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A B S T R A C T

In electrokinetic remediation (EKR), the sedimentary dissolved organic matter (DOM) could impede remediation
by scavenging reactive species and generating unintended byproducts. Yet its transformation and mechanisms
remained largely unknown. This study conducted molecular-level characterization of the water-extractable DOM
(WEOM) in EKR using negative-ion electrospray ionization coupled to 21 tesla Fourier transform ion cyclotron
resonance mass spectrometry (21 T FT-ICR MS). The results suggested that ~55 % of the ~7,000 WEOM
compounds identified were reactive, and EKR lowered their diversity, molecular weight distribution, and double-
bond equivalent (DBE) through a combination of electrochemical and microbial redox reactions. Heteroatom-
containing WEOM (CHON and CHOS) were abundant (~ 35% of the total WEOM), with CHOS generally
being more reactive than CHON. Low electric potential (1 V/cm) promoted the growth of dealkylation and
desulfurization bacteria, and led to anodic CO2 mineralization, anodic cleavage of -SO and -SO3, and cathodic
cleavage of -SH2; high electric potential (2 V/cm) only enriched desulfurization bacteria, and differently, led to
anodic oxygenation and cathodic hydrogenation of unsaturated and phenolic compounds, in addition to cathodic
cleavage of -SH2. The long-term impact of these changes on soil quality and nitrogen-sulfur-carbon flux may be
need to studied to identify unknown risks and new applications of EKR.

1. Introduction

Contaminated sediments are ubiquitous in the U.S., with 1,337 sites
recently added to the Environmental Protection Agency (EPA) National
Priorities Sites (US-EPA, 2021). Due to the high concentrations of pol-
lutants and the risk of propagation through food chains (e.g., contami-
nated sediment in Guánica Bay, Puerto Rico, contained a high
polychlorinated biphenyls level of 129,300 ng/g and fish samples
showed absorption in range of 1,623 ng/g to 3,768 ng/g) (Kumar et al.,
2016), mitigation of contaminated sediments has been a key target in
the EPA’s programs such as the Superfund and Great Lakes Legacy Acts
(U.S. EPA, 2021). For instance, in the state of Ohio alone, 1.5 million
tons of sediment are dredged annually from its ports for pollution pre-
vention (https://lakeerie.ohio.gov/); an estimated $900 million is
needed for the remediation of 5 million m3 sediments in the Detroit
River contaminated with industrial discharge (https://www.greatlake
snow.org/).

Remediation of contaminated sediments generally has been

challenging due to large variations in sediment properties (e.g., struc-
ture, pH, and salinity) (Alori et al., 2022; Klik et al., 2020), interfacial
chemistry, and contamination types/levels (Benamar et al., 2020; Ber-
gen et al., 2005; Bolan et al., 2023; Zhang et al., 2016). Among the
available practices, electrokinetic remediation (EKR) has shown effec-
tiveness toward different sediment compositions (e.g., clay and sandy)
(Alcántara et al., 2012; Virkutyte et al., 2002) and contaminants (e.g.,
organic and inorganic) with the advantages of being chemical-free and
achieving relatively fast kinetics (Guedes et al., 2014; Maini et al., 2000;
Wen et al., 2021). Driven by an electric potential, EKR achieves reme-
diation through a combination of translocation (i.e., electroosmosis,
electromigration, and electrophoresis), and electrochemical trans-
formation (e.g., electrolysis at electrode surfaces) (Acar et al., 1995;
Chen et al., 2021).

Contrasting the abundance of interest in characterizing the fate of
contaminants in EKR (Liu et al., 2022; Maqbool and Jiang, 2023; S.
Wang et al., 2016; Zheng et al., 2021), how EKR alters sedimentary
properties, particularly the dissolved organic matter (DOM), is not
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well-understood (Alshawabkeh, 2009; Fan et al., 2022). Sedimentary
DOM, a heterogeneous matrix with abundant refractory humic sub-
stances of varying size and aromaticity (Chen and Hur, 2015; Hur et al.,
2014), contains thousands of compounds ranging from polyphenols,
unsaturated and phenolic compounds, to aliphatic compounds, with
varying levels of double-bond equivalent (DBE) and aromaticity
(Bahureksa et al., 2021; Schmidt et al., 2011; Xu et al., 2016). It is a
critical factor that impacts the water holding capacity, contaminant
mobility, and substrate availability for microorganisms in sediments
(Ren et al., 2015; L. Zhang et al., 2022). Heteroatom (N, S, and P)
containing DOM are sources of essential nutrients for the benthic com-
munity, controlling the biogeochemical cycling of essential elements
(Ksionzek et al., 2016; McCarthy et al., 1997). Preliminary evidence
suggests that remediation systems (Fox et al., 2017; McKee and Hatcher,
2015), particularly EKR, could significantly alter the composition of
DOM through, for example, degradation and translocation of DOM
coupled with over 100-fold changes in the aromaticity and microbially
degradable nonaromatic constituents (Maqbool and Jiang, 2023). Such
changes may impact the benthic flux of nutrients and carbon
post-remediation and, in turn, change the benthic ecosystems (Dadi
et al., 2016; Yang et al., 2014).

