
1

17O NMR relaxation measurements for investigation of molecular dynamics in static solids, using 
sodium nitrate as a model compound

Liliya Vugmeyster, a Riqiang Fu, b Dmitry Ostrovsky c

a Department of Chemistry, University of Colorado Denver, Denver CO USA 80204

b National High Magnetic Field Laboratory, Tallahassee, FL USA 32310

c Department of Mathematics, University of Colorado Denver, Denver CO USA 80204

a,*Department of Chemistry, University of Colorado at Denver, 1201 Larimer St, Denver, CO 
80204; email: LILIYA.VUGMEYSTER@UCDENVER.EDU

Abstract

17O NMR methods are emerging as a powerful tool for determination of structure and dynamics in materials 
and biological solids.  We present experimental and theoretical frameworks for measurements of 17O NMR 
relaxation times in static solids focusing on the excitation of the central transition of the 17O spin 5/2 system.  
We employ 17O-enriched NaNO3 as a model compound, in which the nitrate oxygen atoms undergo 3-fold 
jumps. Rotating frame (𝑇1𝜌), transverse (𝑇2) and longitudinal (𝑇1) relaxation times as well as line shapes 
were measured for the central transition in the 280 to 195 K temperature range at 14.1 and 18.8 T field 
strengths. We conduct experimental and theoretical comparison between different relaxation methods and 
demonstrate the advantage of combining data from multiple relaxation time and line shape measurements 
to obtain a more accurate determination of the dynamics as compared to either of the techniques alone. The 
computational framework for relaxation of spin 5/2 nuclei is developed using the numerical integration of 
the Liouville – von Newman equation.

Introduction

Advancement in method development of 17O NMR led to significant progress in structural and dynamics 
studies of materials and biomolecules.[1,2,3,4,5,6,7,8] 17O is spin 5/2 quadrupolar nucleus with a wide 
range of quadrupolar coupling constant (Cq) values possible, up to tens of MHz.  Both first order and second 
order quadrupolar interaction govern its spin physics, but the central transition (CT), i.e. the transition 
between the mz = +1/2 and mz = –1/2 states, is not affected by the first order contribution. Thus, it yields 
relatively narrow line shapes and most works have focused on detecting this transition. [2]

17O nuclei are sensitive dynamics probes and distortions in quadrupolar line shapes induced by motions can 
be used to quantify the motions.[2,9,10,11] In addition, relaxation measurements can provide useful 
complementary information on the variety of time scales.  We are particularly interested in the relaxation 
in the solid phase due to potential applications of relaxation approaches to a variety of non-soluble 
compounds, including biomolecular solids. Recent advances in 17O labeling approaches will likely enable 
numerous future applications of 17O solid state NMR relaxation methods. 

The goal of the manuscript is to compare dynamics information from several 17O NMR relaxation times 
measurements, such as rotating frame (𝑇1𝜌), transverse (𝑇2) and longitudinal (𝑇1) as well as line shapes 
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analysis and to assess whether the combined approach including all measurements can increase the accuracy 
of the molecular dynamics information in solids. 

Quadrupolar relaxation in the solid state is challenging from both experimental and modeling perspective. 
For spin 5/2 the base set spans 35 coherences and the relaxation, in general, is inherently non-exponential. 
[12,13] As a result, the initial conditions can heavily influence the apparent relaxation times, as shown by 
Haase et al.  for longitudinal  𝑇1 relaxation times.[14] Coherent evolution of half-integer quadrupoles under 
spin-lock has been considered in detail by Wimperis and co-workers.[15,16] Additionally, the laboratories 
of Verbelow and Veeman has presented an extensive body of work describing the theory of the nutation 
experiment and relaxation of multiple quantum coherences for half-integer nuclei.[17,18] Approaches 
based on the numerical simulations of the Liouvillian equation can provide means of parametrizing 
experimentally observed dynamics. [19]

The model compound used here, 17O-labeled NaNO3, was recently studied in detail by line shapes 
measurements by Hung and coworkers[9]  as well as by Beerwerth et al.[20] The main motions are the 3-
fold jumps of the nitrate group. Two motional transitions were seen in this compound, including the one at 
which the rate of motions matches the second order quadrupolar interaction. The dynamics were analyzed 
using the full Liouvillian approach by Hung et al. [9]  In addition to the quadrupolar interaction, the 
chemical shift anisotropy(CSA) interaction has to be taken into account. 

We first present theoretical consideration of the 17O laboratory and rotating frame relaxation and examples 
of the 2-site jump simulations (Figure 1A) in solids using the Liouvillian approach. These simulations are 
performed for an axially symmetric quadrupolar (EFG) tensor with an arbitrary value of the quadrupolar 
coupling constant of 10 MHz and the jump angle of 104.5. The theoretical description is followed by the 
experimental section of the relaxation rates and line shapes measurements in the powder-state of NaNO3. 
The geometry of the EFG and CSA tensors in NaNO3, the notation for the tensor components as well as 
their values as determined in reference [9], are illustrated in Figure 1B. 

To our knowledge, 17O  𝑇1𝜌 relaxation times measurements have not yet been implemented to studies of 
molecular dynamics in solids, and we present in detail experimental and simulations approaches for this 
technique.  The simulations protocol to generate 17O NMR laboratory and rotating frame relaxation rates 
for solids undergoing stochastic jumps is presented and is generalizable in principle to any type of molecular 
motions in the solid state. Experimental  𝑇1𝜌, 𝑇1, and 𝑇2 times as well as the line shape data are obtained in 
280 to 195 K temperature range, and the rate constants of 3-fold jumps are obtained for all series.   We then 
obtain the Arrhenius activation energy from the combined data set.
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Figure 1. A) A schematic representation of an axially symmetric quadrupolar tensor undergoing a 2-site 
conformational exchange process with the exchange constant kex. In the theory section we use the jump angle of 

104.5,  𝑉𝑧𝑧 = 𝐶𝑞 = 10 MHz  and 𝜂 = 𝑉𝑦𝑦 ― 𝑉𝑥𝑥

𝑉𝑧𝑧
= 0. B) Ball-and-stick representation of the NO3

 ion, in which the 

oxygen atoms undergo the 3-fold jumps with the rate constant kex. The quadrupolar and CSA tensor orientations in 
their corresponding principal axes systems are shown explicitly, such that their major axes are aligned and pointing 
along the N-O bond. 𝑉𝑧𝑧 = 𝐶𝑞 = 12.5 MHz, 𝜂 = 0.8, [11, 22, 33] = [250, 400, 550] ppm.

Results and Discussion

I. Theoretical and computational description of the 17O NMR relaxation in powders

Hamiltonian description for spin 5/2 system

In the presence of a static magnetic field and a radiofrequency field applied in the transverse plane the 
Hamiltonian for a single 17O nuclear spin (I = 5/2) in a frame rotating with Larmor frequency can be written 
as

𝐻 =  𝐻𝑄 + 𝐻𝑅𝐹 + 𝐻𝐶𝑆,                                                     (1)

where 𝐻𝑅𝐹 = 𝜔𝑅𝐹𝐼𝑥 is the spin-locking interaction applied on-resonance and  𝐻𝐶𝑆 = 𝜔0𝜎𝑧𝑧𝐼𝑧 is the chemical 
shift interaction. The circular part of the quadrupolar interaction tensor  𝐻𝑄 includes the first and second 
order terms in the average Hamiltonian perturbation theory

𝐻𝑄 = 𝐻𝑄,1 + 𝐻𝑄,2,                                                          (2)

with the following definitions, using the notation and the choice of tensor definitions given in[21]. 

