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Topological heavy fermions inmagnetic field

Keshav Singh 1,2, Aaron Chew3, Jonah Herzog-Arbeitman 3,
B. Andrei Bernevig 3,4,5 & Oskar Vafek 1,2

The recently introduced topological heavy fermion model (THFM) provides a
means for interpreting the low-energy electronic degrees of freedom of the
magic angle twisted bilayer graphene as hybridization amidst highly disper-
sing topological conduction and weakly dispersing localized heavy fermions.
In order to understand the Landau quantization of the ensuing electronic
spectrum, a generalization of THFM to include the magnetic field B is desired,
but currently missing. Here we provide a systematic derivation of the THFM in
B and solve the resultingmodel toobtain the interactingHofstadter spectra for
single particle charged excitations. While naive minimal substitution within
THFM fails to correctly account for the total number of magnetic subbands
within the narrow band i.e., its total Chern number, our method—based on
projecting the light and heavy fermions onto the irreducible representations
of the magnetic translation group— reproduces the correct total Chern num-
ber. Analytical results presented here offer an intuitive understanding of the
nature of the (strongly interacting) Hofstadter bands.

Since the discovery of the remarkable phase diagram of the magic
angle twisted bilayer graphene (MATBG)1,2, substantial effort3–32 has
been devoted to understanding its rich physics. The presence of
topological narrow bands within this system23,33–35 provides a novel
platform to study the interplay between strong electron correlations
and band topology. The recently introduced topological heavy fer-
mion model (THFM) for MATBG36,37 bridges the contrary signatures of
localized38,39 and delocalized physics40,41 reported via STM and trans-
port measurements42,43. Within THFM the low energy electrons are
viewed as a result of the hybridization between heavy px ± ipy-like
Wannier states, localized at the AA stacking sites, and topological
conduction fermions, denoted by f and c, respectively, in analogy to
heavy fermion materials36. Among its other features, THFM allows for
an intuitive explanation of the charged excitation spectra36 at integer
fillings hitherto obtained via strong coupling expansion of projected
models18,25.

The large moiré period of ~13 nm in MATBG has revealed a
sequence of broken symmetry Chern insulators yielding a plethora of
finite magnetic field (B) induced phases at lower fluxes42,44–51 and has
showcased, for the first time, reentrant correlated Hofstadter states at
magnetic fields as low as 31T52. Thus it becomes important to better

understand the interplay of correlations and band topology in the
presence of a perpendicular B field. Theoretical studies have pre-
viously focused on non-interacting53–55 and strong coupling56–58

regimes. Although exact, each employed considerable numerical
analysis, restricting adeeper physical understandingof themechanism
for Landau quantization.

In this paper, we show how one can understand the Landau
quantization of the strong coupling spectra in terms of hybridization
amidst Landau levels (LLs) of c fermions and hybridWannier states of f
fermions. We find that only a particular number of f fermion
momentum channels are allowed to hybridize to c fermion LLs, with
coupling strength which decreases with increasingB and increasing LL
indexm. Moreover, throughour analysis we canclearly understand the
reason why a naive minimal coupling is unable to recover the correct
total Chern number of the narrow bands. In the flat band limit of
THFM, our framework allows for an exact solution including the
dominant interactions and analytically explains the total Chern num-
ber. Even for cases with a non-trivial Chern number, we explicitly
demonstrate the dependence of total number of states on the mag-
netic field as is expected by the Streda formula59. Although going away
from the flat band limit requires numerics, given the simple structure
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of our Hamiltonian, we are still able to compute the spectrum to
unprecedentedly small fluxes and find it to be well captured by the
analytical solution in the flat band limit, M = 0, which can be taken all
the way to B = 0 as shown for narrow band filling factors ν =0, −1, and
−2 in this paper.

The formulas we derive are general for any rational value ofϕ/ϕ0,
with ϕ being the flux through the unit cell and ϕ0 being the flux
quantum hc/e, but we focus our analysis on the 1/q flux sequence and
low B where the results become particularly transparent. Our analysis
as well unveils the physical nature of the anomalous low energy mode
which is seen to be almost B-independent, also observed in previous
numerics56, as the anomalous zero-LL of amasslessDiracparticle, a key
ingredient of the topological heavy fermion picture of MATBG.
Although thiswork deals directly with THFM, ourmethods applymore
generally.

Results
Review of THFM and the key challenge
The THFM in momentum space is given by36

Ĥ0 =
X
jkj<Λc

X
τs

X4
aa0 = 1

Hc,τ
aa0 ðkÞ~cykaτs~cka0τs

+
X
jkj<Λc

X
τs

X4
a= 1

X2
b= 1

e�
1
2k

2λ2Hcf ,τ
ab ðkÞ~cykaτs ~f kbτs + h.c.

� �
:

ð1Þ

HereΛc is themomentumcutoff for c fermionswhile f fermions, whose
bandwidth is negligibly small, reside in the entire moiré Brillouin zone
(mBZ). The tilde on the fermionic creation and annihilation operators
indicates that they are at B = 0. The parameter λ ≈0.38Lm is a damping
factor proportional to the spatial extent of the localized Wannier
functions36, with Lm being the moiré period; τ = + 1(−1) represents
graphene valley KðK0Þ and s spin ↑,↓. The c–c and c–f couplings are

Hc,1 =

0 0 v*k 0

0 0 0 v*
�k

v*
�k 0 0 M

0 v*k M 0

0
BBB@

1
CCCA , Hcf ,1 =

γ v0*
�k

v0*k γ

0 0

0 0

0
BBB@

1
CCCA, ð2Þ

where k = kx + iky and �k = kx � iky. The explicit k dependence in Hc,1(k)
and Hcf,1(k) above has been suppressed for brevity. The parameters v*,
v0*, M and γ were determined from the Bistritzer-MacDonald60 (BM)
model in ref. 36. The bandwidth of narrow bands is set by 2∣M∣ and the
gap between the narrow bands and the remote bands is ∣γ∣ − ∣M∣. The
couplings at the opposite graphene valley (i.e., at τ = − 1) can be
obtained by replacing k $ ��k in Eq. (2).

In order to illustrate the key challenge to promoting the model to
non-zero B, we consider a simplified case wherein we set the band-
width and the spatial extent of the localizedWannier functions to zero,
i.e., M = λ =0 in Eqs. (1) and (2). As argued below and as shown in the
Supplementary Note 8, the conclusions reached hold even for a gen-
eral casewithoutmaking this simplification. Following a naiveminimal

substitution, we promote kx + iky ! �i
ffiffiffi
2

p
â=‘61, where the magnetic

length is ‘=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_c=ðeBÞ

p
and â is the Landau level (LL) lowering operator.

The eigenstates of thus minimally substituted Hamiltonian

Hc,1 Hcf ,1

Hcf ,1y 0

� �
can be obtained exactly. It can be readily verified

that the zero modes take the form a1,m∣mi,a2,m∣m� 1i,a3,m∣m+ 1i,�
a4,m∣m� 2i,:b1,m∣mi,b2,m∣m� 1i�T , where ∣ni denotes nth-LL and aα,m
and bβ,m are complex coefficients with α∈ {1,…, 4} and β∈ {1, 2}. The
LL index m∈ {0,…,m*} where m* denotes its upper cut-off. For m =0,

the non-zero coefficients are a3,0 = − iγℓ and b1,0 =
ffiffiffi
2

p
v*, while form = 1

they are a3,1 = 2v
02
* � γ2‘2, b1,1 = − 2iγℓv* and b2,1 = 2

ffiffiffi
2

p
v*v

0
*. For each

m ≥ 2, there are two zero modes whose non-zero coefficients are

a3,m =
ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mðm� 1Þ

p
v0*, a4,m = iγ‘

ffiffiffiffiffiffiffiffiffiffiffi
m+ 1

p
, b2,m =

ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 � 1

p
v* and

a3,m = � iγ‘
ffiffiffiffiffiffiffiffiffiffiffiffiffi
m� 1

p
, a4,m =

ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mðm+ 1Þ

p
v0*, b1,m =

ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 � 1

p
v*,

respectively. Including the anomalous zero-LL of the c–c coupling,

0,0,∣0i,0,0,0ð ÞT , we have a total of 2m* + 1 zero modes within the
narrow bands.

These zero modes are well separated from the remote subbands
by a gap that limits to ∣γ∣ as B→0. This gap cannot close in the stated
limit even if we relax the above mentioned assumptions. The value of
m? is typically determined by requiring that the LL spectrum con-
verges in the energy range of interest. For us this energy window
includes the narrow bands and perhaps several LLs from the remote
bands. However, increasingm* results in an unbounded increase in the
number of LLs within the narrow band energy range as seen from our
exact result. In other words, since each LL contains ϕ/ϕ0 states per
moiré unit cell, the zero modes would accommodate (2m? + 1)ϕ/ϕ0

states per moiré unit cell for each spin and valley. But the total Chern
number of the narrow bands at B = 0 vanishes which means that the
zero modes should accommodate precisely two states per moiré unit
cell for each spin and valley independent ofB59. This demonstrates that
the naive minimal coupling is unable to account for the correct num-
ber of magnetic subbands within the narrow bands for an arbitrarym*.