Herein, we provided the first molecular-level characterization of the
transformation of sedimentary DOM in EKR enabled by 21 tesla Fourier-

transform ion cyclotron resonance mass spectrometry (21T FT-ICR MS).
FT-ICR MS at 21 tesla is the only mass analyzer with the resolving power
to separate species that differ in mass by the mass of an electron across a
wide molecular weight range (m/z 150-1500), a fundamental require-
ment for polydispsere, polyfunctional complex organic mixtures (e.g.,
DOM). Coupled with negative-ion electrospray ionization that yields
deprotonation of acidic functional groups prevalent in DOM, more than
30,000 unique elemental compositions from a single DOM extract were
identified across a wide continuum of molecular weight, aromaticity,
double bond equivalents (DBE), elemental composition (e.g., hetero-
atoms), and functional groups (Bahureksa et al., 2022; Hendrickson
et al., 2015). By characterizing sedimentary DOM in different EKR and
control conditions at this resolution, we aimed to shed new light on the
impacts and safety of EKR to inform further research and development.

2. Material and method

2.1. Sample collection and reactor setup

The sediments were sampled from the bank of Lake Tuscaloosa
(Alabama, USA), transferred to the laboratory immediately, sieved (<2
mm), and homogenized thoroughly before the experiment (sediment
characteristics are presented in Table S1). The 5,885-acre lake serves as

Fig. 1. (a) The total number of unique compounds in sediment WEOM from the control reactor, anode, and cathode of EKRs working at 1V/cm and 2V/cm. The blue
column represents the number of compounds shared with the counter electrode (e.g., for Anode 1V/cm, it’s the number of compounds also detected in Cathode 1V/
cm) and the red column represents the number of compounds shared with the Control. The total number of unique compounds is the sum of organic compounds
containing CHO, CHON, and CHOS. Distribution of WEOM compounds with respect to molecular weight (Mw; Da) in (b) EKR1V and (c) EKR2V. The bubble size
represents the intensity of weight fractions and is not comparable across figures.
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the primary drinking water source for the region (https://www.tusca
loosa.com). EKR comprised plastic reactors (33 × 16 × 11 cm) with
removable lids and holes for the electrodes (Fig. S1). The graphite
electrodes (15 × 7.6 × 0.6 cm) (Table S2) were inserted into sediments.
The inter-electrode distance was maintained at 15 cm. In each reactor,
sediments were mixed with ultrapure water (UPW) at 2:1 and left
overnight. EKR was duplicated under three different conditions: 0V/cm
(control), 1 V/cm (EKR1V), and 2 V/cm (EKR2V). The absolute DC
potentials applied across electrodes were 15V and 30V for EKR1V and
EKR2V, respectively. EKRs were operated for four weeks which stabi-
lized the pH at electrodes. Sediment samples were collected from two
locations, cathode and anode, for DOM characterization.

2.2. Extraction of DOM

DOM samples for FT-ICR MS characterization were collected after
the stabilization of the EKR. DOM was extracted as water-extractable
organic matter (WEOM) by mixing the sediments with UPW (10:1),
shaking overnight at 200 rpm, and centrifuging at 6,000 rpm for 15 min
at 4◦C. WEOM supernatant were filtered through 0.45 µm membrane
filters (Fisherbrand, USA).

