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ABSTRACT: We report solid-state 1H and 17O NMR results for four 17O-labeled
organic compounds each containing an extensive carboxyl-bridged hydrogen bond
(CBHB) network in the crystal lattice: tetrabutylammonium hydrogen di-[17O2]-
salicylate (1), [17O4]quinolinic acid (2), [17O4]dinicotinic acid (3), and [17O2]Gly/
[17O2]Gly·HCl cocrystal (4). The 1H isotropic chemical shifts found for protons
involved in different CBHB networks are between 8.2 and 20.5 ppm, which reflect
very different hydrogen-bonding environments. Similarly, the 17O isotropic chemical
shifts found for the carboxylate oxygen atoms in CBHB networks, spanning a large
range between 166 and 341 ppm, are also remarkably sensitive to the hydrogen-bonding environments. We introduced a simple
graphical representation in which 1H and 17O chemical shifts are displayed along the H and O atomic chains that form the CBHB
network. In such a depiction, because wavy patterns are often observed, we refer to these wavy patterns as 1H/17O chemical shift
waves. Typical patterns of 1H/17O chemical shift waves in CBHB networks are discussed. The reported 1H and 17O NMR
parameters for the CBHB network models examined in this study can serve as benchmarks to aid in spectral interpretation for CBHB
networks in proteins.

1. INTRODUCTION
In 1936, Huggins1 postulated the existence of carboxyl-bridged
hydrogen bond (CBHB) networks as possible alternative
structures to the more commonly found carboxylic acid head-
to-head (or cyclic) dimer formation. The crystal structures of
anhydrous α- and β-oxalic acids were early examples, illustrating
the difference between the two hydrogen-bonding motifs (i.e.,
CBHB network versus dimer formation).2,3 In the crystal lattice
of anhydrous α-oxalic acid, oxalic acid molecules form
hydrogen-bonded dimers in a head-to-head fashion. Because
of the bifunctionality of the oxalic acid molecule, hydrogen-
bonded dimers are further connected by tail-to-tail hydrogen
bonding to the adjacent dimers so that the oxalic acid dimers
form a continuous ribbon along the crystallographic b-axis.
Thus, the basic hydrogen-bonding motif in anhydrous α-oxalic
acid is dimer formation. For anhydrous β-oxalic acid, on the
other hand, each end of the oxalic acid molecule serves as a HB
donor in the sideways, forming a one-dimensional CBHB chain,
as illustrated in Scheme 1a. Huggins1 further mentioned the two
possible CBHB networks based on the symmetry in the O−H···
O HB (i.e., O−H···O vs O−···H+···O−). For amino acids where
both carboxyl and amino functional groups are present, the
CBHB network can also include the amino groups, as depicted
in Scheme 1c. Such CBHB networks are sometimes referred to
as catemers.4

In fact, CBHB networks are quite commonly found not only
in organic solids5 but also in proteins.6,7 In recent years, an
increasing number of ultrahigh resolution X-ray crystal
structures and neutron crystal structures of proteins have been
reported in the literature. As a result, it has become clear that the

CBHB motifs in proteins may play important roles in biological
functions. Here, we briefly show three examples to illustrate the
characteristic CBHB networks observed in proteins. First, in the
1.12 Å resolution X-ray structure of rhamnogalacturonan
acetylesterase (PDB entry 1k7c), Langkilde et al.6 observed a
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Scheme 1. Several CBHB Networks Postulated by Huggins1

for Carboxylic Acids in the Solid State
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CBHB network between the Gly72 backbone NH and the
carboxyl groups of Asp75 and Asp87; see Scheme 2a. The Gly72

is a key residue forming the oxyanion hole. The authors further
identified the 1H NMR signal at 18 ppm to be due to the proton
in the short O−H···OHB between Asp75 and Asp87. Second, in
the ultrahigh resolution X-ray structure of human transketolase
(PDB entry 4kxw), Dai et al.8 observed a putative hydrogen-
bonded proton wire linking the two active sites of the protein
dimer over a distance of about 25 Å. The entire HB network of
this proton wire consists of six glutamate groups and several
water molecules. Scheme 2b shows a portion of the CBHB
network. The thiamine cofactor is protonated by the canonical
catalytic residue, Glu366′, which is then hydrogen bonded to
Glu160 with a very short O···O distance of 2.56 Å. More
importantly, the ultrahigh resolution structure allowed the
authors to detect the key proton, which appears to be at the
midpoint between the two oxygen atoms. Glu160 is further
hydrogen bonded to a water molecule. The third example is the
combined X-ray/neutron structure of apo-trypsin (PDB entry
5mop).9 As seen in Scheme 2c, Schiebel et al.9 observed that in
the empty S1 pocket of trypsin, Asp189, Glu219, and two water
molecules form a CBHB network. In this work, the neutron
diffraction data allowed the authors to determine the proton
positions in the key water molecules. Another related example is
the debate about the detailed HB network around the catalytic
Asp 25-Asp 25′ dyad in pepstatin A/HIV-1 protease
complex.10−12