In the next sections, we introduce the framework for system-
atically promoting THFM to non-zero B and naturally solve the pro-
blem illustrated above. Our approach also provides a deeper
understanding of the nature of the Hofstadter subbands. This frame-
work is also extended to include interactions at amean-field (MF) level.
We do so by illustrating the Landau quantization for the “one-shot”
Hartree-Fock (HF) bands obtained using the MF Hamiltonian for the
parent valley polarized (VP) state36 at three different integer fillings of
the narrow bands.

Basis states at non-zero magnetic field
As illustrated in the previous section, the naive minimal coupling is
inadequate. In order to develop a systematic framework for THFM at
non-zero B, we begin by carefully constructing the basis states in the
way that takes into account the nature of the c and f fermions. In
addition, our construction takes advantage of themagnetic translation
symmetry of the underlying Hamiltonian60. This not only helps us to
label our states using good quantum numbers but also allows us to
transparently keep track of the total number of states at finite B.

We start by briefly reviewing the magnetic translation symmetry.
In the presence of an out-of-planemagneticfield, employed via Landau
gauge vector potential A = (0, Bx, 0), the minimally coupled BM
Hamiltonian60, Hτ

BM ðp� e
cAÞ, preserves the translational symmetry

with respect to the primitive moiré lattice vector L2 = Lm(0, 1) but
translation with respect to the primitive moiré lattice vector
L1 = Lmð

ffiffi
3

p
2 , 12Þ needs to be accompanied by a gauge transformation. In

other words, if f(r) is an eigenstate of Hτ
BM ðp� e

cAÞ, then so is
t̂L2

f ðrÞ= f ðr� L2Þ and t̂L1
f ðrÞ= exp i L1xy

‘2

� �
f ðr� L1Þ with the same

eigenvalue (also see supplementarynote 1 for details). These operators
do not commute as t̂ ±L2

t̂L1
= exp ∓2πi ϕ

ϕ0

� �
t̂L1

t̂ ±L2
, where the flux

through themoiré unit cell isϕ =BL1xLm. However, forϕ/ϕ0 = p/q, with
p and q being relatively prime integers, we have the commuting set of
magnetic translation(MT) operators ½̂tqL2

,̂tL1
�=0, which we use to label

our basis states.
We can now proceed to construct the non-zero B basis for f fer-

mions by utilizing MT. At B = 0, the basis for fs is composed of two
Wannier functionsWR,bτ(r) =W0,bτ(r −R) in each moiré unit cell which
behave as px ± ipy orbitals sitting on the AA stacking sites spanned by
moiré triangular lattice vector R. The highly localized nature of these
states and the trivial topology of their bands allow us to construct a
complete basis for the fs atB ≠0 using the hybridWanniermethod56,62.
To this end we first construct hybrid Wannier states (hWs) out of
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W0,bτ(r) by a repeated application of the translation operator t̂L2
(as

seen in Eq. (3)). The hWs are Bloch extended in the y-direction, i.e.,
along L2, while localized in the x- direction with the localization center
at the origin. Note that A respects the translational symmetry along y.
Moreover, near the origin whereA is small at small B, hWsmust have a
large overlap with the B ≠0 magnetic subbands that emanate out of
B = 0 bands of fs i.e., theB ≠0Hilbert space of f’s thatwe pursue62. The
rest of the basis is then generated similarly by projecting the hWs onto
irreducible representations (irreps) of the magnetic translation group
(MTG) as

ηbτk1k2
ðrÞ= 1ffiffiffiffiffiNp

X
s,n2Z

e2πiðsk1 +nk2Þ t̂
s
L1
t̂
n
L2
W0,bτðrÞ: ð3Þ

Clearly, ηbτk1k2
is a simultaneous eigenstate of t̂L1

and t̂
q
L2

with eigen-
values e�2πik1 and e�2πiqk2 , respectively. Thus, k1,2 labels the momen-
tum along the primitive reciprocal lattice vectors g1,2, where
g1 =

4πffiffi
3

p
Lm

ð1,0Þ and g2 =
2πffiffi
3

p
Lm

ð�1,
ffiffiffi
3

p
Þ. For the fs k1,2∈ [0, 1) i.e., there are

two fs per moire unit cell; the normalization factor N = stotntot , where
stot and ntot denote the total count of s and n (see Supplementary
Note 3 for details). The states with different k1 and ½k2�1=q are guaran-
teed to be orthogonal which is apparent through their eigenvalues
under the MTs, where [b]a denotes b modulo a. In Supplementary
Note 3, we prove that the overlap between states with k2 differing by
integral multiples of 1/q is very small, i.e., to an excellent approxima-
tion, these states are also orthogonal. This stems from the extremely
well-localized nature of the B = 0 Wannier states.

In order to construct the non-zero B basis for c fermions, we
recall that the B = 0 basis for the cs is composed of four k ⋅ p Bloch
states eik�r ~ΨΓaτ ðrÞ, where ~ΨΓaτ is the Bloch state at the Γ point in
mBZ36. We can extend the cs to non-zero B by multiplying ~ΨΓaτ by LL
wavefunctions, a result obtained when the k ⋅ p method is extended
to B ≠063. So as to use the same quantum numbers as for fs, we also
project the c’s LL wavefunctionsΦm onto the (orthonormal) irreps of
the MTG as

χk1k2m
ðrÞ= 1ffiffiffiffiffiffiffiffi

‘Lm
p 1ffiffiffiffiffiNp

X
s2Z

e2πisk1 t̂
s
L1
Φmðr,k2g2Þ: ð4Þ

Again, χk1k2m
is a simultaneous eigenstate of t̂L1

and t̂
q
L2

with eigenva-
lues e�2πik1 and e�2πiqk2 , respectively. Here k1∈ [0, 1), but unlike in
Eq. (3), k2 2 ½0, pqÞ i.e., there are ϕ/ϕ0 = p/q states per moiré unit cell in
each Landau level (see Supplementary Note 3 for details on ortho-
normality and the domain of k1(2)). Φjðr,k2g2Þ= e2πik2

y
Lmφjðx � k2

2π‘2
Lm

Þ,
the harmonic oscillator (h.o.) wavefunctions φmðxÞ= e�x2=2‘2Hmðx=‘Þ=
π

1
4

ffiffiffiffiffiffiffiffiffiffiffiffi
2mm!

p
with Hermite polynomials Hm. The k2 induced offset in the

h.o. wavefunctions is 2πk2ℓ2/Lm = qk2L1x/p. Although the LL wavefunc-
tion Φm is an eigenstate of t̂ ±L2

, the function χk1k2m
is not. Instead,

t̂ ±L2
χk1k2m

ðrÞ= e∓2πik2χ ½k1∓
p
q�1k2m

ðrÞ. We utilize this identity in the pro-
ceeding sections (see Supplementary Note 4B, Eqs. (92)–(94) for
derivation).

Since the qL2 translations break up the k2 domain into units of
width 1

q, from here on we use the label k = (k1, k2) with k1∈ [0, 1) and we
fix k2 2 ½0, 1qÞ. The original k2 domains are then accessed using labels
r0 2 f0, . . . q� 1g and r∈ {0,…, p − 1}, denoting the magnetic strip
½r 0q , r

0 + 1
q Þ and ½rq , r + 1q Þ along g2 for η and χ, respectively. We thus relabel

the states as ηbτkr0 ðrÞ and χkrm(r), respectively. Having assembled the
lowenergy basis atB ≠0,wenowexpand the lowenergyfield at a given
spin s and valley τ as

ψτ,sðrÞ=
X

k2½0,1Þ�½0,1qÞ
X2

b= 1

Xq�1

r0 =0
ηbτkr 0 ðrÞf bτkr0s

�

+
X4

a= 1

Xma,τ

m=0

Xp�1

r =0

ΨaτðrÞχkrmðrÞcaτkrms

!
,

ð5Þ

where Ψaτ ðrÞ=
ffiffiffiffiffiffiffiffi
Atot

p
~ΨΓaτ ðrÞ with Atot being the total sample area,

and f bτkr 0s and caτkrms denote the annihilation operators for the B ≠0 f
and c basis states, respectively. Anticipating the appearance of
anomalous Dirac LLs for the topological c fermions, we allow for the a
dependence of the upper cutoff on the LL index at each valley τ,
denoted by ma,τ above, with m1,+1 =m2,−1 =m? + 1, m2,+1 =m1,−1 =m?,
m3,+1 =m4,−1 =m? + 2 and m4,+1 =m3,−1 =m? − 1. As discussed in Supple-
mentary Note 3, the choice of m?, although arbitrary, needs to be
below an upper-bound to ensure the orthogonality amidst the c-states
Ψaτ(r)χkrm(r). This is because it relies on the fact that their overlaps are
exponentially small in ℓ2g2 as long as the LL index m is held below an
upper cutoff m? ≲ q/2, where g is the reciprocal moiré lattice vector.

Non-interacting Hamiltonian at B ≠0
The single particle THFM at B ≠0 can be computed using the low
energy fields derived in the previous section (Eq. (5))

Ĥ
B
0 =

X
τ,s

Z
d2rψy

τ,sðrÞHτ
BM p� e

c
A

� �
ψτ,sðrÞ

≈
X
τ,s

Hτ,s
cc +

X
τ,s

Hτ,s
cf + h.c.

