 2K . The corresponding points on
the phase diagram are near the diagonal in the upper-right
quadrant (we show an example of pRG flow at large initial
x2 and x4 in Fig. 10). We see from the phase diagram in Fig. 1
that for OVHS, the system is not ordered, while in the case
of HOVHS, the order is ferromagnetic, and there is a wide
intermediate regime, where the ordered state is a triplet super-
conductor. The reason why there is no order in the OVHS limit
is due to the strongest effect from the renormalization in the
particle-particle channel, which for positive (repulsive) inter-
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FIG. 7. Evolution of the pRG flow when γ becomes smaller than 1. Red arrows denote the movements of the fixed points. The stable fixed
points and fixed lines are marked by yellow stars and yellow arrows.

actions drives gi to zero. In the HOVHS limit, ferromagnetism
is the consequence of the fact that the diagonal direction in
the upper-right quadrant is in the basin of attraction of the
fixed point P6 in Fig. 7(l). This fixed point is at x4 � x2 i.e.,
the dressed g4 is much larger than dressed x2. In this case,
the ordered state is a FM (see Table II). At intermediate γ ,
the pRG flow in the upper-right corner of the phase diagram

is either towards the fixed point P1 in Fig. 7(f), or towards
(−∞,−∞). In both cases, x2 and x4 become negative, which
results in either tSC (flow towards P1) or tSC degenerate with
sSC [flow towards (−∞,−∞)]. We also emphasize that to
get an instability towards FM one has to keep g1 in the pRG
equations. It is small initially, but grows under pRG and even-
tually determines the pRG flow of the other two couplings g2
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(a) (b) (c)

FIG. 8. The pRG flow as a function of L in the OHVS limit for the bare values (a) x0
2 = 2, x0

4 = 1, (b) x0
2 = 8, x0

4 = 0.5, and (c) x0
2 = 0.5

and x0
4 = 2.

and g4. Indeed, using dph(0) = dpp(Q) = 1/3 and dph(Q) = 1
at HOVHS, we obtain from (8)

ġ1 = 2

3
g1g4 − 2g2

1,

ġ2 = 2

3
(g1 − g2)g4 − g2

1,

ġ4 = 2

3
g2(g1 − g2) + 1

3
g2

1.

(16)

If we neglected g1, we would find that g2 and g4 flow to zero.
However, for a nonzero positive bare gi, the couplings flow
towards the fixed trajectory at x4 = g4/g1 = (3 + 2

√
3)/2 and

x2 = g2/g1 = 1/2, and the overall flow ġ1 = g2
1/(3 + 2

√
3)

is towards strong coupling, i.e., towards an ordered state.
This fixed trajectory [fixed point on (x2, x4) plane] is P6 in
Fig. 7(l). Along the same lines one can also verify the flow
of x4 and x2 at intermediate γ from initially large positive
values towards the tSC fixed point P1 [Fig. 7(f)] or towards
(−∞,−∞) [Fig. 7(h)]. In both cases, the initially repulsive
pairing interactions becomes attractive in the process of the
pRG flow.

VI. DISCUSSION AND CONCLUSIONS

The purpose of this study was to investigate leading or-
dering tendencies in a system of interacting fermions on a
honeycomb lattice, which, upon doping, undergoes a Lifshitz-
type transition from small pockets to a single Fermi surface
via Van Hove singularity. Such a behavior has been detected in
Bernal bilayer graphene and rhombohedral trilayer graphene
under the displacement field [11–14]. Our main goal was
to analyze the evolution of the ordering tendencies upon
the change of fermionic dispersion under which there is a

transformation from an OVHS, with logarithmic divergence
of the density of states, to HOVHS, when the density of states
diverges by a power law. To address this issue, we introduced
a toy model with Van Hove points at K and K ′ points in
the Brillouin zone. The dispersion around Van Hove points
is governed by a single parameter γ , by changing which one
can tune from OVHS (γ = 1) to HOVHS (γ = 0).

To study the phase diagram of the system and its evo-
lution between OVHS and HOVHS, we employed the pRG
approach. We found that phase diagrams at γ = 0 and
γ = 1 differ significantly. In the OVHS limit the two pos-
sible ordered phases are triplet superconductivity, s-wave
pair-density wave state, and there is a region in the phase
diagram with no order. In the HOVHS limit, the supercon-
ducting phase still exists, but spin-triple and spin-singlet
states are degenerate. Other orders that develop for differ-
ent bare values of the interactions are ferromagnetism and
valley polarization, degenerate with spin and charge density
wave.

We applied the pRG procedure to γ between zero and one
and found that the evolution between the two limits is a multi-
stage process with severe changes in the structure of the pRG
flow due to the annihilation and recreation of individual fixed
points, once they reach the boundary of the phase diagram at
infinity, and annihilation and creation of pairs of fixed points
within the phase diagram. In terms of the ordered states, as γ

decreases from one, first the Fermi gas phase is replaced by
spin-triplet superconductivity, then PDW order loses to valley
polarization, then spin-singlet superconducting state becomes
attractive and degenerate with spin-triplet state, then a part of
superconducting region becomes a ferromagnet, and, finally,
spin/charge density wave channels become attractive and at
γ = 0+ become degenerate with valley polarization.

