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ABSTRACT: Background: Clinical trials for upcoming
disease-modifying therapies of spinocerebellar ataxias
(SCA), a group of rare movement disorders, lack end-
points sensitive to early disease progression, when ther-
apeutics will be most effective. In addition, regulatory
agencies emphasize the importance of biological
outcomes.
Objectives: READISCA, a transatlantic clinical trial readi-
ness consortium, investigated whether advanced

multimodal magnetic resonance imaging (MRI) detects
pathology progression over 6 months in preataxic and
early ataxic carriers of SCA mutations.
Methods: A total of 44 participants (10 SCA1, 25 SCA3,
and 9 controls) prospectively underwent 3-T MR scan-
ning at baseline and a median [interquartile range] follow-
up of 6.2 [5.9–6.7] months; 44% of SCA participants
were preataxic. Blinded analyses of annual changes in
structural, diffusion MRI, MR spectroscopy, and the
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Scale for Assessment and Rating of Ataxia (SARA) were
compared between groups using nonparametric testing.
Sample sizes were estimated for 6-month interventional
trials with 50% to 100% treatment effect size, leveraging
existing large cohort data (186 SCA1, 272 SCA3) for the
SARA estimate.
Results: Rate of change in microstructural integrity
(decrease in fractional anisotropy, increase in diffusivities)
in the middle cerebellar peduncle, corona radiata, and
superior longitudinal fasciculus significantly differed in
SCAs from controls (P < 0.005), with high effect sizes
(Cohen’s d = 1–2) and moderate-to-high responsiveness
(jstandardized response meanj = 0.6–0.9) in SCAs.

SARA scores did not change, and their rate of change
did not differ between groups.
Conclusions: Diffusion MRI is sensitive to disease pro-
gression at very early-stage SCA1 and SCA3 and may
provide a >5-fold reduction in sample sizes relative to
SARA as endpoint for 6-month-long trials. © 2024 The
Author(s). Movement Disorders published by Wiley Peri-
odicals LLC on behalf of International Parkinson and
Movement Disorder Society.

Key Words: READISCA; magnetic resonance imaging;
longitudinal; biomarker; diffusion tensor imaging

Spinocerebellar ataxias (SCA) are rare neurodegenerative
disorders that share cerebellar ataxia as their core clinical
finding. SCA1 shows the fastest progression, whereas
SCA3 is the most common worldwide.1 Both are caused
by CAG repeat expansions. There are no approved
disease-modifying treatments for SCAs, but gene-silencing
strategies are in the pipeline.2 Such therapies are expected
to be most effective in early disease prior to substantial
neuronal loss.3 To enable clinical trials at early, including
premanifest, stages, outcome measures sensitive to early
pathological changes are needed. However, clinical rating
scales, such as the Scale for Assessment and Rating of
Ataxia (SARA),4 are not sensitive to change in the earliest
stages and over short, trial-relevant periods.5 Therefore, tri-
als designed with clinical outcomes require large cohorts
and/or long follow-ups,2 a major barrier for these rare and
slowly progressive diseases.
Neuroimaging may help overcome these limitations

because it enables a direct and objective assessment of
pathology. Furthermore, imaging and fluid biomarkers are
increasingly used as primary and secondary outcomes in
therapeutic trials6-8 and even serve as the basis for the
U.S. Food and Drug Administration approvals.6,8

READISCA is a multisite longitudinal clinical trial readi-
ness study that enrolls early-stage SCA1 and SCA3 muta-
tion carriers and gene-negative controls to validate clinical
and imaging outcomes in the academic trial setting (https://
clinicaltrials.gov/ct2/show/NCT03487367). The study uti-
lizes an advanced magnetic resonance imaging (MRI) pro-
tocol to achieve high precision in MRI outcomes and
minimize the necessary sample sizes for upcoming SCA tri-
als. Baseline READISCA MRI data demonstrated morpho-
metric, microstructural, and neurochemical alterations in
preataxic and early SCA1 and SCA3.9 The sensitivity of
these MR measures to disease progression over short
follow-up durations is unknown. Prior longitudinal studies
in SCAs assessed patients at later disease stages or longer
follow-ups, from 12 to 60 months.10-14

Here, we report the first prospective structural, diffu-
sion MRI (dMRI) and MR spectroscopy (MRS)

findings in a subset of the READISCA cohort scanned
�6 months after baseline to determine if MR measures
are sensitive to change over a trial-relevant follow-up
period (Appendix A).

