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ABSTRACT

Two Co''-based complexes, {[Co(dps),(N3),]-H,0}, (1) and [Co(dps);(N3);1n (2), show a 1D chain and a
3D network, respectively. The central Co' ions in the complexes have the same coordination environ-
ment with the [Co(dps)s(N3),] unit. Although the differences in crystal parameters are nearly negligi-
ble, their magnetic properties are very different. AC susceptibility data show that 1 behaves as a typical
field-induced single-ion magnet (SIM) with the out-of-phase (xu”) signals, while 2 shows ac signals of
xm” without peaks even under applied dc filed within our measurement window. Far-IR magneto-spectra
(FIRMS) show strong spin-phonon couplings at 0 T in 2, likely making the magnetic relaxation in 2 fast,
while the couplings are negligible in 1. Small spin-phonon coupling in 1 likely leads to slower magnetic
relaxation, making 1 a SIM. The difference in the properties is due to the structural rigidity of 2 in its 3D
network, leading to stronger spin-phonon coupling. Combined high-field EPR (HF-EPR) and FIRMS stud-
ies give spin-Hamiltonian parameters, including D=64.0(9) cm™!, |E|=15.7(2) cm™! for 1 and D =80.0(2)
cm!, [E|=19.0(1) cm™! for 2.

© 2024 Published by Elsevier B.V. on behalf of Chinese Chemical Society and Institute of Materia

Medica, Chinese Academy of Medical Sciences.

Single-molecule magnets (SMMs) have been a hot topic due to
their potential applications in spintronics and quantum computers
[1-7]. Single-ion magnets (SIMs) are a special kind of SMMs with
one metal ion in molecules [8-11] and intensely studied [12-27].
Highly axial structures and ligand-field tuning can increase mag-
netic anisotropy, improving effective energy barriers and blocking
temperatures of SIMs [14-26]. However, no breakthrough has been
made since the record blocking temperature by [(CpiPrs)Dy(Cp*)]*
was attained [19,20].

In Layfield’s work, it is found that not only the structural sym-
metry plays an important role in the SIM performance but also
the molecular vibration has an impact on the effective energy bar-
rier and blocking temperature [19,24,28]. Recently, Sessoli’s group
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proved that spin-phonon coupling plays a crucial role in the spin
relaxation process of a mononuclear complex, providing a theoret-
ical basis for the design and synthesis of high-performance SIMs
[27]. In our early work, we also found that the effect of isotopic
vibration on the slow relaxation process by comparing CH3CN and
CD3CN [29]. However, in most cases, especially in coupled systems,
the spin-phonon coupling could not be observed because the mag-
netic coupling is much stronger [30-33]. Therefore, this effect has
not attracted much attention and was often ignored when the cou-
pling between spin carriers is mainly considered, although experi-
mental observations of spin-phonon couplings have been reported
in recent years [34-40]. Spin-phonon coupling is rarely considered
in the design and synthesis of molecular magnets due to unpre-
dictability of this property.

To prove the existence and importance of spin-phonon cou-
pling in molecular magnets, we have designed two complexes with
the same coordination environment and negligible magnetic ex-
change between adjacent metals, but different structural dimen-
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Fig. 1. (a) Coordination environment of Co' ions in 1 and 2. Blue atoms represent
atoms in 1 and green atoms represent those in 2. (b) Stacking diagram in a cell
frame of 1.

sionalities. The effect of spin-phonon interaction on the relaxation
process has been probed experimentally. The two complexes are
composed of the same [Co(dps)4(N3),] unit, but show one- and
three-dimensions (1D and 3D), respectively. There is no measur-
able magnetic exchange between the Co! centers in each com-
plex, helping study the vibrational effects on slow magnetic relax-
ation. AC susceptibility data shows that they are both field-induced
SIMs. FIRMS spectra show strong spin-phonon coupling in 2 most
likely from its 3D lattice rigidity, leading to its weaker SIM prop-
erty than 1 (with a 1D structure). The results demonstrate the in-
fluence of spin-phonon coupling on magnetic relaxation. Herein,
we report structures of 1 and 2, their magnetic properties and
the magnetostructural correlation based on HF-EPR and FIRMS
results.

The structure of 1 has been reported [41]. Both complexes have
the similar structural unit of [Co(dps)4(N3),]. The difference is in
the numbers of solvent water molecules in the lattices, leading to
the 1D chain and 3D framework of 1 and 2 with a monoclinic and
orthorhombic space group, respectively. In order to ensure the pu-
rity of both complexes, PXRD and IR were measured for 1 and 2
(Figs. S1 and S2 in Supporting information). The results prove that
both complexes are pure phases.