Before the solid phase extraction (SPE), all the WEOM solutions were
acidified (pH = 2) (Dittmar et al., 2008). The 6 mL and 1 g resin SPE
cartridges (Bond Elut Cartridge-PPL, Agilent) were used to extract
WEOM. Briefly, SPE cartridges were rinsed (UPW; 15 mL), followed by
activation (methanol; 15 mL). SPE cartridges were mounted on the
manifold and loaded with ~700 mL of WEOM samples with a flow speed
of 5 mL min− 1. The cartridges were desalted with 15 mL of 0.01 M HCl
and gently dried the cartridges using nitrogen (N2) flow. In the end,
WEOM retained was eluted using 15 mL of methanol, concentrated to 1
mL in an N2 concentrator, and stored at -20◦C before FT-ICR MS mea-
surements (He et al., 2016; Kurek et al., 2020).

2.3. FT-ICR MS analysis

The details of the FT-ICR MS analysis are provided in the SI. Only the
non-halogenated WEOM were included in this study. The halogenated
WEOM were analyzed in a separate study. WEOM solution was infused
via a microelectrospray source at 500 nL/min by a syringe pump
(Emmett et al., 1998). The operating conditions, emitter voltage
(-2.4-2.9 kV) S-lens RF level (45 %), and heated metal capillary tem-
perature (350 ◦C), were optimized for negative ion formation: WEOM
was analyzed with FT-ICR MS equipped with a 21 tesla superconducting
magnet (Hendrickson et al., 2015; Smith et al., 2018).

2.4. Microbial community analysis

Whole genome shotgun sequencing was applied to characterize the
microbial community. Sediments samples were collected and preserved
at -80 ◦C before extraction. DNA extraction was performed using ZYMO
Quick-DNATM Fecal/Soil Microbe Miniprep Kit D6010 (Zymo Research,
Irvine, CA, USA) following prescribed instructions. After detection of the
concentration and purity of the extracted DNA. Sequencing libraries of

samples were prepared with Illumina® DNA Library Prep Kit (Illumina,
San Diego, CA) with up to 500 ng DNA input using unique dual-index 10
bp barcodes with Nextera® adapters (Illumina, San Diego, CA). All li-
braries were pooled in equal abundance. The final pool was quantified
using qPCR and TapeStation® (Agilent Technologies, Santa Clara, CA).
The final library was sequenced on Illumina® NovaSeq® (Illumina, San
Diego, CA). The ZymoBIOMICS® Microbial Community DNA Standard
(Zymo Research, Irvine, CA) was used as a positive control for each li-
brary preparation. Negative controls (i.e., blank extraction control,
blank library preparation control) were included to assess the level of
bioburden carried by the wet-lab process. Microbial composition was
profiled with Centrifuge using bacterial, viral, fungal, mouse, and
human genome datasets. The sequences reported in this article have
been deposited in the NCBI BioProject (accession no. PRJNA1066388).

3. Results

3.1. Electrokinetic remediation (EKR) reduced diversity of water-
extractable organic matter (WEOM)

EKR consistently reduced the diversity of WEOM, with no consistent
trend identified between the voltage applied and the WEOM diversity.
~7000 elemental compositions of different compounds were identified
in the control condition (i.e., sum of three organic compound groups
containing CHO, CHON, and CHOS). In contrast, the total number was
only 3300-6300 under electrokinetic conditions (Fig. 1a, Table S3).
Cathode 1V/cm had the highest number of compounds (~6300), 88 %
higher than the lowest Anode 1V/cm.

Among the ~7000 compounds identified, ~3000 were shared in all
the anodes and cathodes under all the conditions (Fig. 1a). Creation of
new compounds was limited: 500-1000 new compounds were created,
with cathode 1 V/cm and anode 1 V/cm generating the most and fewest
new compounds, respectively (Fig. 1a).

3.2. Anode yielded smaller-sized compounds

EKR anode reduced the average molecular weight (Mw) of WEOM
compared to the control reactor, whereas EKR cathode did not lead to
significant changes (Fig. 1b-c). While WEOM in all the reactors con-
tained a wide size range (Mw; 200-1000 Da), EKR anode was charac-
terized by intense peaks below 450 Da, and the control and EKR cathode
showed intense peaks above 500 Da (Fig. 1b-c). The difference in
average molecular weight between EKR1V and EKR2V was ≤5 %.