Patients and Methods
Study Design, Participants, and Clinical

Assessment
In this prospective longitudinal case–control study,

44 participants from the READISCA imaging cohort9

were scanned at baseline and after a median (interquartile
range [IQR]) follow-up duration of 6.2 [5.9–6.7] months
(Fig. 1; Table 1). The sample size was guided by feasibility
and participant willingness to return as follow-up visits
occurred from 2019 to 2021, mostly during the COVID-
19 pandemic. Participants were enrolled at 12 sites and
scanned at 6 sites (University of Minnesota, University of
Florida, Johns Hopkins University [JHU], Massachusetts
General Hospital, German Center for Neurodegenerative
Diseases, and ICM Paris Brain Institute). The enrollment
criteria were described previously9 and targeted partici-
pants with SARA <10 at baseline. SCA mutation carriers
with SARA <3 were classified as preataxic.9 Control par-
ticipants tested negative for SCA1 and SCA3 and were
evaluated to rule out other neurological diseases. The
SARA score4 was used to quantify ataxia severity at both
visits. Ataxic participants reported their age at ataxia
onset (Table 1). The time from ataxia onset at baseline
was estimated using the CAG repeat length for all muta-
tion carriers, as described previously.9,15,16

The study was approved by the Institutional Review
Board at each site, and informed consent was obtained.
This study followed the Strengthening the Reporting of
Observational Studies in Epidemiology (STROBE)
reporting guidelines.

MRI Data Acquisition
The MRI protocol was described in the baseline

READISCA publication.9 Briefly, data were acquired on
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3-T Siemens (Erlangen, Germany) scanners (5 Prisma,
1 Skyra) operating Syngo MR E11 software and using
body coil transmission and a 32-channel receive array.
Structural and dMRI acquisitions were based on the
Human Connectome Project (HCP) lifespan protocol17

and included the following sequences:

• 3D T1-weighted (T1w)MPRAGE: voxel size = 0.8 mm3

isotropic, repetition time (TR)/echo time (TE)/inversion

time 2400/2.2/1000 ms, flip angle = 8�, GRAPPA
factor = 2;

• 3D T2-weighted (T2w) SPACE: voxel size = 0.8 mm3

isotropic, TR/TE 3200/563 ms, GRAPPA factor = 2;
• Multiband dMRI was acquired with opposing phase

encoding in the anterior–posterior direction and q-space
sampling split into two sets of 98 and two sets of 99 vol-
umes, resulting in two sets of 197 volumes (including
13 b = 0 and 184 unique diffusion volumes). On

FIG. 1. Outline of enrollment, magnetic resonance (MR) analysis, and quality control.
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Prisma scanners: voxel size = 1.5 mm3 isotropic,
TR/TE = 3230/89.2 ms, multiband acceleration = 4,
b= 1500 and 3000 s/mm2. On the Skyra scanner: voxel
size = 1.7 mm3 isotropic, TR/TE = 3390/103.2 ms,
multiband acceleration = 4, b = 1000 and 2000 s/mm2.

MRS data were collected using an automated, har-
monized semi-LASER protocol (TR/TE = 3000/30 ms,
80 transients)18 with integrated B0 and B1 calibration.