𝐻𝑄,1 =
𝑒𝑄

𝐼(2𝐼 ― 1)ℏ
3
8
[𝐼2

𝑧 ― 𝐼(𝐼 + 1)/3]𝑉0                              (3)
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𝐻𝑄,2 =
1

𝜔0
( 𝑒𝑄
𝐼(2𝐼 ― 1)ℏ)2

𝐼𝑧([𝐼2
𝑧 ― 𝐼(𝐼 + 1)/2 + 1/8]𝑉1𝑉―1 + [𝐼2

𝑧 ― 𝐼(𝐼 + 1) + 1/2]𝑉2𝑉―2/4)

𝜔0 is the Larmor frequency and 𝑉𝑖 are the spherical components of the EFG tensor. The EFG tensor is 
defined in its principal axis system (PAS) as

(𝑉2,𝑉1,𝑉0,𝑉―1,𝑉―2)𝑃𝐴𝑆 = 𝑒𝑞( 1 2 ,0, 3 2,0, 1 2 )

and then transformed to the laboratory frame by Wigner matrices. The overall strength of the first order 

quadrupolar interaction is given by the quadrupolar constant 𝐶𝑞 = 𝑒2𝑞𝑄
ℏ

 and, for a particular orientation of 
the EFG tensor in the laboratory frame, by

 𝜔𝑞 = 3
4

2𝜋𝐶𝑞

𝐼(2𝐼 ― 1)[3cos2𝜃 ― 1
2

+ 𝜂
2

sin2𝜃 cos 2𝜑], 
where 𝜃 and 𝜑 are azimuthal and polar angles of the transformations respectively.[13]

Inclusion of the exchange matrix and simulations for large-angle 2-site jumps motions

The coherent spin evolution described by the Hamiltonian of Eq. (1) can be represented in the form of a 
system of linear differential equations acting on the density matrix  of spin I. The matrix of such a system 
is the Liouville operator, L. The changing magnetic environment of a spin can be described by the exchange 
between different orientations of EFG and CSA tensors. They correspond to different orientations of a given 
molecule within the laboratory frame. Therefore, the spin state of the system can be described by a direct 
product of density matrices for individual spin states and vectors describing the exchanging molecular 
orientations. The exchange between different orientations can be represented by a Markovian exchange 
matrix. We thus arrive at the general form of the Liouville – von Neumann equation for the combined 
density matrix

𝑑𝜌𝑖,𝑚

𝑑𝑡
= 𝑖𝐿(𝑚)

𝑖𝑗 𝜌𝑗,𝑚 + 𝐾𝑚𝑛𝜌𝑖,𝑛                                           (4)

where the indices i and j refer to the spin degrees of freedom and m and n to the orientational (spatial) 
degrees of freedom. The Markov exchange process leads to relaxation. Relaxation included in Eq. (4) are 
only due to the fluctuations of the secular terms included in the Hamiltonians of Eqs. (2) and (3). The 
relaxation from terms fluctuating with Larmor and double Larmor frequency will be calculated in the 
Redfield theory limit[13] and included explicitly into Eq. (4),[22] modifying it to

𝑑𝜌𝑖,𝑚

𝑑𝑡
= 𝑖𝐿(𝑚)

𝑖𝑗 𝜌𝑗,𝑚 + 𝐾𝑚𝑛𝜌𝑖,𝑛 ― 𝑅𝑖𝑗(𝜌𝑗,𝑚 ― 𝜌0
𝑗,𝑚)                    (5)

where 𝜌0
𝑗,𝑚 indicates the equilibrium coherence.

In general, the density matrix for spin I = 5/2 can be represented in the basis of 35 basic coherences. When 
a particular coherence will be referred to, we will use the rank-order basis 𝑇𝑙

𝑝(𝑠,𝑎), [23] listed in Eq. (S1). 
Laboratory frame relaxation for half-integer quadrupolar nuclei has been considered in detail in the past 
and shown to be non-exponential in general, and in particular for powder solids.[12,13,14,24,25,26] There 
are three coherences involved in the 𝑅1 relaxation. They correspond to three possible absolute values of 
magnetic number |mz|: the central transition 𝐼𝑧(𝐶𝑇), the first satellite transition 𝐼𝑧(𝑆𝑇1), and the second 
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satellite transition 𝐼𝑧(𝑆𝑇2). The explicit expressions for these coherences in the 𝑇𝑙
𝑝(𝑠,𝑎) basis are given in 

Eq. (S3). The longitudinal relaxation processes cause interconversions between these three coherences, 
creating non-exponential magnetization recovery/build-up curves. For the transverse magnetization with 
no spin-locking field applied and neglecting the CSA interaction, there are again three coherences 
corresponding to |mz|  |mz|1 transitions 𝐼𝑥(𝐶𝑇), 𝐼𝑥(𝑆𝑇1),  and 𝐼𝑥(𝑆𝑇2) defined in Eq. (S4). The relaxation 
process is non-exponential as well, due to the interconversions between these coherences.

Though inherently non-exponential, the relaxation decay and build up curves can be phenomenologically 
treated as nearly exponential in many situations. Precise characterization of nonexponentiality of the 
relaxation curves is difficult, unless there is a significant contribution from the components which differ in 
their relaxation rates by a factor of 5 or more. Because the focus of this work is not to study non-
exponentiality of the relaxation itself, but to advance the methods of extracting dynamic parameters from 
relaxation experiments, we fit both experimental and simulated relaxation build up and decay curves with 
a monoexponential function with a baseline, 𝑀(𝑡) = 𝑀0𝑒―𝑡/𝑇 +𝐵. The baseline effectively removes 
contributions of very slowly relaxing components, while 𝑇 gives a good approximation to the values of 𝑇1, 
𝑇2, and 𝑇1𝜌 for the respective experiments. This approximation should not lead to a bias in the fitted 
exchange rates when relaxation delay times used in simulations and experiments are chosen to be the same. 

Rotating frame relaxation 

Relaxation of the transverse magnetization in the presence of a spin-lock field is less discussed in the 
literature and we will focus on it below. We will then compare its key features to the 𝑅1 and 𝑅2 experiments. 
We will first consider the coherent evolution of the density operator in the absence of any exchange or any 
other sources of relaxation. As the initial condition we take 𝜌(0) corresponding to the single quantum 

transverse magnetization and select the spin-locking RF field strength in the interval 
1

𝜔0( 2𝜋𝐶𝑞

𝐼(2𝐼 ― 1))2
≪ 𝜔𝑅𝐹

≪ 2𝜋𝐶𝑞

𝐼(2𝐼 ― 1)  , such that only the central transition is effectively locked for the majority of the orientations, 
aside from the case when the polar angle 𝜃 matches the magic angle at which the first order quadrupolar 
interaction vanishes. This is the special case of a more general RF field range considered for the coherent 
evolution under spin-lock by Wimperis et al.[16]. The quadrupolar interaction induces mixing of the initial 
𝐼𝑥(𝐶𝑇) coherence with other basis coherences, including those corresponding to the satellite transitions. 
The locking efficiency is orientation-dependent because of the variations in the strengths of the first and 
second order quadrupolar interactions.  