Carboxylic acid dimers have been extensively studied bymany
researchers with different spectroscopic techniques for several
decades.13−39 The main focus in the majority of these studies
was the double proton tunneling phenomenon within each
hydrogen-bonded carboxylic acid dimer. Among the various
spectroscopic techniques used so far to study this phenomenon,
solid-state NMR has been shown to be of particular
importance.40−43 While 1H is the most common NMR probe
in studies of carboxylic acid dimers, solid-state 17O NMR has
recently emerged as another powerful technique for probing
hydrogen bonding interactions.44−54 Indeed, several solid-state
17O NMR investigations of carboxylic acids have been reported
in the literature.55−68 We should note that 17O nuclear
quadrupole resonance (NQR) spectroscopy has also been

used to study carboxylic acid dimers.69−71 It is generally
appreciated that the cooperativity in an extended HB network
(such as the extended HB network in ice or the “water wires” in
proteins) may result in new spectral properties that are distinct
from those exhibited by an isolated HB. Surprisingly, despite the
fact that many of the CBHB networks are structurally
characterized both in organic solids and in proteins as
mentioned earlier, they have been rarely studied by spectro-
scopic methods. We should point out that there has been an
intense interest in the symmetry of theHB formed in acid salts of
carboxylic acids in the form of [O�C−O···H···O−C�
O]−.72−78 Clearly, as seen in Scheme 2, this particular structural
motif can be considered to be a major component of the CBHB
network. In the present work, we use solid-state 1H and 17O
NMR to study several typical CBHB networks found in organic
solids. Because the hydrogen bonding in CBHB networks is
most often of the O−H···O (or O−···H+···O−) type, the
combined use of solid-state 1H and 17O NMR should allow us
to obtain the most complete information about the NMR
spectral properties in CBHB networks. This general approach
was recently demonstrated in studies of hydrogen bonding in
1,3-diketone compounds.79,80 The CBHB networks chosen in
this study also resemble those seen in proteins. The goal of this
study is to collect fundamental 1H and 17O NMR parameters for
CBHB networks and to investigate possible spectral patterns
that can be linked to the characteristic structural features of
CBHB networks. As 17O NMR has become a direct tool for
studying proteins and ligand−enzyme complexes,81−87 informa-
tion collected for a few carefully chosen CBHB models may be
used as benchmarks for future 1H and 17O NMR studies of
CBHB networks in proteins.

2. EXPERIMENTAL DETAILS
2.1. Synthesis. Tetrabutylammonium hydrogen di-[17O2]-

salicylate (1) was prepared in the following fashion. [17O2]-
Salicylic acid was prepared with a previously reported
procedure.62 To an acetone solution (4 mL) containing 507
mg of [17O2]salicylic acid was slowly added 4 mL of 0.4 M
tetrabutylammonium hydroxide(aq) (prepared from solid
tetrabutylammonium hydroxide·30 H2O) while stirring. After
the solution was evaporated to dryness, the solids were
redissolved in 2 mL of water. After extraction with dichloro-
methane (3 × 2 mL), the organic portion was evaporated to
produce white solids of 1.
[17O4]Quinolinic acid ([17O4]pyridine-2,3-dicarboxylic acid)

(2) was prepared by base-catalyzed hydrolysis of dimethyl 2,3-
pyridinedicarboxylate. In particular, 200 mg of dimethyl 2,3-
pyridinedicarboxylate was dissolved in 3 mL of MeOH in a
pressure tube. To the solution were added 100 mg of NaOH(s)
and 200 μL of 17O-enriched H2O (40% 17O from CortecNet).
The reaction solution appeared cloudy. The pressure tube was
then left in an oil bath at 90 °C for 7 h. After the pressure tube
cooled to room temperature, small aliquots of 1 M HCl(aq)
were added gradually while stirring until the reaction solution
reached pH ∼ 2. At this point, the solution was clear. The
solution was dried with a gentle flow of the N2 gas. The solids
were briefly washed with 0.5 mL of cold H2O and dried in a
desiccator over P2O5 for 1 day (yield: 75%).
[17O4]Dinicotinic acid ([17O4]pyridine-3,5-dicarboxylic acid)

(3) was prepared in a similar way as the 17O-labeling of nicotinic
acid reported previously.65