� �
,

ð6Þ

where the f–f coupling is neglected in the last line because it is negli-
gibly small (this is also the case at B = 0 in Eq. (1)). The c–c and c–f
couplings are

Hτ,s
cc =

P
k2½0,1Þ�½0,1qÞ

P4
a,a0 = 1

Pma,τ

m=0

Pma0 ,τ

m0 =0

Pp�1

r,~r =0

~h
τ

½amr�,½a0m0~r�ðkÞcyaτkrmsca0τk~rm0s,

ð7Þ

Hτ,s
cf =

P
k2½0,1Þ�½0,1qÞ

P4
a = 1

P2
b= 1

Pma,τ

m=0

Pp�1

r =0

Pq�1

r 0 =0
hτ
½amr�,½br0 �ðkÞ

cyaτkrmsf bτkr0s:

ð8Þ

Thematrix element for c–c coupling ~h
τ

½amr�,½a0m0~r�ðkÞ= hΨaτχkrmjHτ
BM ðp�

e
cAÞjΨa0τχk~rm0 i takes the same form as obtained by the direct minimal
substitution in c–c coupling in Eq. (2) and expanding in LL basis, as is
expected from k ⋅p63:

~h
τ

½amr�,½a0m0~r�ðkÞ= δr~r
02×2 hτ,c

mm0

σxh
τ,c
mm0σx Mδmm0σx

� �
aa0

, ð9Þ

where the Pauli matrix σx acts on the c orbitals and

h+ 1,c
mm0 = i

ffiffiffi
2

p
v*
‘

� ffiffiffiffiffiffi
m0p

δm+ 1,m0 0

0
ffiffiffiffiffi
m

p
δm,m0 + 1

 !
ð10Þ

with h�1,c
mm0 = � σxh

+ 1,c
mm0σx . ForM =0, we recover the LLs of twomassless

Dirac particles, with two zero LLs at each valley (see Supplementary
Note 4A for details of derivation).

As discussed in the previous section, there are two f-states per
moiré unit cell per valley for each spin projection. On the other hand,
for each c-LL there are p/q states per moiré unit cell per valley for
each spin projection. In order to understand the hybridization
between these states that, together with the c–c coupling, gives rise to
an isolated band of states whose total number is independent of B—
because its total Chern number vanishes59—we need to carefully ana-
lyze the c–f coupling. Although formidable at first sight, it is actually
possible to find an analytical expression for this matrix element
hτ
½amr�½br0 �ðkÞ= hΨaτχkrmjHτ

BM ðp� e
cAÞjηbτkr0 i and thus determine the c–f

coupling at non-zero B. The “Evaluation of the c–f matrix elements at
B ≠0” section provides the key steps for the derivation which we omit
here for brevity. The result can be cast in a closed form expression
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which for p = 1 and for ℓ≫ λ reads

hτ
½am0�,½br0 �ðkÞ=

γϒm,r0 ðkÞσ0 +h
τ,cf
m,r 0 ðkÞ

02×2

 !
ab

, ð11Þ

with h+ 1,cf
m,r 0 ðkÞ=

i

ffiffiffi
2

p
v0*
‘

0
ffiffiffiffiffi
m

p
ϒm�1,r 0 ðkÞ

�
ffiffiffiffiffiffiffiffiffiffiffi
m+ 1

p
ϒm+ 1,r0 ðkÞ 0

 !
, ð12Þ

and h�1,cf
m,r0 ðkÞ= � σxh

+ 1,cf
m,r 0 ðkÞσx , where σx acts in orbital space of c and f

fermions. The matrix ϒm,r0 ðkÞ is given as

ϒm,r0 ðkÞ=
ffiffiffiffiffi
L1x
‘

q
eiπr

0
q k2�2k1ð Þeiπr 0qðr0q�1Þ 1

2q

e
�2π2 λ2

L2m
k2 +

r0q
q

� �2

Fm λ,ðr0q +qk2ÞL1x
� �

,

ð13Þ

where r0q = sgn+
q
2 � r0
� �

min½r0,q� r0� with sgn+(x) being the usual sign
function except at 0 where it evaluates to 1, and

Fmðλ,x0Þ = 1

π
1
4
ffiffiffiffiffiffiffiffiffi
2mm!

p
ffiffiffiffiffiffiffiffiffiffi
‘2

‘2 + λ2

q
e
�

x2
0

2ð‘2 + λ2 Þ

× Hm
�2x0‘
‘2 + λ2

,� 1 + 2λ2

‘2 + λ2

� �
:

ð14Þ

The two variable Hermite polynomials64 are given by Hmðx,yÞ=
m!
Pbm2c

k =0ðxm�2kykÞ=ððm� 2kÞ!k!Þ, where ⌊m⌋denotes thefloor function

at m. Their relation to the Hermite polynomials used above
is HmðxÞ=Hmð2x,� 1Þ.

Although we can significantly simplify the form of Ĥ
B
0 and gain a

deeper analytical understanding of our solution as we do in next sec-
tion, one can already use the above expressions to obtain the Hof-
stadter spectrum for THFM numerically. Such numerical calculation
recovers the correct total number of states within the narrow band
energy window, i.e., 2 per moiré unit cell per valley for each spin
projection regardless of the value ofm?, thus solving the key challenge
outlined earlier. As illustrated in Fig. 1 forM =0, these zero modes are
well separated from the remote bands by a gap that limits to ∣γ∣ as
B→0. The results are qualitatively the same for M ≠0 as shown in
Supplementary Fig. 10b except the zero modes split into a group of
states with a width set by 2∣M∣ as expected. In the following sections,
we elucidate the nature of the Hofstadter subbands by carefully cast-
ing theB ≠0Hamiltonian in terms of coupled anddecoupledmodes of
f fermions. This not only helps us to obtain an exact solution in the flat
band limit but also to understand the total Chern number via
straightforward analytical arguments.

Analytical results for the non-interacting Hamiltonian at B ≠0
As mentioned, for M =0 we find two isolated zero modes per moiré
unit cell per valley for each spin projection fromnumerical calculation.
In order toobtain these zeromodes analytically, we startby noting that
the general form of our Hamiltonian atB ≠0 presented in the previous
section immediately implies a certain lower bound on their number.
Within each valley and for each spin projection, the Hamiltonian

matrix at a given khas the form
C F
Fy 0

� �
whereC is a squarematrix of

dimension 4m? + 6 and F is a 4m? +6
� �

×2q rectangularmatrix; the last
2q × 2q block is filled with zeros. This automatically guarantees a lower
bound on the number of zero modes equal to the difference in the
number of F’s columns and rows, as is easily establishedby considering
the singular value decomposition (SVD) of F (see, e.g., ref. 65). More-

over, as seen in the Eq. (11), F has the form
F 0

0 2m? + 3ð Þ× 2q

� �
where F 0 is a

2m? +3
� �

× 2q rectangularmatrix. Therefore, half of the singular values
of F are guaranteed to vanish. This implies that we can readily obtain a
(larger) lower bound of 2q − (2m? + 3) zero modes. Physically, these
zeromodes are just linear combinations of different fs which decouple
from cs. Clearly they do not account for the total number of zero
modes in the spectrum, i.e., 2q at each k or two per moiré unit cell per
valley for each spin projection. As we go forth to show, the remaining
2m? + 3 zero modes are contributed by the coupled modes, which at
M ≠0get split into a group of stateswith awidth of 2∣M∣ accounting for
the bandwidth of magnetic subbands within the narrow bands. Below
we build a framework for analyzing them.

To that end, we define new fermion fields �f by the canonical
transformation

�f bτk�rs =
Xq�1

r0 =0

V�rr 0 f bτkr0s , ð15Þ

where the unitary matrix V is defined via the SVD of matrix
ϒmr0 =

Pmaτ
m0 =0

Pq�1
�r =0Umm0Σm0�rV�rr 0 . Here U is a unitary matrix of dimen-

sions (ma,τ + 1) × (ma,τ + 1) and Σ is a rectangular matrix of dimensions
(ma,τ + 1) × q containing the singular values of the matrix ϒ along the
main diagonal and zeros elsewhere, i.e., Σmr = Σmδmr. Moreover, using
the closed formexpression forϒ stated in the previous section, we find
that thematrixU above is extremely close to an identitymatrix at lowB
(see Supplementary Note 5 for details). Substituting the SVD in Eq. (11)
and using U = I, we find that 2q − (2m? + 3) of the �f modes decouple
from the cs for each valley, spin and k. For example at τ = + 1, themodes
in Eq. (15) that decouple from the cs are the ones with �r>m? + 1 and

Fig. 1 | Non-interacting flat band Hofstadter spectrum. The spin-valley degen-
erate non-interacting Hofstadter spectrum for THFM atw0/w1 = 0.7 in the flat band
limitM =0. For illustration, we have fixed m? = 5 so that the B→0 energies for
remotemagnetic subbands, i.e., ±γ, are tractable. The value of parameters used are
γ = −39.11meV, v0* = 1:624eV : Å, v* = −4.483 eV.Å and λ =0.3792Lm. Total f-character
color labeling on the left, unlike in the rest of the figures, represents the total f
weight of the flat bands composed of zero modes. We sum over the f-weights of
each zeromodeand normalize it by the total number of zeromodes, i.e., 2q. For the
coupledmodes obtainedusing ansätze in Eqs. (20)–(22), the f-weight is obtained as
jcðμÞ5 j2+jcðμÞ6 j2, after normalizing the eigenvector. The f-weight for the decoupled f-
modes is 1, while that of the anomalous c in Eq. (19) is zero. The remote bands in
black do not correspond to the above color labeling. The y-label E[meV] represents
energy of subbands in meV.
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�r>m? for �f 11k�rs and �f 21k�rs , respectively (see Supplementary
Notes 6 and 7 for details at τ = + 1 and τ = −1, respectively). We thus
recover the 2q − (2m? + 3) zeromodes contributed by the decoupled fs
as discussed earlier.