(a) (b) (c)

FIG. 9. The pRG flow as a function of L in the HOHVS limit for the bare values (a) x0
2 = 1, x0

4 = 2, (b) x0
2 = 0.1, x0

4 = 0.1, and (c) x0
2 = 4,

x0
4 = 0.1.
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0 2000 4000 6000 8000 10000 12000
0.0010
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g1
g2
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FIG. 10. The pRG flow of the couplings with x0
2 = x0

4 = 100 at
γ = 0.9.

All ordered states develop at a finite energy. In this regard,
our results show how different orders compete and replace
each other as the fermionic dispersion is modified at a finite
energy offset from the Van Hove singularity. This offset pro-
vides a scale that separates the region where the effects of
higher order Van Hove singularity become important from
the region where they are negligible. We expect our results
to be applicable, besides BBG and RTG, to a number of
twisted and untwisted systems, which undergo Lifshitz-type
transition upon doping [56–59], e.g., to twisted WSe2 under
displacement field [60,61].
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APPENDIX A: CALCULATION OF POLARIZATION
OPERATORS IN THE HOVHS LIMIT

In the HOVHS limit, γ = 0, the dispersion for two patches
is given by

ε±
k = ±k3 cos 3θ,

where indices ± labels valleys (patches). We will use temper-
ature as a regularizer.

Like we said in the main text, we use the sign convention
in which all polarization bubbles are positive. Following (5)
and using

ε+
k = −ε−

k , ε+
−k = −ε+

k

we have


ph(0) = −T
∑

ω

∫
d2k

4π2

1

(iω − ε+
k )2

= I1,


ph(Q) = −T
∑

ω

∫
d2k

4π2

1

(iω − ε+
k )(iω + ε+

k )
= I2,


pp(0) = T
∑

ω

∫
d2k

4π2

1

(iω − ε+
k )(−iω − ε+

k )
= I2,


pp(Q) = T
∑

ω

∫
d2k

4π2

1

(iω − ε+
k )(−iω + ε+

k )
= I1,

(A1)

where I1 and I2 are the two integrals that need to be calculated,

I1 = 1

16π2T

∫
d2k

cosh2 ε+
k

2T

, I2 = 1

8π2

∫
d2k tanh ε+

k
2T

ε+
k

.

1. Calculation of I1

Consider I1 first. There the integral can be taken by per-
forming an appropriate change of variables,

I1 = 1

16π2T

∫
d2k

cosh2 ε+
k

2T

= 3(2T )2/3

16π2T

∫ π/6

−π/6

dθ

(cos 3θ )2/3

∫
d (k2(cos 3θ )2/3/(2T )2/3)

cosh2 k3 cos 3θ
2T

= 3 · 22/3

4T 1/3(2π )2

∫ π/6

−π/6

dθ

(cos 3θ )2/3

∫ ∞

0

dx

cosh2 x3/2
. (A2)

Note, that we can set the upper limit of the x integration to
infinity as the integral is convergent; the integral over θ is
convergent as well. Using∫ ∞

0

dx

cosh2 x3/2
� 0.958,

∫ π/6

−π/6

dθ

(cos 3θ )2/3
� 2.43

(A3)

we obtain the final result

I1 � 0.07T −1/3. (A4)

We can also do an approximate calculation using Taylor-
expanded dispersion near the points where cos 3θ = 0; such
calculations will prove useful in the intermediate regime.
Expanding near θ = π/6 and multiplying by 6 to accommo-
date for all lines of zero energy, we obtain the approximate
expression

I1 ≈ 1

4T (2π )2

∫
d2k

cosh2 ε+
k

2T

� 6

4T (2π )2

∫
kdkdθ

cosh2 3k3θ
2T

= 31/3

2(2T )1/3(2π )2

∫ 1

0

dθ

θ2/3

∫ ∞

0

d
(

32/3k2θ2/3

(2T )2/3

)
cosh2 3k3θ

2T

= 31/3

2(2T )1/3(2π )2

∫ 1

0

dθ

θ2/3

∫ ∞

0

dx

cosh2 x3/2
. (A5)
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Hence, we get for I1

I1 � 31/3

2(2T )1/3(2π )2
× 3 × 0.958 = 0.042T −1/3. (A6)

This approximate result is about 0.6 of the exact expression.
One can also calculate the same integral without taking into

account the angular dependence of the dispersion. In this case
ε = k3. The analog of I1, which we define as I∗

1 , is

I∗
1 = 1

4T (2π )2

∫
d2k

cosh2 ε+
k

2T

= 1

4T (2π )2

∫
kdkdθ

cosh2 k3

2T

= 1

4(2T )1/3(2π )

∫ ∞

0

d
(

k2

(2T )2/3

)
cosh2 k3

2T

= 1

4(2T )1/3(2π )

∫ ∞

0

dx

cosh2 x3/2
� 0.03T −1/3. (A7)

2. Calculation of I2

Now consider I2. We perform the same change of variables
to obtain

I2 = 1

2(2π )2

∫
d2k tanh ε+

k
2T

ε+
k

= 3(2T )2/3

2(2π )2(2T )
·

·
∫ π/6

−π/6

dθ

(cos 3θ )2/3

∫ (
cos 3θ

2T

)2/3
dk2

k3 cos 3θ/2T
tanh

k3 cos 3θ

2T

= 3(2T )2/3

2(2π )2(2T )

∫ π/6

−π/6

dθ

(cos 3θ )2/3

∫ ∞

0

dx

x3/2
tanh x3/2.