19

The volumes of interest (VOI) were pons
(16 � 16 � 16 mm3) and cerebellar white matter
(CBWM, 17 �17 � 17 mm3), which were automati-
cally prescribed by AutoVOI.20 One site had network
issues preventing AutoVOI from functioning for most
follow-up scans, which necessitated manual VOI place-
ment. Unsuppressed water spectra were obtained as an
internal quantification reference and for residual eddy
current correction.

MR Quality Control and Preprocessing
The analytic workflow is shown in Figure 1. DICOM

images were de-identified using DicomBrowser
software,21 and T1w and T2w images were defaced using
face masking22 on-site prior to uploading to a Flywheel
(https://flywheel.io/) database running on a dedicated
server at the University of Minnesota for centralized anal-
ysis. A Docker container was shared by the University of
Minnesota team with the other imaging sites to automati-
cally de-identify and upload the data.
MR data were analyzed blind to diagnosis. For quality

control (QC) T1w and T2w data were scored 0 to 2 (pas-
s = 0–0.25, check = 0.5–1, and fail = 1.25–2) considering

image sharpness, ringing, and contrast-to-noise ratio in
subcortical, gray matter, and WM regions.9,23 The QC of
the diffusion images was performed using an FSL EDDY
QC tool,24 which is an automated and quantitative diffu-
sion MRI QC framework based on the FSL EDDY tool.25

Briefly, imaging slices with signal loss caused by participant
movement were detected and replaced by predictions made
by a Gaussian process during eddy.25 Intra-volume partici-
pant movement was corrected using slice-to-volume align-
ment.26 Finally and following our baseline publication,9

single-shot sLASER spectra were corrected for frequency,
phase, and eddy current errors before averaging using the
MRspa software (https://www.cmrr.umn.edu/downloads/
mrspa/).27 Single-shot spectra with poor water suppression
or phase fluctuation indicating participant movement were
excluded from averaging. MRS data with VOIs misplaced
manually or with a linewidth of the associated water refer-
ence broader than 15 Hz were excluded from the analysis.
This linewidth exclusion criterion was higher than that
used for the baseline READISCA paper (13 Hz) because
the primary metabolites of interest, that is, metabolites that
were hypothesized to be sensitive to longitudinal change
(total N-acetylaspartate [tNAA], myo-inositol, and total
creatine [tCr]), are reliably quantified using Cramér–Rao
lower bounds (CRLBs) ≤5%, even in spectra with 13- to
15-Hz linewidths.

Volumetry
To compute subcortical volumes, T1w images were

initially processed using the FastSurfer software (ver-
sion 2.0.4),28 a deep-learning-based solution that

TABLE 1 Cohort characteristics at baseline, duration of follow-up, and SARA at baseline and follow-up

Group Control (n = 9) SCA1 (n = 10) SCA3 (n = 25) P*

Age (IQR) (y) 47 (34; 51) 47 (37; 54) 42 (37; 50) 0.68

Sex (female %) 3 (33%) 8 (80%) 15 (60%) 0.12

Follow-up duration (IQR), days 205 (179; 210) 208 (194; 248) 204 (191; 235) 0.54

Reported age at onset (IQR) (y)a NA 40 (35.5; 46) n = 8 42.5 (30; 50) n = 12 0.84

Reported time from ataxia onset (IQR) (y) NA 7.5 (3; 11.5) n = 8 4.5 (2.5; 11.5) n = 12 0.96

Estimated time from ataxia onset (IQR) (y)b NA 5.4 (�0.6; 12) n = 9 4.3 (�0.74; 9.9) 0.71