For the remaining coupledmodes,we note that the sumof the c–c
and c–f couplings in Eqs. (7) and (8) at τ = + 1 can be rewritten in the �f
basis as

H + 1,s
cc + H + 1,s

cf + h.c.
� �

=

X
k

X6
α,α0 = 1

Xmα

m=0

Xmα0

m0 =0

hmjĥ+ 1,s

α,α0 jm0idy
msαðkÞdm0sα0 ðkÞ,

ð16Þ

wheremα=1,…,4 =mα,+1, m5 =m? + 1 and m6 =m?,

dy
msαðkÞ= cy11k0ms,c

y
21k0ms,c

y
31k0ms,c

y
41k0ms,

�f
y
11kms,

�f
y
21kms

� �
α
: ð17Þ

The operator ĥ
+ 1,s

α,α0 is defined as

ĥ
+ 1,s

α,α0 =

0 0 �i
ffiffiffi
2

p v*
‘
â 0 γΣðâyâÞ i

ffiffiffi
2

p v0*
‘
âyΣðâyâÞ

0 0 0 i
ffiffiffi
2

p v*
‘ â

y �i
ffiffiffi
2

p v0*
‘ âΣðâ

yâÞ γΣðâyâÞ
i
ffiffiffi
2

p v*
‘ â

y 0 0 M 0 0

0 �i
ffiffiffi
2

p v*
‘ â M 0 0 0

γΣðâyâÞ i
ffiffiffi
2

p v0*
‘ Σðâ

yâÞây 0 0 0 0

�i
ffiffiffi
2

p v0*
‘
ΣðâyâÞâ γΣðâyâÞ 0 0 0 0

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

α,α0

:

ð18Þ
Here â is a simple h.o. lowering operator with eigenstate ∣mi and
Σ(m) = Σm. In the B→0 limit, up to the first order in flux, the singular
values of ϒ can be approximated as ΣðmÞ≈1� m+ 1

2

� �
λ2

‘2
. We note in

passing that we do not have to rely on this approximation and can find
the full closed form expression for Σ(m) as shown in the Eq. (28).

A naive minimal substitution into Eq. (1) with λ = 0 would repro-
duce Eq. (18) with unit singular values. However, the decoupling of
2 − (2m? + 3)/q modes per moiré unit cell per spin in each valley is
completely overlooked by the naive minimal substitution. This is the
reason why it fails to recover the correct count of subbands within the
narrow bands as noted earlier.

While the decoupled �f modes account for 2q− (2m? +3) zero
modes, the remaining 2m? +3 zero modes of the flat band limit (i.e.,
M=0) originate from the zeromodes of theoperator in Eq. (18). This can
be readily verified via exact solutions, the first of which is a pure c-mode

θ1 = 0,0,∣0i,0,0,0½ �T : ð19Þ

The above can be interpreted as the anomalous zero-LL of a massless
Dirac particle coming from the c–c coupling. The remaining spectrum
can be solved using the ansätze:

θ3 = cð3Þ1 ∣0i,0,cð3Þ3 ∣1i,0,cð3Þ5 ∣0i,0
h iT

, ð20Þ

θ5 = cð5Þ1 ∣1i,cð5Þ2 ∣0i,cð5Þ3 ∣2i,0,cð5Þ5 ∣1i,cð5Þ6 ∣0i
h iT

, ð21Þ

θ6m
= cð6mÞ

1 ∣mi,cð6mÞ
2 ∣m� 1i,cð6mÞ

3 ∣m+ 1i,
h
cð6mÞ
4 ∣m� 2i,cð6mÞ

5 ∣mi,cð6mÞ
6 ∣m� 1i

iT
,

ð22Þ

where m∈ {2,…,m⋆ + 1}. cðμÞα denotes the complex coefficient of the
corresponding h.o state at index α, and μ labels the ansatz index θμ
(with a slight abuse of notation we have μ = 6 for ansätze in
Eq. (22)∀m). Using the above, we can set up the eigen-equation for
each θμ, which yields a corresponding decoupled μ × μ Hermitian
matrix with eigenvectors cðμÞα (see Supplementary Note 6 for details).

The anomalous c-mode θ1 offers one zero mode. The hermitian
matrices obtained using ansätze θ3 and θ5 offer one zero mode each.
The non-zero coefficients of these modes are cð3Þ3 = � iΣ0γ‘, c

ð3Þ
5 =

ffiffiffi
2

p
v*

and cð5Þ3 = Σ0Σ1ð2v02* � γ2‘2Þ, cð5Þ5 = � 2iΣ0γ‘v*, c
ð5Þ
6 = 2

ffiffiffi
2

p
v*v

0
*Σ1, respec-

tively. The hermitian matrix obtained using the ansatz θ6m
is bipartite

and offers two zero modes∀m. The non-zero coefficients for these
zero modes are cð6mÞ

3 =
ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mðm� 1Þ

p
v0*Σm�1, cð6mÞ

4 = iγ‘
ffiffiffiffiffiffiffiffiffiffiffi
m+ 1

p
Σm�1,

cð6mÞ
6 =

ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 � 1

p
v* and cð6mÞ

3 = � iγ‘
ffiffiffiffiffiffiffiffiffiffiffiffiffi
m� 1

p
Σm, cð6mÞ

4 =ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mðm+ 1Þ

p
v0*Σm, cð6mÞ

5 =
ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 � 1

p
v*, respectively. The coupled

modes thus offer a total of 2m? + 3 zero modes. Including the
2q − (2m? + 3) of the decoupled fmodes, at each kwe recover sum total
of 2q zero modes in the non-interacting case for each valley, inde-
pendent of m?. This gives the total of 2 states per moiré unit cell per
spin independent of B, i.e., the total Chern number 0. Note that the
magnetic subbands within the narrow band window remain separated
by a gap from the remote subbands for B ≠0 because the remote
bands emanate out of B→0 energy eigenvalues ± γ obtained using
above ansätze, as shown in Fig. 1.

The analysis can straightforwardly be extended to include inter-
actions using appropriate mean field parameters. In the next sections
we illustrate it by discussing the strong coupling Hofstadter spectra at
three integer fillings of the narrow bands.

Electron-electron interactions at integer fillings of narrow
bands at B ≠0
To understand the effect of interactions on single-particle Hofstadter
spectra discussed above, we extend our formalism to illustrate the
Landau quantization for “one-shot” Hatree-Fock (HF) bands obtained
using the mean-field (MF) Hamiltonian for a parent valley polarized
(VP) state. TheVP state atB =0 is given by a product of valley polarized
~f -multiplets and the Fermi sea (∣ FS i) of half-filled ~c electron bands36.
The narrow band filling factor ν then determines the number of ~f
electrons to be filled per moiré unit cell above ∣ FS i. The U(4)-flavor of
the ~f electrons to be filled is further dictated by the U(4) Hund’s rule
discussed in ref. 36. Below, we start with the B ≠0 solution for single
particle charge ± 1 excitation at the charge neutrality point (CNP).

ν =0: At CNP, the MF interactions for the parent VP state with
τ = + 1 valley occupied by the f electrons with respect to the spinor in
Eq. (17) are taken to be36

V + 1,s,ν =0
α,α0 =

0 0 0

0 � J
2 σ0 0

0 0 � U1
2 σ0

0
B@

1
CA

α,α0

: ð23Þ

Within this approximation we continue using the B =0MF parameters
J andU1 obtained for theparent VP state in ref. 36. TheMFparameterU1

is the largest energy scale of the THFM as it corresponds to the strong
onsite Coulomb repulsion amidst the localized Wannier states of the f
fermions. The MF parameter J corresponds to the energy associated
with the ferromagnetic exchange interaction between the U(4)
moments of f and c fermions with a = {3, 4}.