(A8)

The integral over x yields∫ ∞

0

dx tanh x3/2

x3/2
= 3

∫ ∞

0

dx

cosh2 x3/2
� 2.87, (A9)

as can be verified by integration by parts. Therefore,

I2 = 3I1 � 0.21T −1/3. (A10)

A similar approximate calculation can be done here as well.
Expanding near θ � π/6, multiplying by six contributions
from six angles where cos 3θ = 0, we obtain

I2 � 6

2(2π )2

∫
kdkdθ tanh 3k3θ

2T

3k3θ

= 31/3

2(2π )2(2T )1/3

∫ 1

0

dθ

θ2/3

∫ d
(

32/3k2θ2/3

(2T )2/3

)
tanh 3k3θ

2T

3k3θ/2T

= 31/3

2(2π )2(2T )1/3

∫ 1

0

dθ

θ2/3

∫ ∞

0

dx tanh x3/2

x3/2
. (A11)

Evaluating the last integral, we obtain

I2 � 31/3

2(2π )2(2T )1/3
× 3 × 2.87T −1/3 � 0.126T −1/3.

(A12)
Evidently, I1 and I2 differ by a factor of 3.

One can also calculate I2 for the cubic dispersion without
the angular dependence, i.e., ε = k3. The The analog of I2,

which we define as I∗
2 , is

I∗
2 = 1

2(2π )2

∫
kdkdθ tanh k3

2T

k3
= 1

4(2π )

∫
dk2 tanh k3

2T

k3

= 1

4(2π )(2T )1/3

∫ ∞

0

dx tanh x3/2

x3/2
� 0.09T −1/3. (A13)

For the cubic dispersion without angular dependence, the
results again differ by a factor of 3. So, the temperature de-
pendence for cubic dispersion with and without HOVHS is
identical.

APPENDIX B: CALCULATION OF POLARIZATION
OPERATORS IN THE OVHS LIMIT

In the OVHS limit, γ = 1 and the dispersion for two
patches is identical

ε±
k = k2 cos 2θ = εk,

where ± label valleys (patches). As previously, we will use
temperature as a regularizer. In our sign convention the four
polarization are given by


ph(0) = 
ph(Q) = −T
∑

ω

∫
d2k

4π2

1

(iω − εk )2
= I1,


pp(0) = 
pp(Q) = T
∑

ω

∫
d2k

4π2

1

(iω − εk )(−iω − εk )
= I2,

(B1)

where

I1 = 1

4T

∫
d2k

4π2

1

cosh2 εk
2T

, I2 = 1

2

∫
d2k

4π2

tanh εk
2T

εk
.

For both integrals we need to set the upper limit of integration
over k. We set it at k = 1. Consider I1 first. Introducing εk =
k2 cos 2θ and u = cos 2θ as new variables and integrating over
εk , we obtain

I1 = 1

4π2

∫ 1

0

du tanh u
2T

u
√

1 − u2
. (B2)

Evaluating the integral, we obtain

I1 = 1

4π2
log

2.26

T
. (B3)

Just as in the HOVHS case we can also evaluate the integral
approximately by expanding around the angles θ for which
cos 2θ = 0. Doing this, we obtain

I1 = 1

4T (2π )2

∫
d2k

cosh2 εk
2T

� 4

4T (2π )2

∫
kdkdθ

cosh2 2k2θ
2T

�
∫ O(1)

0

dθ

θ (2π )2

∫ θ/T

0

d (k2θ/T )

cosh2 k2θ
T

= 1

4π2

∫ O(1)

0
dθ

tanh θ/T

θ
= 1

4π2
ln

b

T
, b = O(1).

(B4)

We see that to logarithmic accuracy, the approximate expres-
sion for I1 coincides with the exact one.
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For I2, we obtain, by changing the variables in the integrand
to x = 2θ and y = k2 cos 2θ/(2T ),

I2 = 1

4π2

∫ π/2

0

dx

x

∫ x/(2T )

0
dy

tanh y

y
. (B5)

Evaluating the integral with logarithmic accuracy, we obtain

I2 = 1

8π2
log2

( a

T

)
, a = O(1). (B6)

To logarithmic accuracy, the same expression is obtained if we
expand around the angles for which cos 2θ = 0.

APPENDIX C: CALCULATION OF POLARIZATION
OPERATORS CLOSE to the OVHS limit: γ � 1

In this section, we present approximate expressions for the
polarization bubbles for γ , which on one hand are close to
one, and on the other are such that

√
1 − γ 2 > T .