CAG repeat length (IQR), long allele NA 45 (43; 45) n = 9 71 (69; 73) NA

SARA at baseline (IQR) 0 (0; 1) 7 (3.5; 8) 2 (1.5; 6.5) 0.001

SARA at follow-up (IQR) 0 (0; 0) 6.5 (5; 10) 3.5 (2; 6.5) 0.001

SARA change (IQR) 0 (0; 0) 0 (�1.5; 2) 0 (0; 1.5) 0.27

Number of preataxic participants (%) NA 2 (20%) 13 (52%) 0.18

For categorical variables frequencies are provided using percentages, and for quantitative variables median and interquartile range (Q1; Q3) are provided; n is provided when
values are reported by a subset of the cohort or are missing.
*P-values are the overall Kruskal–Wallis P-value for quantitative variables and the χ2 P-value for categorical variables.
aAge at onset reported only by individuals with ataxia symptoms.
bEstimated time from ataxia onset is the difference between the ataxia onset age estimated for all participants using their CAG repeat length and the age at baseline.
Abbreviations: NA, not applicable; SARA, Scale for Assessment and Rating of Ataxia; IQR, interquartile range.
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replicates the FreeSurfer29 pipeline analysis with
improved speed and performance, especially for higher-
resolution images.30 Next, data were processed using
the FreeSurfer longitudinal pipeline that utilizes a fixed
intracranial volume (ICV) for each participant, which is
obtained from the average of the baseline and follow-
up ICVs, assuming no within-subject change (version
7.3.2).31-33 To increase the reliability and statistical
power in the longitudinal analysis, several processing
steps are initialized from the within-subject template.33

Brainstem volumes (including medulla oblongata,
pons, midbrain, and superior cerebellar peduncle) were
estimated using the longitudinal subregion segmenta-
tion module within FreeSurfer (version 7.3.2).34,35 The
longitudinal pipeline is based on subject-specific atlases;
that is, the segmentations of the different time points
are jointly computed using Bayesian inference and
treated equally to avoid processing bias.34

For cerebellum volumetry, we used the CERES (CER-
Ebellum Segmentation, version 1.0) software. CERES is
a multi-atlas-based segmentation tool dedicated to
assess the cerebellum.36 When compared to other tools,
CERES exhibited superior repeatability/reproducibility
and cerebellar fissure segmentation in images with cere-
bellar atrophy.37,38

Finally, to evaluate the upper spinal cord, C1 and
C2, we used a harmonized, open-source pipeline that
was developed by the ENIGMA-Ataxia consortium
(http://enigma.ini.usc.edu/ongoing/enigma-ataxia/),39 based
on the Spinal Cord Toolbox.40 We opted to assess only
C1 and C2 because the C3/C4 levels did not show ade-
quate signal-to-noise ratio in some participants. Manual
corrections were performed to correct spinal cord segmen-
tation errors when necessary.

Region-of-Interest Analysis of Diffusion MRI
Following the same approach used in the cross-

sectional analysis,9 we extracted the diffusion volumes
with b = 1500 s/mm2 for Prisma and b = 1000 s/mm2

for Skyra platforms to minimize the bias from differ-
ences in b-values.41 The diffusion images were corrected
for motion artifacts and susceptibility-induced and eddy
current distortions using the HCP pipeline.42 We then
calculated the diffusion parameters (fractional anisot-
ropy [FA], mean diffusivity [MD], axial diffusivity
[AD], and radial diffusivity [RD]) using the FSL DTIFIT
tool (FSL version 6.0.4).43,44 Next, we registered each
FA map onto the JHU WM FA template45 using
Advanced Neuroimaging Tools46 and back projected
the JHU WM FA atlas45 onto the participant’s image to
generate 25 regions of interest (ROI) in native space.
The detailed methodology and the 25 ROIs were
described previously.47 Because we had identified a sys-
tematic bias in the diffusivities obtained on Skyra rela-
tive to those obtained with the Prisma acquisition

parameters, the Skyra diffusivities were multiplied by
previously determined scaling factors9 to account for
the systematic differences due to b-values and
voxel size.

MRS Quantification
Preprocessed and averaged spectra were quantified

using LCModel48 (version 6.3.0G) with a simulated
basis set.27 Metabolite concentration estimates were
corrected for water T2 relaxation time, tissue water
content, and cerebrospinal fluid contribution.14 For
each VOI, metabolites with mean CRLB ≤20% for the
entire cohort were included in the statistical analyses.
The mean CRLBs were computed considering all the
concentrations with the exception for those with fitting
failures (CRLB = 999%).