Out of the 35 coherences, 20 symmetric coherences (Eq S2) are involved in the evolution during the spin-
lock period when the initial coherence is 𝐼𝑥(𝐶𝑇), for the case of the on-resonance spin-locking field and no 
CSA contribution. Out of these, 5 combinations form eigenvectors of the evolution operator with zero 
eigenvalue, i.e, these are the “locked” eigenvectors. The exact form of this space of locked coherences in 
terms of the individual basis coherences depends on the Larmor frequency, the RF field strength, the 
quadrupolar tensor parameters, as well as on crystallite orientations. In general, there appears to be no easily 
recognizable pattern among them, unlike in the cases of 𝑅1 and 𝑅2 relaxation.  Supporting Information SI 
1 provides several illustrative examples.

Figure 2A shows the projection coefficient of single quantum coherence 𝐼𝑥(𝐶𝑇)  on the subspace of locked 
coherences versus the quadrupolar frequency 𝜔𝑞 for a selected set of parameters (an axially symmetric EFG 
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tensor with  𝐶𝑞 = 10 MHz, 𝜂 = 0, 𝜔0 2𝜋 = 54.2 MHz, 𝜔𝑅𝐹 2𝜋 = 35 kHz) in the absence of motions at t 
= . We also show individual calculations when only the first order or the second order quadrupolar 
interactions are taken into account. Note that the second order interaction (Q2), which is proportional to 
𝜔2

𝑞 𝜔0, reduces the locking efficiency, as noted by Wimperis 2009. [16] Figure 2B shows three other time 
points in the 10 to 80 s range to demonstrate the time-dependence of coherent oscillations due to the 
oscillatory component of 𝐼𝑥(𝐶𝑇) arising as the result of interconversions between other elements of the 
basis (a total of 20 coherences listed in Eq. S2). Figure S1 shows full time-dependent curves for selected 
crystallite orientations. 

In the absence of motions, the locking efficiency for the case of Figure 2A ranges from about 30% for small 
𝜔𝑞 values and reaches up to 100% for large values of 𝜔𝑞. The low efficiency for small values of 𝜔𝑞 is 
governed by dephasing due to Q2 term, which is the dominant term for small values of 𝜔𝑞. On the other 
hand, for large values of 𝜔𝑞 the Q2 interaction is less efficient than Q1, which induces locking of non-𝐼𝑥 
coherences during the spin-lock period.  

Figure 2C shows an analogous situation in the presence of large-angle 2-site jumps with equal populations, 
the jump angle of 104.5o and the rate constant of  1 ∙ 105 𝑠―1. In the presence of motions, the results are 
shown for the time points 0.082 and 2.2 ms, corresponding to the apparent bi-exponential fit of the simulated 
magnetization decay curve (averaged over the powder pattern and shown in Figure S2). The x-axis 
represents the value of 𝜔𝑞 for one of the two exchanging site orientations, while the values of time-evolved 
𝐼𝑥(𝐶𝑇) coherence shown on the vertical axis are averaged over all possible orientations of the second site. 
Crystallites orientation with values of 𝜔𝑞 within the ±20 kHz range were averaged, in order to decrease 
scatter in the data.  Aside from the overall loss of intensity due to relaxation, one can observe a clear 
broadening of the pattern (Figure 2C blue and red lines, shown for 𝑘𝑒𝑥 = 1 ∙ 105 𝑠―1) compared to the one 
in the absence of motion (black line), indicative of mixing of the crystallite orientation due to motions. To 
probe the effect of 𝑘𝑒𝑥 magnitude on this pattern (Figure 2D), we select the snapshots of the projected 𝐼𝑥

(𝐶𝑇)  approximately corresponding to the value of 𝑇1𝜌 taken from the fast component (i.e., the initial decay) 
of magnetization decay curves. The patterns are normalized to the maximum of each curve, which visually 
de-emphasizes the effect of the reduction in the projected 𝐼𝑥(𝐶𝑇) intensity and displays the distortions in 
the overall patterns. In the 𝑘𝑒𝑥 range of 102 to 106 𝑠―1 the patterns are similar, but in the range between 
107 to 1010 𝑠―1 the broadening becomes even more pronounced, such as the distinctions between different 
crystallites orientation are further blurred. This indicates an intermediate to fast motional regime. One 
notable exception is the case when one of the exchanging orientations is parallel to the magnetic field (high 
𝜔𝑞 limit), for which the distinction remains. 

To further define the intermediate regime, we examine rotating frame relaxation rates 𝑅1𝜌 as a function of 
𝑘𝑒𝑥 for two selected initial crystallite orientations, 0 and 90 o with respect to the magnetic field (Figure 3). 
The orientations of the exchanging sites, constrained by the 104.5o jump angle, are averaged in the 𝑅1𝜌 rate 
calculations. A single exponential fit is assumed for this analysis. The 𝑅1𝜌 versus 𝑘𝑒𝑥 pattern has two 
maxima, the positions of which are determined roughly by the conditions 𝑘𝑒𝑥 = 𝜔𝑞 and 𝑘𝑒𝑥 = 𝜔0. Thus, the 
intermediate motional regime in this case is qualitatively given by the range 𝜔𝑞 < 𝑘𝑒𝑥 < 𝜔0. The 
dependence on 𝜔0 is considered in more detail in Figure S3, in which we calculate 𝑅1𝜌 rates for three 
crystallite orientations for 9.4 T and 5∙9.4 T static magnetic field strength. The field-dependence is most 
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pronounced in the intermediate regime and is also evident in the slow regime. The extent of field 
dependence varies with the crystallite orientation. 

 
Figure 2. Simulated transverse magnetization 𝐼𝑥(𝐶𝑇), corresponding to the central transition of 17O spin-5/2 system 
with an axially symmetric EFG tensor with Cq= 10 MHz under the spin-lock field of 35 kHz and 9.4 T magnetic field, 
as a function of orientation-dependent frequency 𝜔𝑞 under static(non-spinning) conditions. A) The locked component 
in the absence of motions for both the first and second order quadrupolar interactions Q1+Q2 (solid line), or the first 
order quadrupolar interaction only (dashed line), or the second order quadrupolar interaction only (dotted line). B) 
After coherent evolution under the full quadrupolar interaction, with the evolution times shown directly on the panel. 
The black line corresponds to the locked component. C) Including 2-site jumps of the EFG tensor principal axis, using  
𝑘𝑒𝑥 = 105 s―1 and the jump angle of 104.5o, averaged over the azimuthal angle of the second site. Shown for evolution 
times corresponding to fast (0.082 ms) and slow (2.2 ms) relaxation times of the magnetization decay curve, and 
averaged over crystallite orientations. The black line corresponds to the locked component of the coherent evolution.  
D) Including the 2-site jumps as in C) for the 𝑘𝑒𝑥 and evolution times values shown on the panel. The normalization 
is performed to the maximum value of 〈𝐼𝑥(𝐶𝑇)〉 for each individual curve. The evolution times   are chosen to 
approximate T1 times, using the single-exponential fits of the powder-averaged magnetization decay curves.  For 
panels B)-D) the values of 𝐼𝑥(𝐶𝑇), excluding the locked coherent lines, are averaged over the ± 20 kHz intervals 
around the values 𝜔𝑞 shown on the x-axes, to increase smoothness. Simulations are based on 17711 crystallite 
orientations. 