1. Calculation of �ph(0)

The intravalley particle-hole susceptibility is given by


ph(0) = 1

4T (2π )2

∫
d2k

cosh2 ε+
k

2T

= 1

4T (2π )2

∫
d2k

cosh2 γ k2 cos 2θ+
√

1−γ 2k3 cos 3θ

2T

. (C1)

To calculate the integral we expand around θ =
π/4, 3π/4, 5π/4, 7π/4 since the main contribution comes
from the vicinity of these angles. Around these angles,

ε+
k � ±2γ k2θ ±

√
1 − γ 2

√
2

k3,

Since cosh is an even function one needs to consider only two
angles, the other two will give the same result. Choosing θ

near π/4 and 3π/4, we obtain near these angles

ε+
k � 2γ k2θ +

√
1 − γ 2

√
2

k3, (C2)

and

ε+
k � 2γ k2θ −

√
1 − γ 2

√
2

k3.

With this one can approximate the particle-hole susceptibility
as


ph(0) � 2

4T (2π )2

∫
kdkdθ

cosh2 2γ k2θ+
√

1−γ 2√
2

k3

2T

+ 2

4T (2π )2

∫
kdkdθ

cosh2 2γ k2θ−
√

1−γ 2√
2

k3

2T

. (C3)

Consider the first of the two integrals,

1

T

∫
d2k

cosh2 2γ k2θ+
√

1−γ 2√
2

k3

2T

. (C4)

It is convenient to introduce new variables,

k̄ = k
(1 − γ 2)1/6

√
2T 1/3

, ᾱ = 2γ

(1 − γ 2)1/3T 1/3
.

Then, the first integral can be rewritten in the following form:

2

(1 − γ 2)1/3T 1/3

∫
d2k̄

cosh2(ᾱk̄2θ + k̄3)
. (C5)

The scaling function f (γ ) is given by the integral, where
ᾱ(γ ) � 1 for γ slightly smaller that 1. We calculate the
integral analytically for ᾱ � 1 to logarithmic accuracy. We
will first integrate over the angle θ and then integrate over k̄.
Let us rewrite the integral (C5),

2

(1 − γ 2)1/3T 1/3

∫
d2k̄

cosh2(ᾱk̄2θ + k̄3)

= 2

(1 − γ 2)1/3T 1/3

∫
k̄dk̄

ᾱk̄2

∫
d (ᾱk̄2θ )

cosh2(ᾱk̄2θ + k̄3)
. (C6)

For θ the region of integration is θ ∈ [0, 1]. The cubic terms
can be neglected for ᾱk̄2θ > k̄3. Then, for the integration
over x = ᾱk̄2θ , the limit is defined by the condition on the
smallness of cubic terms,

ᾱθ > k̄ ⇒ x < ᾱθ · (ᾱθ )2 = (ᾱθ )3.

For maximal θ = 1 the upper limit for k̄ is then just ᾱ. We use
those integration boundaries, introduce variable x = ᾱk̄2θ +
k̄3, and obtain

2

(1 − γ 2)1/3T 1/3

∫ ᾱ

0

k̄dk̄

ᾱk̄2

∫ ᾱk̄2+k̄3

k̄3

dx

cosh2 x
. (C7)

The first integration is straightforward,

2

(1 − γ 2)1/3T 1/3

∫ ᾱ

0

k̄dk̄

ᾱk̄2

∫ ᾱk̄2+k̄3

k̄3

dx

cosh2 x

= 2

(1 − γ 2)1/3T 1/3

∫ ᾱ

0

k̄dk̄

ᾱk̄2
[tanh(ᾱk̄2 + k̄3) − tanh(k̄3)].

(C8)

Now let us consider the second integral in (C3). After per-
forming exactly the same transformations (except for the
variable x, which now reads x = ᾱk̄2θ − k̄3, the lower limit
of integration over x changes) we get

2

(1 − γ 2)1/3T 1/3

∫ ᾱ

0

k̄dk̄

ᾱk̄2
[tanh(ᾱk̄2 + k̄3) + tanh(k̄3)].

(C9)

As one can see now, terms with tanh k̄3 in (C8) and (C9)
cancel each other, so 
ph(0) is


ph(0) = 4

(1 − γ 2)1/3T 1/38π2

∫ ᾱ

0

k̄dk̄

ᾱk̄2
tanh(ᾱk̄2 + k̄3).

(C10)
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This integral can be evaluated with logarithmic accuracy. Ne-
glecting k̄3 under the tanh one gets


ph(0) � 1

(1 − γ 2)1/3T 1/32π2

∫ ᾱ

0

k̄dk̄

ᾱk̄2
tanh(ᾱk̄2)

= 1

(1 − γ 2)1/3T 1/34π2ᾱ

∫ ᾱ3

0

dx

x
tanh x

�� 3

8π2γ
ln

2γ

T 1/3(1 − γ 2)1/3
. (C11)

Note that one cannot strictly take the limit γ → 1 as we
assumed

√
1 − γ 2 > T .