The decoupled f modes in the valley τ = + 1 now move to
energy −U1/2, while the spectrum of the coupled modes in the same
valley can be obtained by solving the eigenvalues of the operator

ĥ
+ 1,s

+V + 1,s,ν =0, where ĥ
+ 1,s

is defined in Eq. (18). The spectrum for
sector τ = − 1 of the MF Hamitonian is the particle-hole symmetric
partner of the spectrum for τ = + 136. Thus for a given valley quantum
number τ, the 2q − (2m? + 3) decoupled f-modes now move to the
energy − τU1/2 forming the lower and upper bounds on the strong
coupling energy window for narrow bands as shown in the Fig. 2b. In
order to understand themode countingwithin the narrowband strong
coupling energy window, we first discuss the solutions in the flat band
limit M =0 which can be obtained using ansätze presented in
Eqs. (19)–(22). The anomalous c-mode θ1 in Eq. (19) forms the B
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independent level a −J/2 as shown in the Fig. 2b. Using the remaining
ansätze θμ, we can set up corresponding μ × μ hermitian matrices with
eigenvectors cμα . The three hermitian matrices in total offer 2m? + 2
modes within the strong coupling narrow band energy window. This
can be understood by noting that these modes emanate out of the
2m? + 2 fold degenerate B→0 energy eigenvalue −J/2 of the above
hermitianmatrices. Using the fact that Σm→ 1 and ℓ−1→0 asB→0, it can
be readily verified that thenon-zero coefficients for theseB→02m? + 2

degenerate modes at τ = + 1 are cð3Þ3 = 1 for θ3, c
ð5Þ
3 = 1 for θ5, c

ð6mÞ
3 = 1 for

θ6m
and cð6mÞ

4 = 1 for θ6m
. Note that in this limit, we have three extra

modes of a = 3 than the a = 4 c fermion. Similarly at τ = − 1, we will have
three extra modes of a = 4 than the a = 3 c fermion in the B→0 limit.
This can be understood as a direct consequence of a winding number
three at Γ, reported in ref. 29. We present an effective Hamiltonian of
these modes in the next paragraph. By the particle-hole symmetry36,
we similarly have 2m? + 3 modes emanating out of + J/2 for τ = − 1 (see
Supplementary Note 7A for details). Including the 2q − (2m? + 3)
decoupled fs at energy − τU1/2, we have a total of 2q magnetic sub-
bands within the narrow band strong coupling window± (J/2 to U1/2),
i.e., 2 states per moiré unit cell per valley per spin. The remote mag-
netic subbands on the other hand emanate out of the B→0 energies

�τ U1
4 ±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U2

1
16 + γ2

q
, marked by ± E∓τ in Fig. 2b. Note that all the B→0

energiesmentioned above correspond to the zerofield THFMenergies

at Γ∈mBZ at CNP, illustrated in Fig. 2a.
The lowest energy single particle excitations at the CNP at B = 0

reside at the Γ point, as can be seen in Fig. 2a. The Landau quantization
of these bands can be better understood through a simple
effective Hamiltonian obtained by systematically projecting onto
the subspace spanned by a = {3, 4}c fermions. It qualitatively describes
the modes emanating from energy eigenvalues −τJ/2. Including
both valleys, the effective Hamiltonian for each spin projection is

Hef f =
Hτ = 1

ef f 0

0 Hτ =�1
ef f

 !
, where

Hτ = 1
ef f =

� J
2 � _ωcâ

yâ i A
‘3
ây3

h:c: � J
2 � _ωcââ

y

0
@

1
A, ð24Þ

and Hτ =�1
ef f can be obtained by replacing â $ ây and changing the

overall sign of ωc, A and J in Hτ = 1
ef f . Also h.c. in Eq. (24) represents

hermitian conjugate. The values of coefficient A and effective cyclo-
tron frequency ωc ~ ℓ

−2 are provided in the “Effective Hamiltonian
coefficients” section. In the B→0 limit we can drop the off-diagonal
terms in Hτ

ef f because they are O ‘�3
� �

. For each spin, the anomalous
modes ð∣0i,0ÞT and ð0,∣0iÞT at τ = +1 and −1, respectively, are singly
degenerate at energy−τJ/2. All othermodes are doubly degenerate (for
each spin). The energies of these pairs are− τ(J/2 + nℏωc) where
n = 1, 2, 3,…. Including the spin degeneracy, this would result in a LL
filling sequence of 0, ±2, ±6, ±10,… in the asymptotic B→0 limit. As B
increases, however, theoff-diagonal termsgrowandcause the splitting
of these pairs. For example, the splitting of the first pair, i.e., with n = 1,
is visible at ϕ/ϕ0 ~ 0.025 (~0.63Tesla) in the Fig. 2b. Moreover, the B
field required for the splitting of a given pair with an index n decreases
with increasing n because each action of the â is accompanied by a
square root of the LL indexmaking the off-diagonal terms comparable
with the diagonal terms at a lowerB. If we compare the Fig. 2b with the
Hofstadter spectrum of the BM model in the strong coupling limit at
CNP presented in Fig. 3b, we see a qualitative agreement in the nature
of the LL spectra for low B. Note that the latter is computed by
neglecting the band kinetic energy and using the gauge invariant
formalism introduced in the ref. 57 without any recourse to the heavy
fermionmodel. For example, in the vicinity ofϕ/ϕ0 = 0.025 we can see
that the anomalous mode is followed by a nearly degenerate pair of
LLs, an isolated LL, and another two nearly degenerate LLs in both
Figs. 2b and 3b. Through the effective model analysis presented above
we understand that these features appear due to the splitting of
asymptoticB→0 degeneracy of non-anomalousmodes by theO ‘�3

� �
terms asB increases. The splitting amidst the first pair of LLs (after the
anomalous mode) appears to grow faster with increasing B in Fig. 3b
compared to that in Fig. 2b. Thus although the LL sequence at CNP
from both approaches is 0, ±2, ±4, the LL gap at ±4 is significantly
smaller in the M =0 THFM compared to that in the strong coupling
Hofstadter spectrum of BM model when ϕ/ϕ0 reaches 0.1 (i.e.,
2.5 Tesla). Interestingly, the LL filling sequence 0, ±2, ±4 at CNP was
also reported in the experiment of ref. 42, on an MATBG device with a
non-vanishing gap at the CNP at B = 0. We come back to the
experimental comparison at ν = ± 2 in the later section.

ForM ≠0, the numericallydetermined strong couplingHofstadter
spectrum for τ = − 1, is shown in Fig. 3a (see SupplementaryNote 7A for
details). As we can see, the lowest mode stays decoupled from the rest
of the spectrum. The effect of finite M can be included by adding
M 1� Mc

‘2
ð2âyâ+ 1Þ

� �
σxζ0 toHeff. The Pauli matrices σx and ζ0 act in the

a = {3, 4}c-orbital and valley space, respectively. The value of the
coefficient Mc is provided in “Effective Hamiltonian coefficient” sec-
tion. For non-zero M the double degeneracy of LLs which we saw at
M =0 is lifted even in the B→0 limit. This results in a LL sequence
0, ±2, ±4,… for the parent VP state at CNP for a general B.

In the case of parent Kramers intervalley coherent state (KIVC),

the effect of finite M is included by adding �M 1� M 0
c

‘2
ð2âyâ+ 1Þ

� �
σzζ x

to Heff. The coefficient M 0
c is presented in the “Effective Hamiltonian

coefficients” section. The LLs emanate out of the energy ±
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J2=4+M2

q
and are singly degenerate for each spin projection for a general
B. Similar to the flat band limit (M =0), the non-anomalous LLs
occur in nearly degenerate pairs in the asymptotic B→0 limit (see

Fig. 2 | Interacting flat band Hofstadter spectrum at CNP. The spin degenerate
interacting heavy fermion Hofstadter spectrum (b) contrasted with zero field
strong coupling spectrum (a) in flat band (M = 0) limit at w0/w1 = 0.7 for both

valleys at CNP. We fixm? = dq�3
2 e. The B =0 energies at Γ, labeled using E ± = ± U1

4 +ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U2

1
16 + γ2

q
, are recovered in B→0 limit of our theory. The value of parameters used

are J = 18.27 meV, U1 = 51.72 meV, γ = − 39.11 meV, v0* = 1:624 eV : Å, v* = −4.483

eV.Å and λ =0.3792Lm. Following ref. 36, twist angle θ = 1.05∘ in this work and
Lm = 134.218 Å. We set k1,2 = 0, although inconsequential as magnetic subbands are
Landau levels in this regime and thus donot disperse. The color labeling represents
f-character of each energy eigenmode (see caption Fig. 1). The y-label E[meV]
represents energy of subbands in meV.
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Supplementary Fig. 14b). These pairs of LLs split in energy with
increasing B. The splitting amidst the first pair of LLs (after the
anomalous mode) is much weaker compared to other pairs (see sup-
plementary Fig. 11b). Thus, although the resulting LL sequence is
0, ±2, ±4, the LL filling gap ± 4 is much smaller compared to that for
0, ±2 similar to theM =0 case discussed earlier. More details for KIVC
can be found in Supplementary Notes 9A and 10A2.

ν= ± 1
In this section, we discuss the Landau quantization of the single par-
ticle excitation spectra at the narrow band filling factor of ν = −1 (ν = + 1
is related by particle-hole symmetry). Figure 4 shows the B = 0 spec-
trum and the Hofstadter spectra. We will show that all features of the
spectrum can be analytically understood within the formalism, as well
as through simple effectivemodels. As in the case of CNP, we continue
to use the B =0 MF interactions for our analysis. The considered MF
interactions are computed with respect to a partially spin- and com-
pletely valley-polarized parent state. For this state, the valley-spin fla-
vorK↑ for both b = 1, 2 (px ± ipy) f fermions andK↓ for b = 1 f fermion is
occupied (at each unit cell) above the Fermi sea ∣FS i of half-filled c
fermion bands (see also Supplementary Eq. (S320) in ref. 36).