Similar results are obtained when averaging over the entire powder pattern is considered and are shown in 
Figure 3B for 𝐶𝑞 = 10 MHz. In the slow motional regime the field-dependence can be quenched for small 
𝐶𝑞 values. Figure S4 demonstrates these results for 𝐶𝑞 = 1 MHz and 𝜔𝑅𝐹 2𝜋 = 3.5 kHz, with the conditions 
for the RF field amplitude chosen in such a way as to keep the extent of locking constant.    

In the slow limit, the 𝑅1𝜌 relaxation rate is governed by the difference in the percentage of locked 𝐼𝑥(𝐶𝑇) 
for the exchanging orientations multiplied by 𝑘𝑒𝑥. When the time scale of the exchange is slower than the 
rate of coherent oscillations (shown in Figure S1), the jump from one orientation of another can lead to loss 
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of intensity of  𝐼𝑥(𝐶𝑇). In analogy to Figure 2A, Figure S5 shows locked 𝐼𝑥(𝐶𝑇) coherence in the absence 
of motions for 𝐶𝑞 values of 10 and 1 MHz at 𝜔0 2𝜋 = 54.2 MHz and 5 ∙ 54.2 MHz. For the case with  𝐶𝑞

= 10 MHz we observe that, due to the decrease in the Q2 term for the higher magnetic field strength, the 
percentage of the transverse magnetization in the locked coherences is increased and the overall profile is 
narrowed. On the other hand, for 𝐶𝑞 = 1 MHz, the Q2 term is sufficiently reduced for both values of the 
magnetic field strength, such that the profiles at the two fields almost overlap and, thus, lead to the absence 
of field dependence for the 𝑅1𝜌 rate in the slow limit for these conditions.

Figure 3. Simulated 𝑅1𝜌, 𝑅1  and 𝑅2 NMR relaxation rates corresponding to the central transition of 17O spin-5/2 
system with an axially symmetric EFG tensor with Cq= 10 MHz under the spin-lock field of 35 kHz, as a function of 
kex and using the model of the 2-site jumps with the 104.5o jump angle, and under static conditions. A) 𝑅1𝜌 rates for 
crystallite orientations with the initial principal axis of the quadrupolar tensor aligned either at 0o (black line) or 90o 

(red line) relative to the static magnetic field of 9.4 T. The vertical solid lines show the values of 
2𝜋 𝐶𝑞

𝐼(2𝐼 ― 1) (green line) 
or the Larmor frequency 𝜔0 (blue line). B) Powder-averaged 𝑅1𝜌 rates at two values of the magnetic field strengths, 
9.4 (solid line) and 5·9.4 T (dashed line). The additional vertical dashed line stands for the Larmor frequency at 5·9.4T. 
C) Powder-averaged 𝑅1𝜌 (black line), R1 (blue line) and 𝑅2(magenta line) rates at 9.4 T magnetic field strength. The 

additional orange vertical line corresponds to 
1

𝜔0
( 2𝜋𝐶𝑞

𝐼(2𝐼 ― 1))2
.    The single exponential approximation was used for all 

fits of the relaxation rates, which are shown on log scale. 610 crystallite orientations were employed in simulations of 
the powder-averaged values. The initial conditions are: CT with saturated ST1 and ST2 for 𝑅1𝜌 and 𝑅2; inversion of 
CT only for 𝑅1 with ST1 and ST2 at equilibrium.
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In the fast exchange limit, all three relaxation measurements, 𝑅2, 𝑅1, and 𝑅1𝜌 provide essentially the same 
information as 𝑅1𝜌 (Figure 3C, 𝐶𝑞 = 10 MHz). However, in the intermediate and slow regimes the behavior 
of these rates can be different. The behavior of 𝑅1 is most straightforward and is always dominated by the 
first order quadrupolar interaction. The 𝑅1𝜌 relaxation  undergoes the transition from  slow to intermediate 

regime when the exchange rate is on the order of 
2𝜋𝐶𝑞

𝐼(2𝐼 ― 1), while for the  𝑅2 rate it is the second order 

quadrupolar coupling 
1

𝜔0( 2𝜋𝐶𝑞

𝐼(2𝐼 ― 1))2
 which sets the characteristic scale for the slow to intermediate transition. 

In the slow limit the values of 𝑅2 are much larger compared to 𝑅1𝜌. Maybe more significantly, because the 
changes of the relaxation rates in the intermediate regime tend to be less dramatically dependent on the 
exchange rate than in the slow regime and for 𝑅2 experiment the intermediate region persists to lower 

valuesof 𝑘𝑒𝑥, the 𝑅1𝜌 experiment can be more sensitive to the exchange rates in the range given by 
1

𝜔0

( 2𝜋𝐶𝑞

𝐼(2𝐼 ― 1))2
< 𝑘𝑒𝑥 < 2𝜋𝐶𝑞

𝐼(2𝐼 ― 1).   The main distinction in the field dependence of 𝑅2 rate, as compared with the 

𝑅1𝜌 and 𝑅1 rates, is the absence of the field dependence in the slow motional regime (Figure S6). 

Role of initial conditions 

Due to the non-exponential nature of the quadrupolar relaxation, the effect of the initial conditions should 
be considered, as noted in a number of prior works.[12,14,26,27] The apparent 17O CT longitudinal 
relaxation rates can vary by a factor of 12 for the 2-site jumps model (Figure 4A). For the CT 𝑅1 relaxation 
the cleanest measurement appears to be the inversion recovery with both ST are at equilibrium, provided 
that the inversion pulse does not invert ST1. Saturation recovery measurements are more prone to pulse 
bandwidth consideration, which is further discussed in the experimental section. Methods based on multiple 
quantum coherences have also been employed to address the non-exponentiality of the longitudinal 
relaxation.[26]  In contrast, 17O CT 𝑅2  rates do not depend on whether the initial conditions for ST is in 
the saturated or equilibrium sate.   However, if ST is in the transverse plan, the R2 rate is somewhat modified 
in intermediate regime, but the maximum changes in the rate do not exceed 2.5% for the 2-site jumps model, 
even when the refocusing pulse acting on the ST coherences is explicitly included, in addition to the CT 
refocusing pulse. 

The situation is somewhat more complex for the CT 𝑅1𝜌 rates. In quadrupolar spin-locking measurements, 
it is common practice to phase-cycle the preparation and receiver pulses by simultaneously inverting the 
phases of the excitation pulse and receiver by 180o while keeping the phase of the spin-lock field unchanged, 
as suggested by Vega and co-workers,[28] to ensure that any additional contributions to the transverse CT 
magnetization generated during the spin-lock period are eliminated. Otherwise, the longitudinal CT 
magnetization is created during the spin-lock period itself, which then evolves into the detectable transverse 
CT magnetization due to the second order quadrupolar interaction. In general, it creates a non-zero 
equilibrium transverse CT magnetization in the presence of the spin-locking field. Note, that an appreciable 
equilibrium population of the CT arises only in a very specific scenario in which 𝑇1 time is on the order of 
the 𝑇1𝜌 time and if it is not eliminated by the phase cycle described above. If the phase cycle is not 
employed, CT 𝑅1𝜌 rates can be sensitive to whether the ST states are in equilibrium or saturated, when the 
motions are in the intermediate regime (Figure S7). If the ST state(s) are in the transverse plane, the phase 
cycle is not effective in removing their contributions. In this respect the excitation pulse bandwidth 
consideration can come into play as well. The maximum changes in 𝑅1𝜌 rates in the intermediate regime 

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=4944103

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

wed



10

are on the order of 30% for the 2-site jumps model.  The effect of   ST1 coherence on the  𝑅1𝜌  rate is larger 
than on the 𝑅2 rate, as the combination of the second order quadrupolar interaction and the spin-locking RF 
field inter-converts CT and ST1 coherences. The analogous contributions from ST2 are minor and similar 
in magnitude between the 𝑅1𝜌 and 𝑅2 rates.