2. Calculation of �ph(Q)

The intervalley particle-hole susceptibility is given by


ph(Q) = −T
∑

ω

∫
d2k

(iω − ε+
k )(iω − ε−

k )
, (C12)

where ε+
k = γ k2 cos 2θ +

√
1 − γ 2k3 cos 3θ and ε−

k =
γ k2 cos 2θ −

√
1 − γ 2k3 cos 3θ . We first sum over Matsubara

frequencies and obtain


ph(Q) = −T
∑

ω

∫
d2k

(iω − ε+
k )(iω − ε−

k )

= − 1

2(2π )2

∫ d2k
(

tanh ε−
k

2T − tanh ε+
k

2T

)
ε+

k − ε−
k

= − 1

4(2π )2

∫ kdkdθ
(

tanh ε−
k

2T − tanh ε+
k

2T

)
√

1 − γ 2k3 cos 3θ
. (C13)

We will now expand around θ � 3π/4 and proceed with an
approximate dispersion. The reason for this approximation is
twofold. First, the double-log contribution comes from the k2

dispersion near the zero energy lines [given by θ � (2n +
1)π/4]. Second, as we saw above, the cubic term gives the
∼T −1/3 dependence regardless of whether there is angular
dependence or not. Furthermore, tanh is an odd function,
hence, we can again consider only the case near one angle
to get the results to logarithmic accuracy [like we did for

ph(0)]. Expanding near θ � 3π/4 and changing variables

just like for 
ph(0) we get


ph(Q) � −
∫

d2k̄(tanh(ᾱk̄2θ − k̄3) − tanh(ᾱk̄2θ + k̄3))

k̄3(1 − γ 2)1/3T 1/3(2π )2

= −
∫

dk̄dθ (tanh(ᾱk̄2θ − k̄3) − tanh(ᾱk̄2θ + k̄3))

k̄2(1 − γ 2)1/3T 1/3(2π )2
,

(C14)

We are interested in the regime with large ᾱ � 1 where
quadratic dispersion dominates. This allows us to expand the
difference between two hyperbolic tangents in Taylor series
using k̄3/ᾱk̄2θ as a small parameter. This means that k̄/ᾱθ <

1, i.e., k̄ < ᾱθ . Using this, we evaluate the integral as∫
dk̄dθ

(
tanh(ᾱk̄2θ − k̄3) − tanh(ᾱk̄2θ + k̄3)

)
k̄2

�
∫ dk̄dθ · 2ᾱk̄2θ

(
tanh2(ᾱk̄2θ ) − 1

)
k̄3

ᾱk̄2θ

k̄2

=
∫

2k̄dk̄dθ · (
tanh2(ᾱk̄2θ ) − 1

)

= −
∫ ᾱ

0

2k̄dk̄

ᾱk̄2

∫ 1

0

d (ᾱk̄2θ )

cosh2(ᾱk̄2θ )

= −2
∫ ᾱ

0

k̄dk̄

ᾱk̄2

∫ ᾱk̄2

0

dx

cosh2 x
. (C15)

Substituting into (C14), we obtain


ph(Q) = 2

(1 − γ 2)1/3T 1/3(2π )2

∫ ᾱ

0

k̄dk̄

ᾱk̄2
tanh ᾱk̄2

= 1

(1 − γ 2)1/3T 1/3(2π )2ᾱ

∫ ᾱ3

0

dx

x
tanh x

� 3

8π2γ
ln

2γ

T 1/3(1 − γ 2)1/3
. (C16)

We see that 
ph(Q) ≈ 
ph(0) not only at γ = 1 but also in
the intermediate regime γ � 1. This agrees with the numeri-
cal results in Fig. 5.

3. Calculation of �pp(Q)

Let us now calculate the intravalley particle-particle sus-
ceptibility. It is given by


pp(Q) = 1

2(2π )2

∫ d2k
(

tanh ε+
k

2T + tanh ε−
k

2T

)
ε+

k + ε−
k

= 1

2(2π )2

∫ d2k

(
tanh

γ k2 cos 2θ+
√

1−γ 2k3 cos 3θ

2T + tanh
γ k2 cos 2θ−

√
1−γ 2k3 cos 3θ

2T

)
2γ k2 cos 2θ

,

(C17)

where we used Eq. (5) and that ε+
−k = ε−

k .
Since we calculate the integral in the limit of small√

1 − γ 2, we can again consider only one case (tanh is an odd
function, so every time cos 2θ changes sign tanh will change
the sign as well and the integral remains positive). We expand
around θ � 3π/4 (to have cos 2θ being positive) and obtain


pp(Q) � 4

2(2π )2

∫ d2k 2 tanh
(

2γ k2θ

2T

)
4γ k2θ

= 1

(2π )2T

∫ kdkdθ · tanh
(

γ k2θ

T

)
γ k2θ/T

. (C18)
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Here we will integrate over momentum after we integrate
over the angle. To do so, we first need to define the lim-
its of integration. Integration over θ runs from 0 to 1, i.e.,
θ ∈ [0, 1]. The cutoff on k is defined through the condition
γ k2θ ∼