In 1, one unit contains one Co!' ion, four dps molecules, two
N3~ anions and one lattice water molecule (Fig. S3 in Supporting
information). The surrounding metal center Co' ion shows a hexa-
coordinate octahedral geometry (Fig. 1a). Among the six N atoms
involved in the coordination, four of them are from the ligand dsp
and the other two are from N3~. The non-coplanar pyridine rings
destroy the conjugation of the bridging ligand, which cannot ef-
fectively mediate the coupling between spins. The lengths of Co-
N(N;-) bonds are 2.066(8) and 2.097(7) A, which are shorter than
other Co-N bonds. Thus, the coordination configuration of Co! ion
can be regarded as a compressed octahedron. These two opposite
coordinated N atoms and Co! ion are almost collinear. The N-Co-
N bond angles are 176.16°, 176.20° and 177.48°, respectively. The
nearest Col! ions are linked together by two dps ligands to form a
1D chain along the a-axis, in which each of the two dps ligands
provides two pyridine groups to bridge two adjacent metal ions
(Fig. 1b). The expanded structure is stabilized by the very weak
interaction from the sulfur atom of the dps ligand to the pyri-
dine group in the neighboring chain (the shortest S.--C distance is
3.383A) and the hydrogen bond provided by lattice water between
chains.

The asymmetric unit of complex 2 is very similar to that of
1. The center Co! ions also adopt a distorted compressed octahe-
dral coordination geometry, in which the Co-N(N3~) bond lengths
of 2.090(3) and 2.098(3) A are slightly less than that of the Co-
N(dps) bond. A main structural difference between 2 and 1 is its
2-fold interpenetrated 3D framework (Figs. 2a-c), which depends
on the arrangement of dps ligands around one Co!' center. In 1,
two dps ligands bridge two Co!! ions and four Co-N coordination
bonds are coplanar with two S atoms in different ligands. This type
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Fig. 2. Stacking diagram in a cell frame of 2: (a-c) Mirror-symmetric chiral chan-
nels within the racemate framework of 2. (d) Topological views of 2. Pink = Co, Yel-
low =dps.

of double bridging results in an approximately square closed Co-
(dps),-Co ring, which is repeated to constitute the chain structure
of 1. In contrast, Co"" ions in 2 are linked by a single dps bridge.
Every four Co" ions and four ligands bridging among them act
as a repeating helical unit, giving an approximately square heli-
cal channel (Figs. 2a and c). Within the helical chain, the Co---Co
distance is 11.557 A, equivalent to the side length of a square chan-
nel. The screw pitch of a helical channel is the distance between
two adjacent Co ions, i.e., 9.524A. Because one Co'l ion is coordi-
nated by four dps ligands in the equatorial plane, there are four
helical channels with the Co! ion as a 4-connected node (Fig. 2d).
The adjacent channels have opposite chirality. Thus, each frame-
work structure is a racemate. In 2, there are two sets of completely
equivalent frameworks that are interspersed with each other, lead-
ing to the 2-fold interpenetration in a translation fashion (Fig. 2d).
The crystal structure of 2 is stabilized by van der Waals forces, re-
sulting in a dense framework without accessible porosity. Since 1
and 2 have similar local coordination environments (Fig. 1a), the
difference between them is only in the dimensionality of 1D and
3D. These structural characteristics will help understand the role
of spin-phonon coupling in the relaxation in 1 and 2.

Both complexes exhibit similar T values of 3.12 cm?® K/mol
for 1 and 3.14 cm?® K/mol for 2 at room temperature, respectively
(Fig. 3). The larger than the spin-only value of 1.875 cm3 K/mol for
an isolated high spin Co!' complex (assuming S=3/2 and g=2.0)
is commonly associated with the orbital contribution through the
spin-orbit coupling. With the lowering of temperature, the yyT
values first gradually decrease from room temperature to 150K,
and then show a more pronounced decrease, finally reaching ulti-
mate values of 1.93 cm? K/mol for 1 and 1.86 cm? K/mol for 2, re-
spectively, at 1.8 K. This behavior is commonly associated with the
depopulation of Kramers’ excited states (Ms =+1/2 and +3/2). The
field-dependence of the magnetization for 1 and 2 were measured
in fields ranging from 0 to 70 kOe at temperature varies between
1.8 and 10.0K (insert in Fig. 3). The magnetization reaches 2.32
Nug for 1 and 2.27 Nug for 2 at 70 kOe, respectively, but does not
saturate as it is expected for an anisotropic ion. The temperature-
and field-dependent mgnetization data of 1 and 2 were fitted using
the PHI program to quantify the anisotropy parameters [42]. Good
fits were obtained using the following spin-Hamiltonian (SH):