 

Figure 4. Effect of the initial conditions on the 17O NMR relaxation rates under the 2-site jump model with 104.5 
angle. An axially symmetric EFG tensor with Cq = 10 MHz was used and magnetic field of 9.4 T.  Relaxation rates on 
the log scale versus kex. A) 𝑅1  rates of CT coherences in two versions of experiments: inversion recovery (blue lines) 
and saturation recovery (red lines) and three types of initial conditions: no saturation of satellite coherences (solid 
line), saturation of ST1 coherence (dashed lines), and saturation of both ST1 and ST2 coherences (dash-dot line). Solid 
blue line represents both the IR and SR versions with no saturation of satellite coherences, as these rates coincide.   B) 
𝑅1𝜌 rates simulated with alternating the phase of the spin-locking field, which removes the contributions from the 
equilibrium populations of CT and ST. The initial conditions of the excited transverse coherences are: CT only (blue 
line), CT and ST1 (red line). The spin-lock field strength was 35 kHz.  The single exponential approximation was 
used for all fits of the relaxation rates.  610 crystallite orientations of the static powder were employed.  

II. Experimental implementation of 17O NMR relaxation times measurements

In the weak field limit when 𝜔𝑅𝐹 ≪ 2𝜋𝐶𝑞

𝐼(2𝐼 ― 1), the central transition nutates with the frequency of 3𝜔𝑅𝐹.[29] 

Thus, the maximum excitation is achieved with the 30 pulse,[16,29] while the inversion or refocusing can 
be accomplished with the 60 pulse. If a pure excitation of the CT transition is desired, the excitation pulse 
has to be selective enough to exclude all crystallites of the first satellite transition. The pulse bandwidth can 
be estimated by the expression 2.8/𝜋𝜏𝑝, where p is the pulse length.[12]  A saturated state of the  ST1 can 
be achieved using selective off-resonance irradiation centered at the ST1. We used the sequence consisting 
of 10 pairs of Gaussian pulses with alternating positive and negative offsets (10 s duration for a pair of 
Gaussian pulses with ±300 kHz offset), spaced at 1 s intervals (Figure 5). This sequence, referred to as 
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“RAPT”, [30]  was optimized for the saturation of ST and enhancement of the CT in the presence of MAS 
but can also be employed in the case of static solids. The method is an extension of the earlier work  by 
Haase et al.[27] on manipulation of population transfers in quadrupolar nuclei of static solids using 
frequency swept RF fields. 

The detection scheme for the wide powder pattern of 17O nuclei with the relatively low value of the 
gyromagnetic ratio needs to consider minimization of acoustical ringing effects. This can be achieved either 
by the traditional Hahn echo scheme, [31] or the recently developed TRIP sequence, [32] consisting of three 
phase-cycled 30 pulses. The former scheme decreases signal intensity due to T2 losses.  

The CT line shapes were collected using the Hahn echo pulse sequence (p    2·p  ) with the echo 
delay  = 25 s and p = 2 s at 41.7 kHz RF field, yielding 450 kHz excitation bandwidth. The spectral 
window was 400 kHz at temperatures above 245 K and 800 kHz at 235 K and below. The partial excitation 
of the ST1 enters into the line shapes as a raised baseline.

At several temperatures the line shapes were also taken with the TRIP pulse sequence and inclusion of the 
RAPT block. The CT line shapes collected with the TRIP scheme were similar in shape to those obtained 
with the echo collection method at higher temperatures up to about 215 K.  However, at lower temperatures 
(Figure S8), the TRIP resulted in a distorted line shape due to the receiver deadtime, which was 
compensated in the refocusing delay in the echo method. Thus, for consistency all line shapes presented in 
Figure 6 are those collected with the Hahn echo scheme.

As elaborated in the “Theoretical and computational description of the 17O NMR relaxation in powders” 
section and in Figure 4, the choice of initial conditions in general affects the resulting relaxation times. The 
RAPT block preceding excitation of the transverse coherence helps in establishing a purer CT excitation, 
with less dependence on the excitation bandwidth. For the longitudinal coherence, the inversion recovery 
sequence without pre-saturation of ST1 is expected to yield the most accurate relaxation times 
measurements, which are least dependent on the extent of inversion and pre-saturation of ST1. In the slow 
motional regime, it is also expected to yield the shortest 𝑇1 values. We, thus, choose it as our main approach 
for the temperature-dependence collection of 𝑇1 times. At selected temperature points we also conduct a 
version of the 𝑇1 saturation recovery measurements for  𝑇1 times measurements to probe the theoretical 
expectations in regard to the dependence of the relaxation times on the initial conditions.  Pulse imperfection 
and bandwidth consideration can also be included directly into the simulations routine when needed.

T2 relaxation times were measured with the Hahn echo pulse sequence preceded by the RAPT block 
(RAPTpD/22·p D) with p = 2 s (corresponding to 30 pulse at 41.7 kHz RF field) and a variable 
relaxation delay D.  𝑇1 times across the entire temperature range were obtained using the inversion recovery 
scheme (2·p  D  detect) with p = 2 s as above. The detection scheme was chosen as TRIP to avoid T2-
related intensity losses. The measurements were repeated at two low temperatures with the echo detection 
scheme to confirm the results.   

Rotating frame relaxation must involve a spin-locking field of sufficient strength to lock the desired 
interaction. For the central transition of the 17O nuclei the most efficient locking is expected for the spin-
locking field strength of about 30 kHz (Figure S9, shown for 14.1 T, Cq =12.5 MHz and  = 0.8). The 
locking efficiency is diminished for smaller values of the spin-locking field strengths below about 15 kHz, 
for which the second order quadrupolar interaction provides an effective exchange with coherences other 
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than transverse magnetization. The locking efficiency then becomes optimal in the 25 to 60 kHz range, and 
slowly diminishes for much higher spin-locking fields due to introduction of non-central transitions into 
the locked transverse coherence.  We employed spin-lock field strength of 35 kHz, applied “on-resonance”, 
approximately in the middle of the CT line at 283 ppm for all temperatures. The phase cycle of Vega and 
coworkers was employed,[28] implemented by alternating the phases of the excitation pulse and the 
receiver simultaneously by 180. Another potential modification of the 𝑇1𝜌 experiment can include the heat 
compensation block to account for the differences in RF-induced heating as a function of the variable 
relaxation delay.[33] In the case of NaNO3 it was not needed, but can become important if the method is 
applied to hydrated and/or biological samples. The main pulse sequence employed for the collection of the 
temperature-dependence 𝑇1𝜌 times is shown in Figure 5. It involves saturation of ST1 for the suppression 
of the residual ST1 transverse magnetization using the RAPT block, and p = 2 s excitation pulse at 41.7 
kHz RF field. The omission of the RAPT block is expected to have an effect only in the intermediate 
motional regimes (refer to Figure 4B in the “Theoretical and computational description of the 17O NMR 
relaxation in powders” section). The detection immediately preceded the spin-lock period except for the 
lowest temperature, in which significant spectral distortions necessitated the use of the echo detection 
scheme.  At several temperatures we also measured  𝑇1𝜌 times without the saturation of ST1, in which case 
the RAPT block was omitted, and a more selective excitation was achieved with p = 5 s excitation pulse 
at 16.7 kHz RF field.