3.3. Anodic oxygenation and cathodic hydrogenation of WEOM

Similar to previous reports, (Lv et al., 2016; Šantl-Temkiv et al.,
2013) WEOM in the control reactor was composed of compounds from
five different classes: polyaromatic hydrocarbons (PAH), polyphenol
(PolyP), highly unsaturated and phenolics (HuPh), aliphatic (Aliph), and
carbohydrates (Carbo) (Fig. S2). HuPh and Aliph dominated, HuPh (78
%)> Aliph (10 %)> PolyP (6 %)> Carbo (2 %)>PAH (1 %) (Fig. 2a and
Fig. S3), with O/C and H/C in the ranges of 0.1 to 0.5 and 0.8 to 2.0,

Fig. 2. (a) Distribution of polyaromatic hydrocarbons (PAH), polyphenol (PolyP), highly unsaturated and phenolics (HuPh), aliphatic (Aliph), and carbohydrates
(Carbo) in WEOM in the control reactor as shown in a Van Krevelen diagram. Van Krevelen diagrams of compounds with top 10 % intensity in the control reactor (b),
EKR anodes (c), and EKR cathodes (d).
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respectively (Fig. 2b).
EKR anode showed voltage-dependent impacts on the composition of

WEOM. Anode 2V/cm generated compounds with higher O/C (0.4 to
0.6, 15 % higher than the control reactor) and contained over 40 %
unique HupH (Fig. 2c). In contrast, anode 1V/cm did not show notice-
able oxidation of HupH (as evidenced by the unchanged O/C and H/C),
but generated carbohydrates with higher H/C >1.8.

EKR cathode, regardless of the voltage, generated Aliph with lower
H/C. Unlike the control reactor, high-intensity compounds with O/C
~0.2 and H/C ~1.8 were undetected, and new high-intensity

compounds emerged with O/C~0.3 and H/C 1.4 (Fig. 2b and 2d). Other
DOM components (Carbo, PAH, and PolyP) did not make up significant
shares at the EKR cathode.

3.4. Degradation of S-WEOM and translocation of N-WEOM under 2 V/
cm

1 V/cm degraded WEOM containing CHON and CHOS at both the
anode and the cathode, while 2 V/cm degraded CHOS and accumulated
CHON at the anode (Fig. 3). CHON and CHOS comprised 16.7 % and

Fig. 3. Distribution of N-WEOM (CHON) and S-WEOM (CHOS) in the control reactor (a and d), EKR anodes (b and e), and EKR cathodes (c and f) of the EKRs.

Fig. 4. Distribution of C# (Number of carbon in compounds) vs. double-bond equivalent (DBE) in CHO, CHON, and CHOS in EKR 1V/cm (a-c) and EKR 2V/cm (d-f).

T. Maqbool et al.
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10.5 % of the WEOM in the control reactor but decreased to 9.2-10.5 %
and 4.9-6.0 %, respectively, under 1 V/cm (Table S3). Under 2 V/cm,
CHOS decreased consistently to 1.5-1.7 %, but CHON increased to 24 %
at the anode while decreasing to 2.8 % at the cathode (Table S3).

There was no significant change in the H/C and O/C ratios in the
CHON and CHOS during EKR, except for the O/C ratios of CHON, which
decreased from 0.40 in the control reactor to 0.04, 0.30, and 0.26 under
1 V/cm cathode, 2 V/cm cathode and 1 V/cm anode respectively (Fig. 3
and Table S3). 2 V/cm anode increased the O/C ratio slightly to 0.45
(Table S3).

3.5. Saturation of N- and S-WEOM

EKR led to shortening of WEOM under all the conditions at both
electrodes, but DBE reductions were impacted the elemental composi-
tion (Fig. 4). Among the WEOM classes, CHO (WEOM without hetero-
atoms) have shown the highest reduction (31-46 %) in DBE, followed by
CHOS (15-42 %), and CHON (-3 to17 %) (Table S3). The reductions in
carbon chain length in CHO (32-44 %) and CHON (3-18 %) were pro-
portional to the decrease in DBE except for CHOS, which showed a less
significant reduction of carbon chain length than that of DBE.

Fig. 5. The number of possible precursor-product pairs ( %) between precursors (control WEOM) and products (unique compounds at anodes (a) and cathodes (b)) in
EKR. The classes of precursor-product pairs were defined based on the literature (Hou et al., 2022; Zhang et al., 2021).