Statistical Analysis
We first analyzed regions and measures known to be

affected in SCA1 and SCA3 (hypothesis-driven
approach), chosen based on previous MRI and postmor-
tem studies (Table S1). Next, we completed an explor-
atory analysis to capture other measures sensitive to
short-term progression. To account for differences in
follow-up durations between participants, change
in each MR measure was computed as the difference
between visits (visit 2 minus visit 1) divided by the
follow-up duration in years. These slopes were com-
pared between control, SCA1, and SCA3 groups using
nonparametric Kruskal–Wallis test. For the exploratory
approach only, P-values were Holm–Bonferroni adjusted
for multiple comparisons within each MR analysis (for
54 volumes in FastSurfer/FreeSurfer volumetry, 40 vol-
umes in CERES volumetry, 25 regions in each dMRI
measure [FA; mean/radial/axial diffusivities, MD, RD,
AD], 9 metabolites in MRS across both VOIs, and
4 measures in spinal morphometry [C1 and C2 cross-
sectional area and eccentricity]). The measures that
exhibited statistical significance (P < 0.05) in group com-
parisons underwent pairwise Wilcoxon comparisons
between the three groups.
Cohen’s d was computed for each SCA–control com-

parison as the difference in mean slopes divided by the
pooled standard deviation. Additionally, the standard-
ized response mean (SRM) was computed for each SCA
as the mean change divided by the standard deviation
of the change. As the change in MR measures of con-
trol participants can be different from 0, a high Cohen’s
d can be observed with a low SRM and vice versa.
Pearson’s correlations between change in MR measures
and clinical and blood biomarker measures (SARA,
neurofilament light chain49 [NfL] and estimated time
from onset at baseline, SARA change, and CAG repeat
size) were calculated for the pooled SCA groups and
each SCA separately. To account for type I errors
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and because the correlations were not adjusted for
multiple comparisons, only correlations of the MR
measures that exhibited statistically significant change
over time are discussed in Results.
Sample sizes were estimated for two-group interven-

tional trials of 6-month duration using MRI and SARA
as outcomes (the latter based on existing large cohort
data50), for treatment effects varying from 0.5 to 1.0
with power set at 0.8 or 0.9 and α at 0.05.
Statistical tests were performed at the conventional

2-tailed type I error of 0.05. Data were analyzed using
R version 4.2.0.

Results
Cohort Characteristics,
Data Availability, and QC

We enrolled 44 participants for the 6-month follow-
up: 35 patients (10 SCA1, median [IQR] age: 47 [37–
54] years, 8 women [80%]; 25 SCA3, median [IQR]
age: 42 [37–50], 15 women [60%]) and 9 gene-negative
controls (median [IQR] age: 47 [34–51] years, 3 women
[33%]). Fifteen participants (13 SCA3, 2 SCA1) were at
the preataxic stage (44% of mutation carriers, Table 1).
One participant phenoconverted during follow-up.
Gene-negative controls were age- and sex matched to
mutation carriers. SARA score did not change signifi-
cantly in either SCA group over this time frame.
Because short-term follow-up data were available

only from a subset of the baseline READISCA imaging
cohort,9 we compared the baseline demographics and
ataxia severity of the 44 participants who returned for
the 6-month follow-up to the 63 remaining participants
from the baseline cohort (n = 107) to assess if those
who did not return were demographically different or
more severely affected (Table S2). There were no statis-
tically significant differences between the two groups
ruling out selection bias.
Structural and dMRI data were obtained from all par-

ticipants (Fig. 1). Upon QC, 1 participant with SCA1 was
excluded from the deep gray matter and brainstem vol-
umetry analysis, and 1 participant with SCA3 was
excluded from the spinal cord analysis due to segmenta-
tion errors (Fig. 1). CBWM MRS data were missing from
3 controls and 1 patient with SCA1, and pons MRS data
were missing from 3 controls, 1 patient with SCA1, and
1 patient with SCA3, due to incomplete acquisitions or
operator errors when manually prescribing VOI. Upon
QC, six pons spectra (1 SCA1 individual, 4 SCA3 indi-
viduals, and 1 control) were excluded due to poor shim
quality at one of the two visits.