Figure 5.  The pulse sequence for measurements of 17O NMR CT 𝑇1𝜌 relaxation times: after the inter-scan delay d1, 
the (optional) RAPT suppression of satellite transitions consisting of loops of off-resonance Gaussian pulses[30] 
applied at the offsets of ±300 kHz is employed, followed by the 30o excitation pulse (2 s at 41.7 kHz), and then by 
the spin-lock period of the variable delay SL(D), applied at the center of the spectrum (on-resonance) with the RF 
field amplitude of 35 kHz. The FID collection immediately proceeds the spin-lock period. The phase cycle of Vega et 
al. is employed. [28]

III. Relaxation times and line shapes in the 280 to 195 K temperature range.

The relaxation times and line shapes (Figures 6-8) were measured in the 280 to 195 K temperature range at 
14.1 T. The limits of the range were defined by the limits of feasibility of the 𝑇1𝜌 magnitudes measurement. 
𝑇1𝜌 times lie between 9 s and 5.5 ms in this temperature range. Above 280 K 𝑇1𝜌 relaxation times are 
expected to be too short to be measured reliably, and below 195 K they are expected to be too long and 
would require relaxation delay times beyond the RF limit of the probe, which was about 20-25 ms on our 
probe for the spin-lock field of 35 kHz.  The single-exponential approximation was adequate to fit all of 
magnetization decay/build up curves.   The fit utilized the version with the baseline, 𝑀(𝑡) = 𝑀0𝑒―𝑡/𝑇1𝜌 + 𝐵. 
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The presence of baseline is due to inherently non-exponential nature of relaxation in solid state, as 
elaborated in the “Theoretical and computational description of the 17O NMR relaxation in powders” 
section.  Contributions from the orientations for which the decay is very slow cannot be reliably included 
in the overall single exponential decay fit, but could manifest themselves as a baseline. These contributions 
didn’t exceed 10%.  The resulting relaxation times are shown in Figure 8.  

The temperature dependence of 𝑇1 clearly shows that it is in the slow regime with respect to the Larmor 
frequency, while the inflection in the temperature dependence of 𝑇1𝜌 indicates the slow regime approaching 

the intermediate regime, as defined by 
2𝜋𝐶𝑞

𝐼(2𝐼 ― 1) = 7.9 ∙ 106 s―1. Non-monotonic temperature dependence of 
𝑇2 times with temperature indicates that the motions span slow and intermediate regimes. The lower limit 

of the intermediate regime for the 𝑇2 experiment is defined by 
1

𝜔0
( 2𝜋𝐶𝑞

𝐼(2𝐼 ― 1))2
= 1.2 ∙ 105 s―1.

To check the effect of carrier position on 𝑇1𝜌 times we have performed additional measurements at 205 K 
and 245 K with the carrier position shifted by 421 ppm downfield (centered on the left peak), as compared 
to the main series taken with the carrier placed at 283 ppm. There was no difference in the resulting  𝑇1𝜌 
times within experimental errors.  

To probe the dependence of 𝑇1 times on the initial conditions, we have also performed the saturation 
recovery version of the measurements for 265, 225, 205, and 195 K utilizing the RAPT block and a loop of 
30 pulses (2 s at 41.47 kHz RF field strength) as the saturation components. The combination of the 
RAPT block and the relatively wide bandwidth pulse of 2 s (corresponding to the bandwidth of 445 kHz) 
is aimed to maximize the saturation of both ST1 and CT. Based on the 3-site jump model, the expected 
theoretical factor in the increase of  𝑇1 times between the inversion recovery of the CT and the saturation 
recovery is 3.4 in the slow limit, while the experimental factor is 2.8-3.1 for all cases. The most likely cause 
of the discrepancy is incomplete saturation of ST1 in the experiment. Nonetheless, the measurements 
clearly demonstrate the importance of taking into account the initial conditions for the 𝑇1 times 
measurements. For 𝑇1𝜌 measurements in the slow regime and at the approach to the intermediate regime 
we do not expect difference between 𝑇1𝜌 times with and without ST1 saturation when the phase cycle of 
Vega and coworkers [28] is employed (Figure 4B).  To check whether this holds for the experimental data 
we have performed a different version of the 𝑇1𝜌 measurements at 280, 225, and 205 K, during which we 
omitted the RAPT block and employed a more selective excitation with p = 5 s excitation pulse at 16.7 
kHz RF field. No difference in 𝑇1𝜌 times was detected within the experimental errors.
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Figure 6. Normalized experimental (left) and simulated (right) 17O line shapes of NaNO3 at 14.1 T under static 
conditions. The Hahn echo detection scheme with the 25 s delay was used. Simulations included explicit 3-fold 
jumps of the NO3

 group using the tensor parameters described in the text and demonstrated in Figure 1. 
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Figure 7. Examples of magnetization decay and build up curves 𝑀(𝑡) for the 17O  𝑇1 (first row), 𝑇2 (second row) and 
𝑇1𝜌 (third row) relaxation times of NaNO3 at 14.1 T. 𝑀(𝑡) in arbitrary units versus the relaxation time t. The 
temperatures are shown directly on the panels. The monoexponential fits to 𝑀(𝑡) = 𝑀0𝑒―𝑡/𝑇1𝜌 +𝐵 are shown as lines.  

 

Figure 8. Semilog plots of the 17O NMR relaxation times 𝑇1 (blue circles), 𝑇1𝜌 (black circles) at 35 kHz spin-locking 
field, 𝑇2 (magenta triangles) versus 1000/T collected for NaNO3 at 14.4 T using the single-exponential fits. The 
experimental schemes are the following: 𝑇1- inversion recovery of CT line with 4 s pulse at 41.7 kHz RF, 𝑇1𝜌 -  using 
of the pulse sequence of Figure 5, the spin-lock field of 35 kHz, presaturation of ST1, and 2 s excitation pulse at 41.7 
kHz RF,  𝑇2 Hahn echo with the presaturation of ST1 and and 2 s excitation pulse at 41.7 kHz RF. 
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IV. Comparison of the rate constants obtained from 17O relaxation and line shapes measurements

We used the quadrupolar and CSA tensor parameters reported in Hung et al.[9],  𝐶𝑞 = 12.5 MHz, 𝜂 = 0.8 
for the EFG tensor and [11, 22, 33] = [250 400 550] ppm for the CSA tensor, with relative orientation [0, 
90o, 90o] of the two PAS frames.  The definition of the tensor components and their relative orientations 
are shown in Figure 1. Homonuclear dipolar couplings between 17O nuclei are ignored due to the much 
smaller 17O-17O dipolar coupling constant (on the order of 60 Hz for a pair of intramolecular oxygens in 
NaNO3). Additionally, the degree of 17O isotopic incorporation was measured by Beewerth et al. using the 
same preparation protocol to be 4.5%, [20] thus rendering intra-molecular 17O-17O coupling a low 
occurrence.

The line shapes are consistent with the previously determined tensor parameters and yield the values of kex 
shown in Figure 9 and the temperature-dependent isotropic chemical shift in Figure S10. There is no perfect 
fit of all features between the experiment and the simulations, probably due to effect of experimental 
imperfections such as excitation bandwidth consideration,[20] etc. In general, the sensitivity of line shapes 
to the value of kex appears to be lower than the ones resulting from the relaxation rates, and we state the 
values corresponding to the best visual comparison without the estimate of error bars. 