√
1 − γ 2k3. For θ ∼ 1 the maximal value of k is of

the order of γ√
1−γ 2

, hence k ∈ [0,
γ√

1−γ 2
]. The lower cutoff

in θ is governed by the condition γ√
1−γ 2

k2θ > k3. With this,

we can now proceed with the integration,


pp(Q)

� 1

(2π )2T

∫ kdkdθ · tanh
(

γ k2θ

T

)
γ k2θ/T

= 1

(2π )2

∫ γ√
1−γ 2

0

kdk

γ k2

∫ 1

k
√

1−γ 2

γ

d
(
γ k2θ/T

) · tanh
(

γ k2θ

T

)
γ k2θ/T

= 1

(2π )2

∫ γ√
1−γ 2

0

kdk

γ k2

∫ γ k2/T

√
1−γ 2k3

T

dx · tanh x

x
. (C19)

Let us now take the integral over x to logarithmic accuracy.
We obtain


pp(Q) � 1

(2π )2

∫ γ√
1−γ 2

0

kdk

γ k2
·
[

ln

(
γ k2

T

)
tanh

(
γ k2

T

)
−

− ln

(√
1 − γ 2k3

T

)
tanh

(√
1 − γ 2k3

T

)]
.

(C20)

Consider the first contribution. Taking the resulting integral
over k̄ to logarithmic accuracy we get

1

(2π )2

∫ γ√
1−γ 2

0

kdk

γ k2
ln

(
γ k2

T

)
tanh

(
γ k2

T

)

= 1

2(2π )2γ

∫ γ 3

(1−γ 2 )T

0

dy

y
ln y tanh y

� 9

4(2π )2γ
ln2 γ

(1 − γ 2)1/3T 1/3
. (C21)

The second contribution is

− 1

(2π )2

∫ γ√
1−γ 2

0

kdk

γ k2
ln

(√
1 − γ 2k3

T

)
tanh

(√
1 − γ 2k3

T

)

= − 1

3γ (2π )2

∫ γ 3

(1−γ 2 )T

0

dy

y
ln y tanh y �

� − 9

6(2π )2γ
ln2 γ

(1 − γ 2)1/3T 1/3
.

(C22)
The final result for 
pp(Q) is then given by


pp(Q) ≈ 3

4(2π )2γ
ln2 γ

(1 − γ 2)1/3T 1/3
. (C23)

4. Calculation of �pp(0)

We perform the same calculation for 
pp(0). We first calcu-
late the Matsubara sum,


pp(0) = 1

2(2π )2

∫
d2k tanh ε+

k
2T

ε+
k

= 1

2(2π )2

∫
d2k tanh

γ k2 cos 2θ+
√

1−γ 2k3 cos 3θ

2T

γ k2 cos 2θ +
√

1 − γ 2k3 cos 3θ
,

(C24)

where in Eq. (5) we used that ε+
k = ε−

−k. Let us again work
near θ = 3π/4. Then, the integral can be rewritten as


pp(0) � 4

2(2π )2T 1/3(1 − γ 2)1/3

∫
d2k̄ tanh(ᾱk̄2θ + k̄3)

ᾱk̄2θ + k̄3

(C25)
using the same change of variables

k̄ = k
(1 − γ 2)1/6

√
2T 1/3

, ᾱ = 2γ

(1 − γ 2)1/3T 1/3
.

We again will first integrate over the angle and only then
proceed to the k̄ integration. The integration limits are: θ ∈
[−k̄/ᾱ, 1] and k̄ ∈ [0, ᾱ] (the main contribution here comes
from very small angles). Hence, the integral is


pp(0) � 4(1 − γ 2)−1/3

2(2π )2T 1/3

∫
k̄dk̄dθ · tanh(ᾱk̄2θ + k̄3)

ᾱk̄2θ + k̄3

= 4(1 − γ 2)−1/3

2(2π )2T 1/3

∫ ᾱ

0

k̄dk̄

ᾱk̄2

∫ 1

−k̄/ᾱ

(ᾱk̄2)dθ · tanh(ᾱk̄2θ + k̄3)

ᾱk̄2θ + k̄3

= 4(1 − γ 2)−1/3

2(2π )2T 1/3

∫ ᾱ

0

k̄dk̄

ᾱk̄2

∫
d (ᾱk̄2θ + k̄3) · tanh(ᾱk̄2θ + k̄3)

ᾱk̄2θ + k̄3

= 4(1 − γ 2)−1/3

2(2π )2T 1/3

∫ ᾱ

0

k̄dk̄

ᾱk̄2

∫ ᾱk̄2+k̄3

0

dx · tanh x

x
. (C26)

To logarithmic accuracy, the last integral reads

4(1 − γ 2)−1/3

2(2π )2T 1/3

∫ ᾱ

0

k̄dk̄

ᾱk̄2
[ln(ᾱk̄2 + k̄3) tanh(ᾱk̄2 + k̄3)].