Progressive Atrophy in Early SCA1 and SCA3
Change in total and right cerebellum volumes mea-

sured using CERES was significantly different between

groups (total cerebellum, P = 0.042; right cerebellum,
P = 0.029), with the SCA3 versus control comparison
driving the difference (SCA1, P = 0.315; SCA3,
P = 0.046) (Fig. 2, Table S3). The right cerebellum vol-
ume had a high effect size (d = 0.84) and moderate
responsiveness (SRM = �0.53) for SCA3. We did not
find significant progressive volume loss in the cerebrum
or upper spinal cord (Tables S5, S7). The exploratory
analysis did not uncover other structural measures sen-
sitive to short-term progression.

Progressive Microstructural Damage in Early
SCA1 and SCA3

Change in microstructural measures obtained from
the middle cerebellar peduncle (MCP) (FA: SCA1,
P = 0.002; SCA3, P = 0.002; MD: SCA1, P = 0.017;
SCA3, P = 0.074; RD: SCA1, P = 0.012; SCA3,
P = 0.014) and the right corona radiata (CR) (FA:
SCA1, P = 0.004; SCA3, P = 0.034; MD: SCA1,
P = 0.023; SCA3, P = 0.023; RD: SCA1, P = 0.004;
SCA3, P = 0.030) was larger in both SCA groups than
in controls, with a decline in FA and an increase in dif-
fusivities over time (Figs. 2 and 3). The effect sizes for
dMRI measures were very large in both groups
(d >1.2), with the SCA1 cohort presenting higher
responsiveness (jSRMj > 0.8) than the SCA3 group
(jSRMj � 0.6, Tables S9, S11, S13, and S15). The
exploratory analysis revealed progressive WM damage
in the right superior longitudinal fasciculus (SLF,
decreased FA and increased RD) in both groups (Figs. 2
and 3), with the highest effect sizes (d � 2), but similar
responsiveness to MCP and CR (Tables S9 and S15).
Because the significant changes were found in the

right hemisphere for both CR and SLF, we evaluated if
these changes were driven by a technical reason, such
as higher coil sensitivity on the right side. No right/left
asymmetry was detected in images and segmentation
results. Importantly, cross-sectional group differences in
patients versus controls reported previously9 were pre-
sent in the right and left hemispheres at each time point.
In addition, the SLF and CR findings were not different
between left- and right-handed patients (Wilcoxon
P > 0.05), indicating findings were not driven by
handedness.

Progressive Neurochemical Abnormalities
in Early SCA1 and SCA3

Change in neurochemical levels was not significantly
different between groups (Tables S17 and S19).

Clinical Correlations
Measures that exhibited significant longitudinal

change did not correlate with clinical outcomes (base-
line SARA, SARA change, baseline NfL, estimated time
from onset at baseline, CAG repeat size). To allow
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readers access to the full set of findings, all MR-clinical
correlations are presented in Tables S4, S6, S8, S10,
S12, S14, S16, S18, and S20.