For the sector valley K spin ↓, the charge ± 1 excitations occupy
Chern ∓ 1 bands, which are separated from each other by a sizable gap:
the Chern −1 and +1 bands, marked in red, can be seen in the energy
windows −30 meV to −50 meV and −55 meV to −100 meV of Fig. 4a,
respectively. Below, we elucidate how our formalism captures the fact
that the Chern + (−)1 bands gain(lose) states in presence of magnetic
field B, as they must to follow the Streda formula59. The MF interac-
tions at sectorK↓ for the coupledmodes with respect to the spinor in
Eq. (17) read36 V + 1,#,ν =�1

α,α0 =

�
W 1σ0 0 0

0 W 3σ0 +
J
2 σz 0

0 0 U1 + 6U2

� �
σ0 +

U1
2 σz

0
B@

1
CA

α,α0

: ð25Þ

The MF parameterWa∈{1, 3} corresponds to the energy associated with
the Coulomb repulsion between the c and f fermions, while U2 corre-
sponds to the energy associated with the next nearest neighbor

Coulomb interactionof the f fermions.Thedecoupled f-modes, i.e., the
�f 11kr# modes with r∈ {m? + 2,…, q − 1} and �f 21k�r# modes with
�r 2 fm? + 1, . . . ,q� 1g, are now at energies �ð3U1

2 + 6U2Þ= � 93:5 meV
and �ðU1

2 + 6U2Þ= � 41:8 meV, respectively. The spectrum for
the coupled modes can be obtained by solving the eigenvalues of the
operator ĥ

+ 1,#
+V + 1,#,ν =�1, where ĥ

+ 1,s
and V+1,↓,ν=−1 are defined in

Eqs. (18) and (25), respectively. For M = 0, the spectrum is exactly
solvable. The anomalous c-mode in Eq. (19) is an exact eigenstate
which forms the B independent level at�ðW 3 +

J
2Þ= � 58:46 meV. The

remaining spectrum can be solved using the ansätze θ3, θ5 and θ6m
,

presented in Eqs. (20)–(22). The mode count can be understood as
follows:
1. The spectrum for coupled modes includes m? + 2 magnetic sub-

bands emanating out of B→0 energy eigenvalue �ðW 3 +
J
2Þ. The

non-zero coefficients for these B→0 eigenvectors are cð3Þ3 = 1 for
θ3, c

ð5Þ
3 = 1 for θ5 and cð6mÞ

3 = 1 for θ6m
. Including the anomalous

c-mode in Eq. (19), we have m? + 3 modes emanating out of
�ðW 3 +

J
2Þ. Moreover, accounting the q − (m? + 2) decoupled f

modes at energy �ð3U1
2 + 6U2Þ, we have a total of q + 1 magnetic

subbands within the energy window of −55 meV to −100meV.
Recall that the isolated Chern +1 band resides in this same energy
window at B =0. We thus see that q + 1 magnetic subbands
emerge from the Landau quantization of the Chern +1 band.

2. The spectrum for coupled modes includes m? magnetic subbands
emanating out of B→0 energy eigenvalue �ðW 3 � J

2Þ= � 40:19
meV. The non-zero coefficients for these B→0 eigenvectors are

Fig. 4 | Interacting flat band Hofstadter spectra at ν = −1. Interacting heavy
fermionHofstadter spectra for sector (b) ValleyK spin↓, (c) ValleyK spin↑, and (d)
Valley K0 spin ↑↓ (degenerate) contrasted with (a) zero field spectrum at filling
ν = −1 at w0/w1 = 0.7, with parameters W1 = 44.05 meV, W3 = 49.33 meV, U2 = 2.656
meV in the flat band limit M =0 with m? = dq�3

2 e. The color on panel (a) labels the
spin and valley sector, red for K↓, blue for K↑, and green for K0↑↓. The color on
panels (b)–(d) labels the f-character of each energy eigenmode (see caption Fig. 1).
The y-axis in panels a and b, c and d are aligned. The y-label E[meV] represents
energy of subbands in meV.

Fig. 3 | Interacting Hofstadter spectra at CNP. a THFM Hofstadter spectrum at
valley K0 with M = 3.248 meV (i.e., including dispersion of the flat bands) for
m? = dq�3

2 e and w0/w1 = 0.7. b Strong coupling projected BM Hofstadter spectrum
(i.e., in the flat band limit) atw0/w1 = 0.7 computed using the gauge-invariant basis
of magnetic translation group irreps (see Supplementary Note 12 for details). The
spectra above are spin degenerate. The y-label E[meV] represents energy of sub-
bands in meV.
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cð6mÞ
3 = 1 for θ6m

. Including the q− (m? + 1) decoupled f modes at
energy�ðU1

2 + 6U2Þ, we have in total q− 1 magnetic subbands in the
energy window of −30 meV to −50meV. Recall that the isolated
Chern −1 band resides in this same energywindow atB=0.We thus
see that q− 1 magnetic subbands emerge from the Landau
quantization of the Chern −1 band.Through the above mode count
analysis, we see that the Chern± 1 bands Landau quantize into q± 1
magnetic subbands. Our formalism thus clearly shows that the total
number of states per moiré unit cell for the Chern± 1 bands
changes with magnetic field as 1 ± 1

q = 1 ± ϕ
ϕ0
, as expected59. The

mode count analysis for remaining MF valley-spin sectors, namely
valley K spin ↑ and K0 spin ↑↓ (degenerate) can be found in
Supplementary Notes 6B, 7B. TheHofstadter spectrum for eachMF
sector at ν=− 1 is shown in Fig. 4b–d for M=0.
To better understand the Landau quantization of the dispersive

(light mass) single particle excitations at ν = − 1, i.e., in vicinity of Γ,
below we present an effective model analysis similar to that at CNP. As
can be seen in Fig. 4d the sectorsK0 "# contributemagnetic subbands
in the energy window −30 meV to −50meV; adding a particle into any
one of these subbands would move the filling towards CNP. Because
we wish to focus on light mass excitations whichmove the filling away
from CNP, we focus on the sectors K↑ and K↓. The effective Hamil-
tonian at the sector K↓ takes the form

Hν =�1,K#
ef f =

�W 3 � J
2 � _�ωcâ

yâ i �A
‘3
ây3

h:c: �W 3 +
J
2 � _~ωcââ

y

0
@

1
A

+M 1� �Mc

‘2
âây � ~Mc

‘2
âyâ

� �
σx

ð26Þ

where Pauli matrix acts in the orbital space of the a = {3, 4}c fermions.

The coefficients �A, �Mc, ~Mc and cyclotron frequencies ~ωc ∼ ‘�2, �ωc ∼ ‘�2

are provided in the “Effective Hamiltonian coefficients” section.
The magnetic subbands of interest (the ones emerging from the
Landau quantization of the light mass excitations) emanate out of the

energy�W 3 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J2

4 +M2
q

= � 59:03 meV, and are singly degenerate for

a general B.

The effective Hamiltonian at sector K↑ takes the same form as in
Eq. (24). It can be obtained by replacing� J

2, ωc and A by�ðW 3 +
J
2Þ, �ωc

and �A
0
, respectively, in Eq. (24). The effect of M is included by adding

M 1� �M
0
c

‘2
ð2âyâ+ 1Þ

� �
σx to the above obtained effective Hamiltonian.

The coefficients �A
0
and �M

0
c are provided in the “Effective Hamiltonian

coefficients” section. The LLs emerge out of energies − (W3 + J/
2) +M = − 55.22 meV and − (W3 + J/2)−M = − 61.71 meV, and are singly
degenerate for a general B.

In the B→0 limit, we can drop the off-diagonal O ‘�3
� �

term in
both of the above effective Hamiltonians. Further taking the flat band
limit M =0, we find that LL energies take the form �ðW 3 +

J
2 +n_�ωcÞ,

with n∈ {0, 1, 2,…}. The B independent anomalous mode (n =0) is
doubly degenerate as it is part of the spectrum at both sectors. The
remaining modes (n >0) are triply degenerate each: singly degenerate
at sectorK↓ and doubly degenerate at sectorK↑. This results in the LL
sequence of +1, −1, −4, −7,… forM =0 in asymptotic B→0 limit. The +1
gap in the sequence appears due to the Chern number +1 of the
occupied band at sector K↓ at B =0.

Relaxing the B→0 limit above, i.e., including the O ‘�3
� �

terms in
the above effective Hamiltonians (still M=0), we see that the LL ener-

gies change to: Em, E
#
n and Em, E

"±
n at sectors K↓ and K↑, respectively.

Here m∈ {0, 1, 2}, n∈ {0, 1, 2,…}, Em = �W 3 � J=2�m_ �ωc, E#
n = �

W 3 � 3_�ωc=2� _~ωc=2� f n �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2
n + vn�A

2
q

and E" ±
n = � ðW 3 + J=2Þ �

_�ωcðn+2Þ±
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_2 �ω2

c + vn�A
02

q
. The coefficients f n =n_ð�ωc + ~ωcÞ=2,

un = J=2 + 3_�ωc=2� _~ωc=2 +n_ð�ωc � ~ωcÞ=2 and vn = (n + 1)(n + 2)(n + 3)/

ℓ6. Thus apart from the doubly degenerate levels at Em, all others levels
are singly degenerate. Since the LL energies are in the order:

E0>E
", +
0 >E1>E

", +
1 > . . ., the resulting LL sequence is +1,−1,−2, −4, −5,….

Upon relaxing the flat band limit, i.e., for M≠0, all the above LL
degeneracies get lifted. This results in LL sequence +1, 0,−1,… for a
general B, with LL gaps at +1, −1 being the most dominant.