(C27)

This integral for large ᾱ is almost exactly the same as in (C21),

4(1 − γ 2)−1/3

2(2π )2T 1/3

∫ ᾱ

0

k̄dk̄

ᾱk̄2
[ln(ᾱk̄2) tanh(ᾱk̄2)]. (C28)
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FIG. 11. The two eigenvalues of the pRG flow at the fixed point P3 in the vicinity of γc1 = 0.9984, where P3 approaches (−∞, −∞)
and then reemerges at (∞,∞). One eigenvalue diverges at γc1 and changes sign, the other evolves continuously through γc1. As a result, a
half-stable fixed point on one side of γc1 becomes a stable fixed point on the other side.

We then obtain


pp(0) ≈ 9

4(2π )2γ
ln2 2γ

(1 − γ 2)1/3T 1/3
. (C29)

Comparing 
pp(Q) and 
pp(0) we see that the two now
differ by a factor of 3. This is different from 
pp(Q) =

pp(0) at γ = 1 (OVHS case). We see therefore that the
ratio 
pp(0)/
pp(Q) rapidly increases from one to three as γ

decreases slightly down from one. This result is in agreement

with the behavior which we found numerically in Fig. 5.
Indeed, the ratio 
pp(0)/
pp(Q) is close to 3 for all γ in this
figure, down to the HOVHS value γ = 0.

APPENDIX D: FITTING OF THE
POLARIZATION BUBBLES

The numerical results for the polarization bubbles for ar-
bitrary γ are shown in Fig. 5. We fitted the numerical results
with the scaling functions


pp(0) = 4.05 − 2.81γ − 7.4γ 2 + 13.8508γ 3 − 6.446γ 4,


ph(0) = (0.37 − 0.798γ − 0.453γ 2 + 4.729γ 3 − 6.38γ 4 + 2.646γ 5)
pp(0),


ph(Q) = (0.876 − 6.32γ + 24.774γ 2 − 47.15γ 3 + 42.817γ 4 − 14.868γ 5)
pp(0),


pp(Q) = {0.618 + 0.382e166.7(γ−1) + 0.213 tan−1[2.4486(γ − 1)]}
pp(0).

(D1)

These are not the “exact” expressions, but they fit the
numerical results rather well (see Fig. 5). For γ � 1,
the results are quite consistent with Eq. (7) in the sense
that 
pp(0) ≈ 
ph(Q) ≈ 3
pp(Q) ≈ 3
ph(0). For γ → 1,

pp(0) and 
pp(Q) are the largest, yet because singularities in
the OVHS case are logarithmic, larger γ are needed to match
the results in Eq. (6).

APPENDIX E: DETAILS OF THE EVOLUTION OF THE
FIXED POINTS OF THE pRG FLOW AND THE

ORDERING TENDENCIES

In this Appendix, we discuss in some detail the evolution
of the phase diagram with γ .

1. The disappearance of the half-stable fixed point, its
reemergence, and the disappearance of the Fermi gas region

The changes in the phase diagram begin when the half-
stable fixed point P3 flows towards −∞. We find that P3

reaches infinity at γc1 ≈ 0.9984. At infinitesimally smaller γ ,
P3 reemerges at (+∞,+∞). We checked the eigenvalues and
found (see Fig. 11) that one of the eigenvalues passes through
infinity and changes sign at γc1, i.e., a half-stable fixed point
reemerges as a fully stable fixed point.

We can verify this analytically. The fixed point P3 moves
along the fixed line x4 = ζx2, where ζ ≈ 1.43. Substituting
this parametrization into Eq. (10) and solving for the eigen-
values λ at large |x2|, we obtain the quadratic equation

λ2 + 2x2(−2 + 2dph(Q) + 3dph(0)ζ + dpp(Q)ζ )λ

+ 4x2
2[(dph(Q) − 1)(dph(Q) + dpp(Q)ζ − 1) + dph(0)

× ζ (dph(Q) + 2dpp(Q)ζ − 1) + 2dph(0)2(ζ 2 − 2)] = 0,

(E1)

which yields

λ = ax2 ±
√

b2x2
2 =

{
(a ± b)x2 if x2 > 0
(a ∓ b)x2 if x2 < 0,

(E2)

where

a = 2 − 2dph(Q) − 3dph(0)ζ − dpp(Q)ζ

b = [16dph(0)2 + 8dph(0)(dph(Q) − 1)ζ

+ (dph(0) − dpp(Q))2ζ 2]1/2.

(E3)

The sign of a − b determines whether the two eigenvalues are
of the same or different sign. We plot a and b in Fig. 12. We
see that a − b indeed changes the sign at γc1.
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FIG. 12. The parameters a (blue) and b (orange), determined by
Eq. (E2). The sign of a − b determines whether the two eigenvalues
are of the same or or different sign. We see that a − b changes sign
at γc1.