[17O2]Gly/[17O2]Gly·HCl cocrystal (4) was prepared in the
following fashion. To a pressure tube were added 2 mL solution

Scheme 2. Three Examples of CBHB Networks Found in
Proteins: (a) 1k7c, (b) 4kxw, (c) 5mop
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of 4MHCl in dioxane, glycine (500 mg, 1 mmol), and H2
17O (1

g, 53 mmol, 40% 17O atom). The tube was placed in an oil bath
at 70 °C for 24 h with magnetic stirring. The reaction mixture
was then evaporated to dryness, resulting in [17O2]Gly·HCl
(510 mg, 95% yield). A portion of [17O2]Gly·HCl was then
converted to [17O2]Gly by passing it through a column loaded
with ion-exchange resin (poly-4-vinylpyridine). The final
[17O2]Gly/[17O2]Gly·HCl cocrystal was obtained by mixing
[17O2]Gly and [17O2]Gly·HCl in a 1:1 molar ratio and
crystallized from water.
2.2. Solid-State NMR Measurement. All solid-state 1H

NMR spectra were obtained undermagic-angle spinning (MAS)
conditions on a Bruker NEO-700 spectrometer equipped with a
Bruker 2.5 mm HX MAS probe (typical sample spinning
frequency of 30 kHz). A rotor-synchronized Hahn-echo
sequence was used for recording the 1H MAS NMR spectra to
eliminate any background signal from the probe. All 1H and 17O
chemical shifts were referenced to 1% TMS in CDCl3 and neat
D2O(liq), respectively. Solid-state 7O NMR spectra were
collected at 16.4, 18.8, and 21.1 T. At 16.4 T, a Bruker 2.5
mmHXMAS probe was used. A rotor-synchronized Hahn-echo
sequence was used for recording 17O MAS NMR spectra to
eliminate the acoustic ringing effect. The 90° pulse width for the
17O central transition was 1.0 μs. The 2D 17O triple-quantum
(3Q) MAS spectra were acquired for 2 and 3 at 18.8 T and 4 at
21.1 T, using Bruker Avance III spectrometers and Low-E 3.2
mmHXYMAS probes designed and constructed at the National
High Magnetic Field Laboratory (NHMFL, Tallahassee, FL,
USA). A shifted-echo SPAM 3QMAS pulse sequence88,89 was
used with 3Q excitation and conversion pulses of 3.3 and 1.1 μs
at an rf field of ∼125 kHz, “soft” π/2- and π-pulses of 10 and 20
μs at an rf field of 8.3 kHz, and rotor-synchronized indirect
dimension f1 spectral windows at a sample spinning frequency of
16 kHz. Spectral folding due to the limited f1 spectral window
was resolved byQ-shearing, zero-filling in the frequency domain,
and then shearing into the conventional isotropic 3QMAS
representation.90 The total experiment times for the 2D 3QMAS
spectra of 2, 3, and 4 were approximately 19, 55, and 38 h,
respectively.

3. RESULTS AND DISCUSSION
Figure 1 displays the molecular structures of compounds 1−4.
The reason we chose to study these compounds was based on
well-documented crystal structures of these or related
compounds in the literature: 1 (CCDC 2052354,

Figure 1. Molecular structures of compounds 1−4.

Figure 2. 1H MAS NMR spectra of (a) 1, (b) 2, (c) 3, and (d) 4. All
spectra were obtained at 16.4 T with a sample spinning frequency of 30
kHz. In each case, a total of 16 transients were collected with a recycling
delay of 60 s.

Figure 3. Experimental (black trace) and simulated (red trace) 17O
MAS NMR spectra of (a) 1, (b) 2, (c) 3, and (d) 4. For easy
comparison, subspectra (green, purple, turquoise, and brown traces)
from individual sites are also shown. The spectra shown in (a) and (d)
were obtained at 18.8 T, whereas those in (b) and (c) were acquired at
21.1 T. The sample spinning frequencies were (a) 17.00, (b) 31.25, (c)
22.00, and (d) 16.00 kHz. Other acquisition parameters are (a) 4096
transients, 0.5 s recycle delay; (b) 3072 transients, 30 s recycle delay;
(c) 3072 transients, 30 s recycle delay; (d) 4096 transients, 1 s recycle
delay.
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129904),91,92 2 (CCDC 1245595),93 3 (CCDC 1141283),94

and 4 (CCDC 1139935).95 In particular, each of these
compounds exhibits a CBHB network in the crystal lattice.
However, before we examine the structural details of these
compounds, we will first present solid-state 1H and 17O NMR
results. Figure 2 shows the 1HMASNMR spectra of compounds
1−4. In each case, the 1H NMR signals for protons involved in
the CBHB network are indicated. Their assignments are based
on an established correlation between δiso(1H) and the HB
distance (vide infra). Before we discuss these results further in
the next section, it is important to note at this time that the
δiso(1H) values found for the hydrogen-bonded protons in these
compounds span a wide range (from 20.5 ppm for H1 in 2 to 8.2
ppm for H2 in 4), reflecting quite different HB environments in
these compounds.
Figure 3 displays the 17O MAS NMR spectra for compounds