ν= ±2
In this section, we discuss the Landau quantization of the single par-
ticle excitation spectra at the narrow band filling factor of ν = −2 (ν = +2
is related by particle-hole symmetry). Figure 5 shows the B = 0 spec-
trum and its continuation in field. As before, we will also derive the
dominant LL sequence using an effective model that is simple enough
for analytical solutions while capturing the low-energy features. As in
the previous sections, we continue to use theB =0MF interactions for
our analysis. The considered MF interactions are computed with
respect to a spin and valley polarized parent state, for which the valley-
spin flavor K↑ for both b = 1, 2 (px ± ipy) f fermions are occupied (at
each unit cell) above the Fermi sea ∣ FS i of half-filled c fermion bands
(see also Supplementary Eq. (S333) in ref. 36).

Below we discuss the valley sector K of the resulting MF Hamil-
tonian, for both spin s =↑ and ↓. The single particle charge + 1 exci-
tations occupy the red band in energy window −89.5 meV to
−109.5meV of the Fig. 5a, which is part of the spectrum at sector K↓.
On the other hand, the single particle charge − 1 excitations occupy
the dispersive blue band in energy window −107.8 meV to −161.2 meV
of the Fig. 5a, which is part of the spectrum at sector K↑. The MF
interactions for spin s, with respect to the spinor in Eq. (17)
reads36V + 1,s,ν =�2

α,α0 =

�2

W 1σ0 0 0

0 W 3 + ζ s
J
4

� �
σ0 0

0 0 4+ ζ s
4 U1 + 6U2

� �
σ0

0
BB@

1
CCA

α,α0

, ð27Þ

where ζs = ( + ) −1 for s = (↑) ↓. For the spin s, the 2q − (2m? + 3)
decoupled f modes are at energy � 4 + ζ s

2 U1 + 12U2

� �
, i.-

e., (−161.17 meV) − 109.45 meV for s = (↑) ↓. The spectrum for the
coupled modes can be obtained by solving the eigenvalues of the
operator ĥ

+ 1,s
+V + 1,s,ν =�2, where ĥ

+ 1,s
and V+1,s,ν=−2 are defined in

Eqs. (18) and (27), respectively. In the flat band limit M =0, the

Fig. 5 | Interacting flat band Hofstadter spectra at ν = −2. Interacting heavy fer-
mion Hofstadter spectra for sectors (b) valley K spin ↑ and (c) valley K spin ↓

contrasted with the (a) zero-field spectrum at filling ν = −2 at w0/w1 = 0.7 in the flat
band limitM =0withm? = dq�3

2 e. The y-axis in all the above three panels are aligned.
The color on panel (a) labels the spin sector at valleyK, blue and red for spin↑ and
spin ↓, respectively. The color on panels (b) and (c) labels the f-character of each
energy eigenmode (see caption Fig. 1). The y-label E[meV] represents energy of
subbands in meV.
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spectrum for coupled modes is exactly solvable. The anomalous c-
mode in Eq. (19) is an exact eigenstate which forms the B independent
level at�ð2W 3 + ζ s

J
2Þ, i.e., ( − 107.79meV) − 89.52meV for s = (↑)↓. The

remaining spectrum can be solved using the ansätze θ3, θ5, and θ6m
,

presented in Eqs. (20)–(22). The spectrum of coupled modes include
2m? + 2 magnetic subbands emanating out of the B→0 energy
eigenvalue �ð2W 3 + ζ s

J
2Þ. The non-zero coefficients for the corre-

sponding B→0 eigenvectors are cð3Þ3 = 1 for θ3, c
ð5Þ
3 = 1 for θ5, c

ð6mÞ
3 = 1 for

θ6m
and cð6mÞ

4 = 1 for θ6m
. We thus have a total of 2m? + 3 magnetic

subbands emanating out of B→0 energy �ð2W 3 + ζ s
J
2Þ. Including

the 2q − (2m? + 3) decoupled f modes at � 4+ ζ s
2 U1 + 12U2

� �
, we

have a total of 2q magnetic subbands in the energy
window �ð2W 3 + ζ s

J
2Þ to � ð4 + ζ s

2 U1 + 12U2Þ
� �

, i.e., −89.52 meV to
−109.45 meV and −107.79 meV to −161.17meV for s = ↓ and ↑,
respectively. Recall that the red (↓) and blue (↑) bands discussed
earlier reside in the same energy window atB = 0. We thus have a total
of 2q magnetic subbands emerging from the Landau quantization of
single particle charge ± 1 excitation bands at valley sector K, i.e., two
states per moiré unit cell for each. The discussion for sector K0 #" can
be found in Supplementary Note 7C.

To better understand the Landau quantization of the dispersive
(light mass) single particle excitations at ν = −2, i.e., in vicinity of Γ,
belowwepresent an effectivemodel analysis similar to that in previous
sections. As can be seen in the Fig. 5c, the sector K↓ contributes to
magnetic subbands in the energywindow −89.52meV to−109.45 meV;
adding a particle into anyoneof these subbandswouldmove thefilling
towards CNP. Same is true for the magnetic subbands contributed by
sectors K0 "#, as can be seen in the Supplementary Fig. 9. Because we
wish to focus on light mass excitations which move the filling away
from CNP, we focus only on the sector K↑.

The effective Hamiltonian at sector K↑ takes the same form as in
Eq. (24). It can be obtained by replacing � J

2, ωc and A by �ð2W 3 +
J
2Þ,

ωð"Þ
c and A(↑), respectively, in Eq. (24). The effect of M is included by

adding M 1� Mð"Þ
c

‘2
ð2âyâ+ 1Þ

� �
σx to the above obtained effective

Hamiltonian. The coefficients ωð"Þ
c , A(↑) and Mð"Þ

c are provided in the
“Effective Hamiltonian coefficients” section. The LLs emanate out of
the energy − (2W3 + J/2) ±M and are singly degenerate for a general B.
In the B→0 limit, we can drop the off-diagonal O ‘�3

� �
terms in the

above effective Hamiltonian. Further setting M =0, we see that the LL
energies take the form�ð2W 3 +

J
2 +n_ωð"Þ

c Þ, with n∈ {0, 1, 2…}. Similar
to CNP, except the anomalous mode (n =0) at energy �ð2W 3 +

J
2Þ,

every remaining mode (n >0) is doubly degenerate. This results in the
LL sequence −1, −3, −5,… for M =0 in the asymptotic B→0 limit. This
asymptotic degeneracy of the non-anomalous modes is lifted as B
increases, as is seen whenO ‘�3

� �
terms are included. Relaxing the flat

band limit (M ≠0) lifts the double degeneracy of the non-anomalous
modes even in the asymptotic B→0 limit. Thus forM ≠0, we have the
LL sequence −1, −2,−3,… for a general B. Contrary to ν =0, the LL
sequence obtained at ν = −2 differs from the LL filling sequence
−2, −4, −6 reported in the experiment of ref. 42 at ν = −2 by the
appearance of the sizable gap at −1. Studying the origin of this differ-
ence will be a subject of future work.

Discussion
We have put forward a generalization of THFM in finite B. Although
the formalism applies to any rational value of ϕ

ϕ0
, the physical nature

of hybridization amidst the heavy f and topological c fermions is
particularly revealing for the 1

q sequence. The finite B analytical
solution in the flat band limit provides an intuitive picture of the
mechanism for Landau quantization of the strong coupling spectra
of MATBG at integer fillings in terms of the decoupled f modes and
coupled c–fmodes, all the way to zeromagnetic field. It also provides
a deeper understanding of the nature of the ± J

2 level at CNP,
observed in numerics before56, as the anomalous zero-LL of a mass-
less Dirac particle, a key ingredient of the topological heavy fermion

picture of MATBG. Although the number of the decoupled f-modes
per unit cell per spin at CNP is dependent on the LL index upper
cutoff, the total number of states in the narrow band strong coupling
window remains pinned to 2 per unit cell per spin, independent of
the upper cutoff, as expected for a total Chern number 0. Even
though the full M ≠0 problem requires numerical analysis, we are
able to probe till fluxes at least as low as 1/700, which was not pos-
sible through the the framework of strong coupling expansion. We
moreover argue that the overall physical nature of the subbands
should stay unchanged, as M anyways is the smallest energy scale in
the problem. Although we present the Landau quantization of one-
shot HF bands in order to outline the theoretical procedure, in
practice one can use the same methodology to Landau quantize the
self-consistent HF bands. We argue that it would not drastically alter
any of the interacting Hofstadter spectrum features because the one-
shot states are adiabatically connected to the self-consistent states,
owing to almost identical band structure features as the self-
consistent state at every ν discussed36. Throughout the text we
neglected the spin Zeeman effect as it leads to amuch smaller energy
splitting than the orbital effect, the former is only a few Kelvin at the
highest fields considered here while the latter is several meV, so at
least an order of magnitude larger. The effect of renormalization of
mean field parameters in magnetic field and heterostrain is yet to be
incorporated in our framework. A full analysis for other integer fill-
ings, translation symmetry broken candidate ground states and
Hofstadter-scale fluxes where reentrant many-body and topological
effects are at play52,66–68, is also left for the future work.