The fits of kex values to the experimental relaxation rates were performed using simulations procedure stated 
in the Materials and Methods section, taking care to use simulated values of relaxations delay times D 
identical to those in the experiment to avoid skewing the simulated data due to the inherent non-
exponentiality of relaxation. Due to non-monotonic dependence of 𝑇2 on kex in the experimental region, the 
fits of 𝑇2 times were constrained to yield kex values that decrease with temperature. For two temperatures, 
this was not enough to resolve the ambiguity of the fitted kex values, and it had to be resolved on the basis 
of the values obtained from the 𝑇1 and 𝑇1𝜌 fits. The results are demonstrated in Figure 9. The errors in the 
resulting kex values were determined by propagation of the experimental errors in the relaxation times. There 
is a good overall agreement between all fitted kex values obtained from all measurements. The values of the 
Arrhenius activation energies Ea obtained from each of the series separately (𝑇1 : Ea = 44.4 ± 0.5 kJ/mol, 𝑇1𝜌

: Ea = 47 ± 2 kJ/mol, 𝑇2 : Ea = 49 ± 3 kJ/mol, line shape: Ea = 41 ± 2 kJ/mol) are also in a reasonable 
agreement with each other as well with the value obtained from the line shape measurement by Hung at el., 
44.5 ± 2 kJ/mol, when the same temperature range of 280 to 195 K is taken for their 14.1 T data set. The 
weighted average of Ea obtained from the individual data set is 44.4 ±0.5 kJ/mol.

An additional confirmation of the results of kex values can be obtained by comparing their consistency with 
the expected results at a different value of the magnetic field. Experimental 𝑇1 and 𝑇1𝜌 relaxation times 
obtained at 18.8 T in the 265 to 200 K range (Figure S11) are in good agreement with the prediction based 
on rate constants originating from the 14.1 T relaxation times. 
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Figure 9.  Fitted values of kex versus 1000/T from all of the 17O 𝑇1, 𝑇2, 𝑇1𝜌  relaxation and line shapes measurements 
in NaNO3 at 14.1 T.  

The combined approach of using multiple 17O NMR relaxation times and line shapes allows for a better 
control of issues such as the dependence of the rates on the initial conditions, pulse bandwidth 
considerations, different sensitivity to motional regimes with respect to the Q1 and Q2 terms.  While the 
𝑇1  experiment has a single well-defined minimum centered on the Larmor frequency, it is most sensitive 
to the effect of the initial conditions across the entire dynamics range and can be thus dependent on pulse 
bandwidth considerations. The 𝑇2 experiment on the other hand is least sensitive to the initial conditions 

but has two broad minima given by 
1

𝜔0
( 2𝜋𝐶𝑞

𝐼(2𝐼 ― 1))2
 and by the Larmor frequency, which may complicate an 

unambiguous determination of the rate constants if used in isolation. The 𝑇1𝜌 experiments appears to be a 
good compromise between the minimal dependence on the initial conditions (when the appropriate phase 

cycle and RAPT scheme are used) and the widths of the intermediate regimes region, given by 
2𝜋𝐶𝑞

𝐼(2𝐼 ― 1) <
𝑘𝑒𝑥 < 𝜔0. The line shapes are very sensitive to the quadrupolar and CSA parameters, but can be less 
sensitive to the kex values, as discussed above. A possible extension of the experimental approach can 
involve the use of Gaussian pulses for enhancing the selectivity of the excitation or inversion of the central 
line.

In the case of NaNO3 the multiple measurements may appear somewhat redundant, however they 
demonstrate the application of the combined approach to more complex systems with multiple motional 
modes and unknown tensor parameters. In this case, several relaxation rates may distinguish the details of 
the multi-modal mechanisms on different time scales and provide a more precise determination of the 
corresponding rate constant and populations of conformational states.

Materials and Methods

The NaNO3 sample  in the crystalline phase was generously provided by Gang Wu  and prepared as 
described in reference [9]. 
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I. NMR measurements

The measurements were performed using the 14.1 T and 18.8 T spectrometers at Maglab, equipped with 
the static low E probe of 5 mm coil diameter.[34]  The temperature was calibrated using lead nitrate. 
Cooling was achieved with liquid nitrogen.   The number of scans varied between 8 and 32 in the relaxation 
times measurements and 32 to 128 in the line shape measurements. The inter-scan delay was 1-2 s. 4 to 8 
dummy scans were employed in the relaxation measurements. Other experimental parameters and schemes 
are stated in the Results and Discussion section.

II. Simulations

Modeling of a relaxation experiment involves setting up initial coherence, simulating the evolution during 
mixing period, and generating the detected signal in the form of free induction decay. For the line shape 
simulation the mixing period step is omitted. 

The idealized initial conditions take into account non-zero equilibrium values of the coherences unaffected 
by the preparatory pulses. For example, for the 𝑇1  inversion-recovery CT simulation the initial coherence 
is 𝜌(0) = ― 𝐼𝑧(𝐶𝑇) + 𝐼𝑧(𝑆𝑇1) + 𝐼𝑧(𝑆𝑇2), for the inversion-recovery CT with saturated ST1 it is 𝜌(0) = ―
𝐼𝑧(𝐶𝑇) + 𝐼𝑧(𝑆𝑇2), and for the saturation recovery with CT and ST1 saturated 𝜌(0) = 𝐼𝑧(𝑆𝑇2). For the 𝑇1𝜌 

and 𝑇2 simulations with only CT excitation 𝜌(0) = 𝐼𝑥(𝐶𝑇) + 𝐼𝑧(𝑆𝑇1) + 𝐼𝑧(𝑆𝑇2), etc. The equivalent of the 
phase cycling necessary for 𝑇1𝜌  simulations was implemented through alternating the sign of the RF term 
in the Liouvillian. The equilibrium magnetization was taken as 𝜌0 = 𝐼𝑧(𝐶𝑇) + 𝐼𝑧(𝑆𝑇1) + 𝐼𝑧(𝑆𝑇2) in all 
simulations.        

Evolution during the mixing period was simulated by solving the differential equations Eq. (5) by matrix 
exponentiation using the internal Matlab algorithm.[35,36] The full set of 35 spin 5/2 coherences was used 
to represent the density matrix for a single orientation, Eqs. (S1) and (S2), supplemented by an extra state 
to maintain the equilibrium magnetization. Because there are three possible orientations for NO bond in 
the NO3

- ion, the overall size of 𝜌𝑗,𝑚 vector is 108 components. The three orientations of the NO bond 
vector in a single crystallite have equal occupation numbers, which is reflected in the symmetric exchange 
matrix 

𝐾 = 𝑘𝑒𝑥( ―2 1 1
1 ―2 1
1 1 ―2).