Fig. 6. Microbial communities of EKR. (a) alpha diversity (Shannon) index and total number of species; (b) dominant species in each condition (species with relative
abundance less than 2 % were not shown); relative abundances of known (c) dealkylation and (d) desulfurization species or genera normalized to respective totals.
Numbers in c) and d) represent the relative abundances of these species/genera in the entire community.
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Anode showed higher reductions in DBE and carbon chain length
across all the elemental compositions (CHO, CHON and CHOS) than
cathode, but different elemental compositions responded differently to
the voltage applied. The DBE of CHO and CHOS at anode 2V/cm were 8
% and 32 % higher than anode 1V/cm, respectively, whereas the DBE of
CHON at anode 2V/cm was 9 % lower than anode 1V/cm. Cathode 2V/
cm showed consistently lower DBE than cathode 1V/cm for all the
elemental compositions. The highest DBE (14.0) was observed at cath-
ode 1V/cm for CHO, while the lowest DBE (11.3) was recorded at
cathode 2V/cm for CHOS.

3.6. Anodic oxygenation and desulfurization under 2 V/cm and 1 V/cm,
respectively

EKR produced ~900 to ~4900 precursor-product pairs, with the
highest being cathode 1V/cm and the lowest being anode 1V/cm
(Fig. 5). At anode, 1 V/cm facilitated cleavage of -SO, -SO3, -SH2,
-C2H2O, -H2, and -COO (Fig. 5a), while 2 V/cm facilitated oxygenation
(+O, +2O, +3O and -H2+O2). Cathode was dominated by cleavages of
-SH2, -C3H6, -C2H8, -H2 and -H2+O2, with voltage having limited im-
pacts (Fig. 5b).

3.7. Microbial community enrichment and abundant desulfurizing species

Intense EKR conditions raised the diversity of the microbial com-
munities, as evidenced by the 2-fold increase in the Shannon index in
EKR2V at both anode and cathode (Fig. 6a). Cathode, in particular,
almost doubled the total number of microbial species compared to the
control condition (Fig. 6a). The species-level community composition is
provided in Fig. 6b.

The dealkylation species were enriched only under 1 V/cm, while the
desulfurization species were enriched under both 1 V/cm and 2 V/cm.
For instance, the relative abundance of dealkylation species were 63 %
and 2 % of the entire community at 1V/cm and 2V/cm anodes respec-
tively, while 23- and 36-fold increases in the relative abundance of
desulfurization speces were noted at 1V anode and 2V cathode respec-
tively (Fig. 6c and d). New dealkylation species (Stenotrophomonas
acidaminiphila, Thauera Butanivorans and species from genus Sphin-
gobium) emerged at the higher potential of 2 V/cm (Chen et al., 2023; Li
et al., 2019), albeit in low relative abundances. Rhodococcus erythropolis
and Pseudomonas aeruginosa (Denis-Larose et al., 1997; Duarte et al.,
2001), bacteria from family Desulfobacteraceae and Desulfovi-
brionaceae, and species from genus Desulfovibrio (Karnachuk et al.,
2021; Kümmel et al., 2015), all known desulfurization species, were
enriched in EKR (Fig. 6d).

4. Discussion

Our results suggest that ~55 % of the ~7000 WEOM compounds
were reactive and mobile in EKR, but the generation of new compounds
was limited (500-1000 new compounds generated, Fig. 1). The trans-
location of WEOM was driven by electroosmosis towards the cathode
and electromigration of HuPh towards the anode, as suggested previ-
ously (Liu et al., 2022; Xu et al., 2014). The transformation of WEOM
was dominated by anodic cleavage of large compounds and oxidation of
double bonds, which led to a 10 % decrease in anode Mw (Fig. 1b-c) and
a 12 % decrease in DBE overall. Anodic dealkylation and desulfurization
at 1V/cm were likely driven by microbial activity (Fan et al., 2022), as
evidenced by the enrichment of dealkylation and desulfurization
microorganisims (Fig. 6). Anodic oxygenation was likely driven by
electrochemical oxidation (Li et al., 2001), as evidenced by the prefer-
ence for 2 V/cm and the significant decrease in the abundance of deal-
kylation species at 2 V/cm. Cathodic -SH2 cleavage and cathodic
dealkylation were similar under 1 V/cm and 2 V/cm, and the distinct
microbial community structures (Fig. 6) possibly suggested that elec-
trochemical redox was the dominant pathway (Fliermans and Brock,

1972; Zhang et al., 2022).
We suggest that two WEOM groups are of particular importance in

EKR:

Highly unsaturated and phenolic compounds (HupH): 85 % of
the total WEOM compounds in sediment belonged to the HupH class.
Cathodes led to a higher pH through water electrolysis (Fig. S4),
which likely enhanced the dissolution and electroosmosis of HuPh
due to the presence of carboxylic acid groups in HuPh (as charac-
terized by the IR spectra) (Maqbool and Jiang, 2023). The carboxylic
acid groups either migrated to the anode through electromigration
(Han et al., 2021) or underwent electrochemical reduction at the
cathode. The cathodic electrochemical reduction was possibly
mainly hydrogenation and relatively weak, as evidenced by the
slight increase in H/C (up to 5 % increase in H/C of the most
abundant compounds) in this work and others (Deng et al., 2019).
The carboxylic groups that migrated to the anode likely contributed
to the higher O/C and lower DBE (Maqbool et al., 2022), as it has
been reported that lower pH at the anode causes the generation of H+

,
which acts as a mediator between the electrode surface and reactants
and facilitates electroxation (WEOM) (Xu et al., 2014).
Heteroatoms-containing WEOM: Over 35 % of the WEOM con-
tained heteroatoms N or S. These N- and S-containing WEOM (CHON
and CHOS) were more reactive than those with only CHO (Lasza-
kovits et al., 2020), likely due to their highly reactive functional
groups (e.g., -NO2 and –SH) (Zhang et al., 2021),(Geneste, 2018;
Kaboudin et al., 2022; Popp and Schultz, 1962). In EKR, CHOS were
highly reactive, whereas CHON were less reactive and accumulated
at the anode under 2 V/cm. Both were possibly transformed to CHO
with lower DBE. Despite the significant degradation of CHON, the
precursor-pairs approach identified limited cleavage of -NH, -NH3,
and -NO2, suggesting that N removal was either attributable to
substitutions by other elements (e.g., halides) (Essaïed et al., 2022;
Lee et al., 2007) or accompanied by C-C chain shortening.
Future work: This study, for the first time, reports molecular-level
insights into how electrokinetic remediation transforms the dis-
solved sedimentary organics through electrochemical redox and
microbial activities. It should be noted that other factors may also
impact the fate of organics. For example, metals in the sediment may
influence the mobility and biodegradation of labile organics and also
affect their chemical reactivity (Fan et al., 2023; Feng and Ni, 2024;
Wang et al., 2024; Yuan et al., 2018). Organics degradation and
reactivity are also subject to sediment temperature (Tabuchi et al.,
2010; Y. Wang et al., 2016). In-situ or field applications of EKR could
cause sediment to heat up, which might influence the dissolution,
biodegradability, and electrochemical reactivity of the dissolved
organic matter (Guedes et al., 2019; Kim et al., 2012). Future work
could explore these important parameters.

Further, the mechanisms of electrochemical redox reactions in EKR
remain unclear. EKR produce H2O2 at the surface of electrodes, which
could interact with metals species in sediment and generate hydroxyl
radical, one of reactive oxygen species (ROS) that could degrade or-
ganics (Pourfadakari et al., 2021). Redox active moieties of DOM have
also been reported to drive direct exchange of electrons at electrodes in
electrochemical systems (Ju et al., 2023; Yuan et al., 2011). However,
direct evidence on both mechanisms is lacking (Guedes et al., 2014;
Pourfadakari et al., 2021). Controlled experiments and direct measure-
ments of ROS could be explored for clarifications.

5. Conclusion

This work demonstrates molecular-level changes in the water-
extractable organic matter (WEOM) of sediment in electrokinetic
remediation (EKR). While electric potential and existence of hetero-
atoms (N and S) impact WEOM transformation, in general, anodic

T. Maqbool et al.
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oxidation is dominated by microbial CO2 elimination at the lower po-
tential of 1 V/cm and electrochemical oxygen addition at the higher
potential of 2 V/cm. Cathodic reduction is dominated by dealkylation at
both low and high potentials. As a result, EKR-remediated sediments
may contain more saturated WEOM and less organic N and S. This
change in composition could imply lower metal binding capacity with
less labile organic substrates and organic nutrients for heterotrophic
microorganisms. The long-term impact of this change on nitrogen-
sulfur-carbon fluxes at the water-sediment interface may need to be
examined carefully to inform large-scale adoption of electrified soil or
sediment treatment.
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