Sample Size Estimation for Interventional Trials
We estimated sample sizes for clinical trials of

6-month duration with FA of MCP as primary outcome

(Fig. 4). This measure exhibited high responsiveness for
both SCAs and is robustly measured across MRI plat-
forms (less sensitive to acquisition parameters than dif-
fusivities). Because no change was detectable in SARA
in the small cohort that included preataxic participants,
the current data resulted in unrealistic sample sizes with
SARA as outcome. To place the MRI-based sample size
estimates into context, existing large retrospective

FIG. 2. Magnetic resonance (MR) measures sensitive to 6-month follow-up. Annualized slopes are shown in the units of the MR measure (left y-axis)
and % annual change (right y-axis) of the mean cohort value at baseline, with Wilcoxon pairwise P-values (*P < 0.05 and **P < 0.01).
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cohort data50 with 186 SCA1 and 272 SCA3 partici-
pants (a subset of whom phenoconverted during
follow-up) were used to estimate a sample size with
SARA as outcome in an early ataxic cohort. These esti-
mates predicted a >5-fold decrease in the sample size
needed in trials that would slow progression by 50% to
100% with FA of MCP relative to SARA as outcome
measure.

Discussion

We evaluated the sensitivity of advanced multimodal
MRI to short-term change in two slowly progressing
neurodegenerative diseases in a multisite trial setting.
We identified progressive abnormalities in dMRI

measures in major cerebral and cerebellar WM tracts in
SCA1 and SCA3 and predicted a substantial sample
size reduction with imaging relative to clinical outcomes
in interventional trials less than a year, which could sig-
nificantly reduce costs and allow therapies to reach
patients more quickly.
The sensitivity of MRI measures to progressive

changes in the brain was previously reported in later-
stage SCA cohorts and never with follow-up durations
less than a year.11-14 Prior studies showed significant
correlations between MRI outcomes and estimated time
to/after onset over a 30-plus-year range but did not
detect significant progression of these measures over
1 to 2.5 years.10,51 Among other slowly progressing
neurodegenerative diseases, volumetric measures were
sensitive to change over 6 months in Huntington’s

FIG. 3. Progressive microstructural changes. Statistical maps (Wilcoxon P-values for pairwise spinocerebellar ataxia [SCA] vs. control comparisons) are
represented on the Johns Hopkins (JHU) atlas fractional anisotropy (FA) map. CR, corona radiata; ICP, inferior cerebellar peduncle; MCP, middle cere-
bellar peduncle; SLF, superior longitudinal fasciculus.
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disease but with smaller effect sizes.52 Therefore, such
large effect sizes were not observed previously for short
follow-up imaging in other slowly progressing neurode-
generative diseases.
Whereas the cerebellum volume was sensitive to

change in SCA3 (Fig. 2), dMRI measures had larger
effect sizes in both SCAs, consistent with microstructural
changes preceding atrophy in early disease stages. Nota-
bly, the progressive WM abnormalities without signifi-
cant cortical atrophy are indicative of axonopathy, as
also indicated by cross-sectional data in preataxic and
early SCA1 and SCA3.9,53 In addition, RD changes were
more pronounced than AD, potentially reflecting a pro-
gressive demyelinating process54 rather than axonal
injury and supporting recent findings of oligodendrocyte
involvement in SCA1 and SCA3 pathogeneses.55

The dMRI measures exhibited higher responsiveness
in SCA1 than SCA3, consistent with faster progression
in SCA1. Progressive microstructural changes in major
cerebral tracts at an early disease stage are somewhat
surprising considering the caudal-rostral pattern of
degeneration indicated by cross-sectional data in these
SCAs.9,53 However, the ability to detect subtle changes
over time depends on the reproducibility of the mea-
sures. CR and SLF provided sensitivity to measure 1%
to 2% change (Fig. 2), because they are major tracts
with highly reproducible dMRI measurements.56 MCP,
a smaller tract, but the largest of the three cerebellar
peduncles, allowed detection of larger-magnitude dMRI
changes. Interestingly, the changes in CR and SLF were
consistently in the right brain in both SCAs. We con-
firmed that this was not a technical artifact (eg, coil sen-
sitivity) nor associated with handedness. A laterality in
pathology has not been reported in SCAs; nonetheless,
these findings caution against averaging right- and left
MR measures to reduce the number of statistical ana-
lyses as commonly done.51,57 Whether the progressive