The orientation-dependent parameters of CSA and EFG tensors were converted through a sequence of 
transformations starting with the CSA PAS frame into the EFG PAS frame to the molecular frame (with z-
axis directed perpendicular to the NO3

- plane and the NO bond orientations at 0o, 120o and 240o) and, 
finally, into the laboratory frame for individual crystallites using the corresponding Wigner matrices. The 
set up of motional frames, as well as the steps of the transformation of the tensors between different 
coordinate systems were taken from the EXPRESS program written by Vold and Hoatson.[37] 

Relaxation arising from the stochastic fluctuations of the CSA tensor and the secular parts of the EFG 
tensors is accounted for by the explicit Liouvillian term through the exchange between different NO bond 
orientations.  Non-secular CSA terms were not included due to their negligible contributions.   Relaxation 
due to non-secular quadrupolar interaction terms oscillating at the Larmor and twice Larmor frequencies 
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are included in the Redfield approximation. Following the approach of the EXPRESS program,[37] we 
calculate the relaxation matrices in the Redfield approximation entering Eq. (5) as 
 
𝑅𝑖𝑗 = 𝑅1

𝑖𝑗 + 𝑅2
𝑖𝑗  (6)

with 𝑅𝑀
𝑖𝑗 = ∑𝛼

𝑉𝑀,𝛼 𝑉∗
―𝑀,𝛼𝜆𝛼

𝜆2
𝛼 + 𝑀2𝜔2

0
𝐶𝑀

𝑖𝑗 . Here,  𝜆𝛼 are non-zero eigenvalues of the exchange matrix K, 𝑉𝑀,𝛼 are the 

projections of the components of the quadrupolar tensor on the eigenvectors corresponding to non-zero 
eigenvalues 𝜆𝛼, and 𝐶𝑀

𝑖𝑗  are commutators of the second order spherical operators corresponding to the fast-
oscillating quadrupolar interaction terms.

For the simulations of the T2 experiment, the evolution during the mixing period was split into two halves 
with the 180o refocusing pulse in between the two. Relaxation delay times used in the simulations for the 
fits of the experimental data were matched with those employed in the experiment.  
 
Following the evolution period, the detection block can be implemented explicitly: for the inversion or 
saturation recovery 𝑇1 experiment, 𝐼𝑧(𝐶𝑇) coherence was transformed into the transverse plane, while for 
the 𝑇2  and the 𝑇1𝜌  simulations no additional transformations were applied before the acquisition period. 
However, it is possible to include other detection schemes such as the Hahn echo. The inclusion of Hahn 
echo block did not change the outcomes of the simulated relaxation times or line shapes.  

The acquisition block included a single component of the 𝐼― operator corresponding to the central transition, 
with the details of the approach specified in the SI2.  This reduced the 36-component coherence vector for 
a single site in the 3-fold jumps model down to a single coherence. The size of the Liouvillian matrix is 
reduced accordingly. Nonetheless, the relaxation during the acquisition period can still be taken into 
account, including the Redfield terms in Eq. (6) in addition to the Liouvillian terms. This procedure is 
clarified and extended from the approach presented in [37]. The propagation matrix is calculated by 
exponentiation of the reduced Liouvillian matrix multiplied by the dwell time. The reduced coherence 
vector is then repeatedly multiplied by this propagation matrix. Finally, the free induction decay curve is 
obtained by adding the resulting coherences for all sites. 

The powder averaged spectra as well as magnetization decay and build up curves in the relaxation 
measurements require averaging over the crystallite orientations. The choice of the number of discreet 
orientations included in the averaging is dictated by the stability of the fitted relaxation times and jitter-free 
line shapes. We found the commonly used ZCW scheme[38,39] adequate based on our tests. For the 
relaxation times simulations, the 610-orientations grid was chosen. It yields the results differing from the 
smaller 377-orientations grid by no more than 1%. For the line shape simulations, the 17711-orientations 
grid was sufficient. The latter grid was also used to produce the orientation-dependent (rather than powder 
averaged) relaxation rates reported in the “Theoretical and computational description of the 17O NMR 
relaxation in powders” section.

Simulations of relaxation took about 3 minutes for one magnetization decay curve with 11 relaxation delays 
using the 610-orientations crystallite averaging and the 3-site jump model on Intel Core i7 2.60 GHz CPU 
with an ordinary laptop, and about 5 minutes for the 17711-orientations crystallite averaging for the line 
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shapes simulations. The calculation times can be reduced by an order of magnitude if parallel processing 
for different crystallites is used on a dedicated CPU of the same type.
 
Conclusion

This work explored the combined approach using multiple 17O CT NMR relaxation times (𝑇1𝜌, 𝑇1, and 𝑇2)  
as well as CT line shape analysis to enhance the tools for studies of molecular dynamics. Each method in 
isolation has its own limitations, broadly defined by the sensitivity to the initial conditions on one hand, the 
potential ambiguities and complex behavior around the intermediate regime on the other hand, the general 
sensitivity to the motional parameters for the relevant temperature ranges, and experimental limitations on 
the magnitudes of the relaxation times that can be measured. 

We used NaNO3 as a model compound under static (non-spinning) conditions to probe experimental 
limitations of each method in isolation. We included modelling of the relaxation experiments for an 
arbitrary system undergoing large-angle 2-site jumps to explore theoretical limitations and establish the 
modeling routines. The 𝑇1 times have a single minimum with respect to dependence on the rate constant, 
however they are the most dependent on the initial conditions. The  𝑇2 times are the least dependent on the 
initial conditions but have a rather complex dependence on the rate constant in the broad intermediate 
motional regime, which can create ambiguities if these measurements are used in isolation. The novel 𝑇1𝜌 
experiment is shown to have a minimal dependence on the initial conditions (when the appropriate phase 
cycle is employed) and a narrower width of the intermediate regime region compared with the 𝑇2 
measurements.  However, it requires the employment of the spin-locking field strong enough to lock the 
CT line, which invokes probe RF limits considerations, especially for long 𝑇1𝜌 times. The line shape 
measurements can have a limited sensitivity to the rate constant outside of the intermediate regimes but are 
the simplest to perform and model. They provide direct information about quadrupolar and CSA tensor 
parameters.

In general, the Redfield approach may not be valid across the entire range of temperatures for the 𝑅2 and 
𝑅1𝜌 relaxation rates and, thus, the numerical solutions to the Liouville – von Newman equation remains the 
most general tool.  We develop the protocols for simulations of the relaxation rates and line shapes of half-
integer quadrupolar nuclei with the explicit inclusion of the motional model into the routine.

For the model compound of NaNO3, we have implemented this numerical approach to fit the rate constants 
of the 3-fold jumps obtained on the basis of line shapes, 𝑇1 , 𝑇2, and 𝑇1𝜌 relaxation times measurements in 
the 280 to 195 K temperature range. The temperature range was governed by the limits of sensitivity for 
the 𝑇1𝜌 measurements, which is determined on the fast side by the length of the relaxation times that are 
still feasible to detect experimentally (above 8-10 s) and on the low side by limitation of the RF-induced 
probe heating, which corresponded to feasibility of measurements for  𝑇1𝜌 times  below about 10 ms in our 
case. A reasonable agreement in the resulting values of rate constants was obtained from all the 
measurements, and we discussed the complementarity of all the measurements to raise the accuracy of the 
resulting value of the activation energy. 

The combined approach is expected to be especially useful for complex systems with unknown motional 
models and tensor parameters, and the 17O  𝑇1𝜌 measurements constitute an important addition to the suite 
of the relaxation experiments in this regard. While the approach is presented here for static powders, it is 
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extendable to rotating solids, for which the evolution under magic-angle spinning should be carefully taken 
into account in simulations, and the potential for rotary resonances considered in the choice of experimental 
parameters for the 𝑇1𝜌 measurements.[40,41] Magic-angle spinning will also reduce the contributions to 
non-exponentiality related to orientation-dependent relaxation rates.
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