ﬁ=D[S‘§—S(5;”}+E(SE—S’y)+guBSH (1)

The best fits of the reduced magnetization data give
D=62.26(22) cm~!, E=10.76(10) cm~! (E/D=0.17), gx=gy=
2.65(9), g,=2.41(6) and TIP=113x10"% cm3/mol for 1 and
D=74.94(15) cm~!, E=19.06(19) cm~! (ED=025), gx=gy =
2.61(10), g, =2.38(10) and TIP=1.13 x 10-* cm3/mol for 2. These
SH parameters were obtained using fitting procedure in PHI soft-
ware [42] and SH parameters from HFEPR analysis as a starting
point.
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Fig. 3. Temperature dependence of yyT for 1 and 2. Insert: Isothermal magnetization at different temperatures for 1 and 2. The solid line is the best fitting result.
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Fig. 4. (a, b) Resonance field vs. microwave frequency for EPR transitions, and (c, d) HF-EPR spectra with simulations at 4.2K of 1 and 2. Green, blue, and red curves are the
simulations using the best-fitted spin-Hamiltonian parameters with the magnetic field H parallel to the x, y, and z axes of the ZFS tensor, respectively. The vertical dashed

line represents the frequency used at which the spectra were recorded or simulated.

To get more details on the SH model of 1 and 2, HF-EPR
measurements were performed in the frequency range of 60-
375GHz (Fig. 4 and Fig. S4 in Supporting information). The HF-
EPR spectra of 1 and 2 contain three main components aris-
ing from the intra-Kramers transitions within the lowest dou-
blet Mg=41/2 with AMs=41. These features indicate that two
complexes are typically S=3/2 systems with large, positive D
values. Simulations of the HF-EPR spectra are made using the
ID] values from FIRMS below, while adjusting E and g val-
ues via SPIN [43]. The best simulated spectra were obtained
with the following parameters: D=64.0(9) cm’!, |E|=15.7(2)
cm! (|[E[D|=0.245), gx=gy=2.62(2), g,=245(2) for 1 and
D=80.03) cm™!, |E|=19.0(1) cm™! (|E/D| =0.236), gx =gy = 2.58(2),
and g, =2.42(2) for 2. The simulations of the HF-EPR spectra in-
dicate the positive sign of D value (Fig. 4, bottom), suggesting the
easy-plane anisotropy for both 1 and 2.

FIRMS is a powerful tool to directly determine the large ZFS in
transition metal complexes [44-47]. The combined use of FIRMS
and EPR has been adopted recently to give accurate SH parameters
[46-50]. Also, FIRMS allows to observe the spin-phonon coupling
effect [34-39].

The transmission spectra (Figs. 5a and b) were measured for
powder samples at the temperature of 5.5K, and at fixed mag-
netic field varied between 0 and 17.5 T with step of 0.5 T. To
distinguish inter-KD transitions from the non-magnetic phonon
peaks, all spectra were normalized to the reference spectrum,
which is calculated as an average spectrum for all magnetic fields.
Figs. 5¢ and d show the heatmap of such normalized transmit-
tance with blue color corresponding to the intensive ZFS transi-
tions, while yellow indicate transmission unaffected by magnetic
fields. The ZFS energy (2D') is evaluated as 139(2) cm™! for 1 and
172(5) cm! for 2 from zero-field slice of the heat map, respec-
tively.

Spin-phonon coupling in 2 can also be observed by comparing
the FIRMS heatmap with those of 1. For 1 (Figs. 5a and c), no sig-
nificant spin-phonon coupling is observed at 0 T. When the exter-
nal magnetic field is applied, the magnetic transitions shift as a
result of Zeeman effect. Between 6 T and 10 T, avoided-crossings
between the blue-shifting magnetic transitions and phonon peaks
are observed in Fig. 5c. However, a comparison of the far-IR spec-
tra at 0 and 175 T in Fig. 5a shows small overall differences, in-
dicating weak (or negligible) spin-phonon coupling in 1 at 0 T. In
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contrast, for 2 (Figs. 5b and d), spin-phonon coupling is prominent
even at 0 T (without the external magnetic field), leading to a few
spin-phonon coupled states. The far-IR spectra of 2 at 0 and 17.5 T
(Fig. 5b) show significant differences near the magnetic transition
at 172(5) cm!. The strong spin-phonon coupling in 2 may make its
magnetic relaxation fast. The difference in FIRMS between 1 and 2
is consistent with the AC susceptibility data below that 1 is a SIM,
while 2 is not.