The next event is the annihilation of the half-stable fixed
point P4 and the stable fixed point P3 at γc2 ≈ 0.997. Naively,
one would expect that the annihilation of fixed points resem-
bles the annihilation of two charges with opposite signs in
classical electrostatics: the RG flow trajectories follow the
same pattern as the field lines between the two charges, which
form a dipole. Here the situation is different, however, as
the object with a finite charge merges with an object with
zero charge. To visualize how the local RG flow changes in
response to this anomalous merging process, we draw the
schematic diagram in Fig. 13. When the two points merge, the
flow across the merging point is in 3-in/1-out, i.e., this point
is an inflection point along one direction (the corresponding
eigenvalue is zero) and a minimum along the other. At an
infinitesimally smaller γ , there is no local extremum, resulting
in a continuous flow. In algebraic terms, when the two points
merge, the solution of Eq. (9) changes from four distinct real
solutions to two degenerate and two nondegenerate solutions.
At a smaller γ , two degenerate roots split and become com-
plex, indicating that a fixed point vanishes.

2. The disappearance of the fixed point P1 and the replacement
of the PDW by VP

The behavior of the fixed point P1 resembles that of P3.
As γ decreases towards γc3 ≈ 0.14, it gradually moves to-
wards (−∞,−∞). At γ infinitesimally smaller than γc3, P1

reemerges at (+∞,+∞) as a half-stable fixed point (one of
the eigenvalues changes the sign). This half-stable fixed point
remains on the phase diagram for smaller γ .

Even before P1 disappears and re-appears, the PDW region
on the phase diagram is replaced by VP. One can straightfor-
wardly check that λV P becomes larger than λPDW when

2dph(0)

dpp(Q) − dph(0)
>

|g4|
g2

. (E4)

We plot both sides of this equation in Fig. 14. We see that
they cross at γ ≈ 0.21. To verify that at γ smaller than this
value the ordering tendency changes to VP, we plot in Fig. 15
the eigenvalues in different channels for proper x2 and x4 at

FIG. 13. A schematic picture of how the half-stable fixed point
P4 and the stable fixed point P3 merge. (a) The two points are close
to each other. (b) The moment when they merge. (c) The continuous
flow after annihilation.

FIG. 14. Graphical visualization of the criterion, Eq. (E4), that
determines whether VP or PDW is the leading instability in the
bottom right corner of the phase diagram. Solid and dashed lines are
left-hand and right-hand sides of Eq. (E4). The two functions cross
at γ ≈ 0.21. At smaller γ , VP wins over PDW.
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(a) (b)

FIG. 15. The flow of the ratios of couplings with the pRG parameter L for bare values x0
2 = 5, x0

4 = 0.1, which are in the range where
the leading ordering tendency at γ = 1 is PDW. We argued (see the text) that the ordering tendency changes to VP at γ ≈ 0.21. We plot the
eigenvalues in different channels for somewhat larger and somewhat smaller γ . For larger γ = 0.22, PDW is the leading instability; for smaller
γ = 0.19, the leading ordering tendency is VP.

somewhat larger and somewhat smaller γ . For larger γ =
0.22, PDW is the leading instability; for smaller γ = 0.19,
the leading ordering tendency is VP.

Next, we show that as P1 disappears and then re-emerges,
spin-triplet SC becomes degenerate with spin-singlet SC. We
demonstrate this in Fig. 16, where we plot the eigenvalues in
different channels for proper x2 and x4. We see that indeed
tSC becomes degenerate with sSC once the fixed point P1

disappears from the lower part of the phase diagram.

3. Pair production of the FM and half-stable fixed point

The final element of the evolution of the pRG flow is the
creation of a pair of fixed points P5 and P6 in the second
quadrant of the phase diagram at γc4 ≈ 0.09. The creation
mechanism is exactly opposite to the annihilation of P3 and
P4. Still, like there, one of the fixed points is stable (P6) and

one is half-stable (P5). In our analytic study we find that at
γ > γc4, there are two complex solutions and two real solu-
tions of Eq. (9). Right at γ = γc4, the two formerly complex
solutions become a degenerate real solution, and at γ < γc4

they split into two real solutions, i.e., as γ becomes smaller
than γc4, the total number of real solutions changes from 2
to 4. We analyzed the leading ordering tendency in the basin
of attraction of the stable fixed point P6 and found that it is
towards global ferromagnetism. At the same line, the phase
boundary that starts at the unstable fixed point P2 and passes
through P5 separates FM and tSC/sSC orders. The RG flow
along the phase boundary is also somewhat nontrivial. At
γ > γc5 ≈ 0.04, the functions fi(c2, c4) in Eq. (11), where
c2 and c4 are x2 and x4 at P5, are positive, i.e., the couplings
diverge under pRG (the leading instability is tSC). At γ = γc5,
fi(c2, c4) = 0, i.e., the couplings remain invariant under pRG,
similar to super-metal behavior, reported in [43]. At γ < γc5,
fi(c2, c4) < 0, and the couplings tend to zero.

(a) (b)

FIG. 16. The flow of the ratios of the coupling as a function of L before (γ = 0.18) and after the disappearance of the stable fixed point
P1 (γ = 0.12) using the bare value x0

2 = x0
4 = 2. One can see that tSC wins over sSC when P1 is present, but the two are degenerate when P1

disappears.
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