Methods
Evaluation of the c–f matrix elements at B ≠0
Because ηbτkr0 ðrÞ is constructed using repeated action of MT opera-
tors on the Wannier state W0,bτ(r) as defined in Eq. (3), and because
the MT operators commute with Hτ

BM ðp� e
cAÞ, we can reorder them

so that Hτ
BM ðp� e

cAÞ acts directly on W0,bτ(r). Since Hτ
BM ðp� e

cAÞ is
linear in p� e

cA, the vector potential A now acts on the well localized
state W0,bτ(r) centered at the origin where A vanishes. Therefore,
even thoughA is large at large x, we can safely neglect its contribution
at low B (confirmed numerically in Supplementary Note 4C). More-

over, since Ψy
aτ ðrÞ is a Bloch state at Γ, it is invariant under the action

of the moiré lattice translation operators. The c–f coupling
hτ
½amr�,½br0 �ðkÞ at low B thus reduces to calculating the integralR
d2r t̂

�n
L2

t̂
�s
L1
χkrmðrÞ

� �y
Ψy

aτ ðrÞHτ
BM ðpÞW0,bτðrÞ, summed over all integer

values of s and n and weighted by the factor of e2πi sk1 +n k2 + r
0=qð Þð Þ=

ffiffiffiffiffi
N

p

as follows from the Eq. (3). The factor Ψy
aτðrÞHτ

BM ðpÞW0,bτðrÞ involves
the Hamiltonian as well as the c and f wavefunctions strictly at
B = 0. Its Fourier transform was calculated in ref. 36 and sets

the c–f coupling at B = 0 in momentum space, e�
1
2k

2λ2Hcf ,τðkÞ,
appearing in the Eq. (1). Therefore, inverse Fourier transforming it

gives Ψy
aτðrÞHτ

BM ðpÞW0,bτðrÞ=
ffiffiffiffiffiffiffi
Auc

p
Hcf ,τ ð�i∇rÞe�

r2

2λ2=ð2πλ2Þ. The factor

t̂
�n
L2

t̂
�s
L1
χkrmðrÞ can be computed by noting that χkrm(r) is an eigenstate

of t̂L1
and t̂

�n
L2

χkrmðrÞ= e2πinðk2 + r=qÞχ ½k1 +n
p
q�1k2m

ðrÞ. Finally substituting the

explicit expression of χ ½k1 +n
p
q�1k2m

ðrÞ using Eq. (4) reduces hτ
½amr�,½br0 �ðkÞ

to sum over integrals of a 2D gaussian, a plane wave factor along y,
and shifted 1D h.o. wavefunctions along x. We thus have a standard
gaussian integral in y, while the x-integral over the gaussian and and
shifted 1D h.o. wavefunctions can be evaluated using results in ref. 64
(see Supplementary Note 4B for details).

It is particularly revealing to analyze the case p = 1, i.e., the
ϕ/ϕ0 = 1/q sequence. Since r ranges from 0 to p − 1, the 1/q sequence is
tantamount to setting r =0 in hτ

½amr�½br0 �. Based on the results from the
above discussion, after performing the summation over n, we find that
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hτ
½am0�,½br0 �ðkÞ reduces to

R
d2r t̂

r0 + jq
L1

Φmðr,k2g2Þ
� �*

Hcf ,τ
ab �i∇r

� �
e�

r2

2λ2 ,
summed over all integer values of j and weighted by the factor
e�2πiðr0 + jqÞk1

ffiffiffiffiffiffiffiffiffiffiffi
L1x=‘

p
=ð2πλ2Þ. For a = b = 1, this integral can be visualized

as an overlap between a 2D localized heavy state with size λ sitting at
the origin and a 1D h.o. shifted in the x-direction with a plane wave
phase variation in the y-direction that depends on the shift (see Sup-
plementary Fig. 2). To understand for what choice of m,r0,j is this
integral significant, note that the h.o. wavefunction is localized in the x
direction about r0 + jq+ k2q

� �
L1x , and its width is ∼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m+ 1

p ffiffiffi
q

p
unit

cells. In addition, the combination r 0
q + j + k2 controls the period of

oscillation in the y-direction set by 1=ðr0q + j + k2Þ times the unit cell size.
The integer r0 + jq thus determines the unit cell to which the h.o. is
shifted, and, because k22πℓ2/Lm = k2qL1x, the value of k2q∈ [0, 1) fine-
tunes the shift within the unit cell. The index j then determines q-unit-
cell periodic revival of the h.o. states, also illustrated in Supplementary
Fig. 2. Consider the case r0 = j =0. The h.o. is centered at the unit cell
containing the localized heavy state and the period of oscillations in
the y-direction is long compared to the unit cell, encompassing at least
q unit cells. The hybridization with the localized heavy state propor-
tional to γ is thus significant. The spatial extent of the h.o. state in the x-
direction is ∼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m+ 1

p ffiffiffi
q

p
unit cells, which at low B is much longer

than the localized heavy state. Thus unlessm is close tom? ≲ q/2, even
though the h.o. state oscillates and has m-nodes, the result of the
integration will be approximately given by the value of the h.o. wave-
function at −k2qL1x, up to an overall phase. If we keep j =0 but increase
r0 to 1 then the h.o. is centered at the unit cell adjacent to the one
containing the localized heavy state and the period of oscillations in
the y-direction is still long, between q/2 and q unit cells. The hybridi-
zation with the localized heavy state proportional to γ will still be
significant and the result of the integration will still be approximately
given by the value of the h.o. wavefunction but now at −(1 + k2q)L1x, up
to an overall phase. However for values of r0 past ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m+ 1

p ffiffiffi
q

p
,

regardless of the value of qk2, the contribution from the revival copy
j = 0 gets exponentially suppressed, due to the large off-set with the 2D
localized state. So for values of r0>q=2, it is the j = −1 revival copy of the
h.o. states which gives the dominant contribution. We thus neglect all
other values of j and only consider the contribution from h.o. state
centered at the unit cell r0 + jq ! sgn+

q
2 � r0
� �

min½r0,q� r0�, where
sgn+(x) is the usual sign function except at 0 where it evaluates to 1.
The Fm appearing in the compact expression of c–f hybridization in
Eq. (13) comes from the x-integral, i.e., overlap of the 2D heavy loca-
lized statewith harmonic oscillator wavefunctionφm. In the limit λ→0,
the 2D heavy localized state becomes the Dirac δ-function, and we
recover Fmðλ ! 0,x0Þ=φmð�x0Þ as expected. We found that keeping
the full form of Fm is needed in order to achieve accurate results
even for the low B range, therefore we do not take this limit
when handling Fm (see also Supplementary Fig. 4). The exponential
suppression factor multiplying Fm in Eq. (13) comes from the y-inte-
gral; its dependence on r0q is weaker than Fm, which comes from the
x-integral.

The derivatives appearing in case of the matrix elements
hτ
½1ð2Þm0�,½2ð1Þr 0 �, act on the localized heavy function to change its spatial

symmetry from s to px,y-like. Moreover an integration by parts and
expressing the derivatives via h.o. raising and lowering operators
allows us to relate these cases to the analysis without derivatives (see
Supplementary Notes 4B2, 4B3 and 4C for details).

Closed form expression for the singular values of ϒ appearing
in Eq. 18
The fact thatU is very close to an identitymatrix allows us to obtain an
analytical expression for Σ(m), which reads

ΣðmÞ= 1ffiffiffiffiffiffiffiffiffi
ξðκÞ

p 1
2mm!

Hmm 0,
κ6

ξðκÞ ;0,
κ6

ξðκÞ j
2

ξðκÞ

� � !1
2

, ð28Þ

where κ2 = λ2

‘2
= ð ϕϕ0

Þ2πλ2=ðL1xLmÞ, ξ(κ) = (1 + κ2 + κ4)(1 + κ2) and

Hmn x,y;w,zjβð Þ=
Xminðm,nÞ

k =0

m!n!βk

ðn� kÞ!ðm� kÞ!k!Hm�kðx,yÞHn�kðw,zÞ:

ð29Þ

Further details of the derivation can be found in Supplemen-
tary Note 5.

Effective Hamiltonian coefficients
The coefficients appearing in the effective Hamiltonian at CNP in flat
band limit presented in Eq. (24) are ℓ2ℏωc=4.00× 105 meV Å2 and
A=4.27 × 107 meV Å3. The coefficient appearing in the mass term for VP
and KIVC states at CNP are Mc= 1.28 × 104 Å2 and M 0

c = 2:09× 104 Å2,
respectively. The coefficients appearing in the effective Hamiltonian
given in Eq. (26) are ‘2_�ωc =6:92× 10

5 meV Å2, ‘2_~ωc =4:22× 10
4 meV

Å2, �A=6:69× 107 meV Å3, �Mc = 1:54 × 104 Å2 and ~Mc = 2:54 × 104

Å2. The coefficients appearing in the effectiveHamiltonian for sectorK↑
at ν =−1 are �A

0
=6:11 × 107 meV Å3 and �M

0
c = 1:34× 104 Å2. The coeffi-

cients appearing in the effective Hamiltonian for sectorK↑ at ν =−2 are
‘2_ωð"Þ

c =8:31 × 105 meV Å2, A(↑) = 5.79 × 107 meV Å3, andMð"Þ
c = 1:32 × 104

Å2. The derivation of the effective Hamiltonians and full expressions for
the coefficients can be found in Supplementary Notes 10A, 10B and 10C.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.
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