pathology is more prominent in the right brain in early
SCA1 and SCA3 remains to be confirmed.
Based on the technical sensitivity argument, the progres-

sive dMRI abnormalities may reflect generalized WM
damage in these SCAs. Nonetheless, these data suggest
early progressive deficits in the functions associated with
these tracts. The MCP is the primary cerebellar afferent
tract linking cerebral sensorimotor, association, and limbic
areas with the cerebellum58 and is involved in motor plan-
ning and execution.59 Therefore, progressive MCP damage
likely underlies the development of early ataxic signs and
may contribute to the development of the cerebellar cogni-
tive affective syndrome in patients with SCA.60

Corticospinal and sensory signs were the earliest clinical
findings in the READISCA cohort.49 Therefore, the CR
findings are likely due to changes in corticospinal fibers
passing through this structure. Finally, the SLF is a massive
cerebral bundle with substantial functional lateralization,
and the right SLF is involved in visuospatial processing
and spatial awareness.61 Visuospatial impairment was
noted in later-stage SCA3,62 and our finding motivates
assessment of visuospatial deficits in early disease.
The sample size for the neurochemical assessments

was smaller than the structural and dMRI
assessments (Fig. 1), with only five control datasets
from the pons. Therefore, the study was underpowered
to detect a group difference in the slope of pontine
tNAA/Ins, a neuroglial marker that was shown to be
sensitive to change over longer follow-up in SCA1.14

However, its large effect sizes (1.4) and responsiveness
(jSRMj ≥ 0.8) indicate that faster tNAA/Ins decline than
controls will likely be detectable in early SCA1 and
SCA3 with appropriate sample sizes.
The primary limitation of this study is the small sam-

ple size, particularly for the SCA1 and control groups,
and is reflective of challenges with sufficiently powered
trials in these rare diseases. Thus, the necessary sample

FIG. 4. Sample size estimation for a two-arm interventional trial of 6-month duration to detect a significant difference in progression between a treated
and a placebo group of 50% to 100% using fractional anisotropy of middle cerebellar peduncle and Scale for Assessment and Rating of Ataxia (SARA)
as primary outcomes.
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sizes in the hundreds per arm when utilizing clinical out-
comes2,63 are prohibitive in SCAs. This was the primary
motivation to utilize an advanced MRI protocol with high
technical reproducibility that nonetheless is implementable
at academic sites, where trials of disease-modifying thera-
peutics will occur. The small sample size may also have
resulted in an overestimation of effect sizes and thereby
underestimation of sample sizes using imaging outcomes;
however, even a twofold reduction in necessary sample
sizes would result in substantial savings and facilitate well-
powered trials. Also note that the sample size achieved
here was comparable to targeted enrollment in gene-
silencing trials recently initiated by industry (https://
clinicaltrials.gov/study/NCT05822908, https://clinicaltrials.
gov/study/NCT05160558). A second limitation was that
clinical data were limited to SARA. Frequent assessment
of pyramidal signs and visuospatial processing at early dis-
ease stages is warranted in future studies.
To summarize, select dMRI measures emerge as can-

didates for tracking the slowing, and perhaps reversal,
of SCA1 and SCA3 pathology in early stages in thera-
peutic trials of �6-month duration, which is not feasi-
ble with clinical outcome measures given the large
sample sizes required (Fig. 4). Other MR measures
(pontine tCr in SCA1 and RD of inferior cerebellar
peduncle in SCA3) were the most sensitive to detect
cross-sectional group differences between preataxic
gene carriers and controls9; however, their poorer test–
retest reproducibility56 prevents detection of (smaller)

short-term longitudinal change with the current sample
sizes. The sample size estimates with dMRI outcomes
are still large, that is, 100 to 200 patients needed per
arm to detect a 50% reduction in the slope of MCP
FA. Longer follow-up durations, for example,
9 months, will further reduce the necessary sample sizes
and allow therapeutic trials with MRI outcomes
responsive to change in less than a year.
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