The temporal behavior of magnetization for 1 and 2 was inves-
tigated by two types of experiments. First, the ac-susceptibilities
were measured as a function of frequencies at one temperature
and in different applied fields from 0 to 3.0 kOe. Second, their fre-
quency dependences were measured at a fixed bias dc-magnetic
field for different temperatures from 1.8K to 7.0K. The measure-
ments were performed on polycrystalline samples using a VSM
magnetometer. The first observation was that the out-of-phase ac-
susceptibility (") for 1 and 2 has no signal in zero field but is
clearly enhanced in 1 kOe (Fig. S5 in Supporting information). Such
behavior has been associated with the presence of QTM. This re-
sult indicates that each Co" molecule in 1 and 2 behaves as a SIM.

2 | cm® mol™

1 10 100
vl Hz

" lemmol™
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To explore the magneto-structural correlation, 1.5 kOe for 1 was
chosen to measure the dynamic magnetization due to the longest
relaxation time.

In the given field and temperature ranges, the variable-
frequency x\” for 1 are shown in Fig. 6. The Cole-Cole plots of
xm” vs. xm' for 1 were fitted using the CC-FIT program and a
modified Debye function (Fig. S6 in Supporting information) [51].
The relaxation times 7 and effective barrier energies were ob-
tained from fitting the Arrhenius-like diagrams (Fig. S7 in Sup-
porting information). The whole temperature data set was fitted
to Eq. 2 containing three relaxation processes, where A represents
direct process, B is the coefficient of the Raman process, Ugs is
the energy barrier for magnetization reversal, kg is the Boltzmann
constant, and T is temperature. The best fitting parameters are
A=60.76K1s!, B=0.03K 5551, n=6.55, 1,=2.163 x 1085 and
Uegr/kg =65.09K for 1. The Ug of Orbach process is always much
lower than the energy difference between the two doublets from
HE-EPR probably due to the prominence of anharmonic phonons
[52-54].

T — AT +BT" + 7; ' exp et (2)
kBT

As shown in Fig. S5, comparing the out-of-phase (") vs. fre-
quency curves of 1 and 2 under different magnetic fields, we found
that the peak frequency of 1 is at low frequency under the optimal
field. The peak value of 2 could not be observed when the fre-
quency is 1000 Hz, implying that the peak appears at a higher fre-
quency. This phenomenon indicates that the relaxation time of 1 is
the longer than that of 2. Comparing the structures of 1 and 2, we
can find that the bond lengths and bond angles of both complexes
and the coordination mode of N3~ anion are nearly the same. The
only difference between them is that the structure of 1 is 1D, and
that of 2 is 3D. In other words, the structure of 2 is more rigid
than that of 1. Interestingly, we can find that the x,” of 1 shows
obvious peaks at low applied field and low frequency. However, in
2, there is no peak in the xp” even at the applied magnetic field
of 3.0 kOe and the frequency of 1000 Hz. This experiment result
indicates that the rigidity has a great influence on the slow relax-
ation process of the SIMs systems, which also consistent with other
works [27,28].

In conclusion, we have synthesized two complexes with the
same building unit (Co(dps)4(N3),), but their structures are differ-
ent. The dps ligand bridges between Co! ions to form a 1D chain
with weak interchain interaction in 1, while a 3D network in 2.
Complex 1 shows the obvious slow relaxation of magnetization in
low frequency, but 2 does not. The magnetic fields dependence of
far-IR spectra indicate that the structural rigidity has a great influ-
ence on the slow relaxation process of the SIMs systems. These re-
sults give the direct experimental evidence that spin-phonon cou-
pling plays an important role to regulate the relaxation process,
especially in the weak coupling system or SIMs. Our findings are

e
-
=)

e 9

o o

e a
T

1 10 100 1000

Fig. 6. Frequency-dependent y ' (left) and xy” (right) AC susceptibilities in Hy. = 1.5 kOe for 1.
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helpful to guide the design and synthesis of SIMs with high effec-
tive energy barrier and blocking temperature.
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