1−4. For compound 1, two well-resolved 17O NMR signals are
observed. Using a standard spectral analysis,49 we obtained the
following set of 17O NMR parameters, δiso(17O), CQ, and ηQ, for

each O site in this compound. However, as seen in Figure 3, the
17O MAS NMR spectra for compounds 2−4 are rather complex
because, in each of these compounds, there are four different O
sites, whose signals are partially or severely overlapped. We also
obtained 17OMAS spectra at 16.4 T for all four compounds (see
Figure S1). To aid the final spectral analysis for compounds 2−
4, we obtained 2D 17O 3QMAS spectra. As seen in Figure 4, each
of the four O sites can be resolved and analyzed separately. Final
17O NMR parameters obtained for compounds 1−4 are listed in
Table 1. An independent check for the quality of all the 17O
NMR parameters listed in Table 1 is to examine the peak
positions observed in the isotropic dimension of the 3QMAS
spectra.96 Indeed excellent agreement was observed between the
experimental and calculated peak positions; see Figure S2.
Now it is time to examine structural details of the CBHB

networks in compounds 1−4 and investigate how the 1H and
17O NMR parameters are influenced by HB interactions. Figure
5 displays partial crystal structures of compounds 1−4 to
highlight the CBHB networks; crystal packing within the entire

Figure 4. Left panel: experimental 2D 17O 3QMASNMR spectra of (a) 2, (b) 3, and (c) 4. Right panel: corresponding experimental (black trace) and
simulated (red trace) slice spectra. The 2D spectra shown in (a) and (b) were obtained at 18.8 T, whereas the 2D spectrum in (c) was acquired at 21.1
T. The sample spinning frequency was 16 kHz in all three cases. The signals marked with an asterisk are spinning sidebands. The red line shown in each
2D spectrum corresponds to the “chemical shift axis,” where the f1/f 2 slope is 1.
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unit cell is illustrated in Figure S3. As seen in Figure 5, the two
salicylate anions in 1 are linked by a central HB forming a CBHB
network.91 Here, we assumed that the crystal structure of 1 is
isostructural to those of the related compounds: 1-ethyl-2,3-
dimethylimidazolium hydrogen disalicylate (CCDC
2052354)91 and 8-hydroxyquinolinium hydrogen disalicylate
(CCDC 129904).92 Interestingly, in these acid salt compounds,
the central O2A···H1···O2B HB has a very short HB distance
(about 2.430 Å) and is nearly symmetric. This is consistent with
the observation that the H1 proton in 1 has a δiso(1H) value of
20.1 ppm. The other type of HB in 1 corresponds to a weak O−
H2···OHB. Thus, the CBHB network in 1 can be denoted as O−

H2A···O1A−C−O2A···H1···O2B−C−O1B···H2B−O. The crystal
structure of 2 (CCDC 1245595) also displays a CBHB network
but is largely within the same molecule.93 The HB of the O3···
H1···O4 in 2 is among the shortest found in the literature. But the
neutron diffraction crystal structure of 2 suggests that this HB is
asymmetric (the O4···H1 distance is 1.163 Å, whereas the H1···
O3 distance is 1.238 Å).

93 The H1 displays a δiso(1H) value of
20.5 ppm. In comparison, the N−H2···O HB is much weaker,
with a corresponding δiso(1H) value of 14.9 ppm.We can denote
the CBHB network in 2 as N−H2···O2−C−O4···H1···O3−C−
O1. This CBHB network is identical to what was discussed
earlier in the protein structure of 1k7c; see Scheme 2. As also
seen in Figure 5, the CBHB network in 3 (CCDC 1141283) is
somewhat different, where the strongest HB is of the type O···
H1···N.94 For this HB, the O···N distance is 2.525 Å, which is
among the shortest O···N HBs found in the literature. The
CBHB network in 3 can be identified as N···H1···O3−C−O2···
H2−O4−C−O1. This is very similar to that seen in the protein
structure 4kxw shown in Scheme 2. The crystal structure of 4
(CCDC 1139935) suggests that the CBHB network in this
compound is formed among three Gly molecules.95 While the
O4−H1···O3 HB is reasonably strong (with the O4···O3 distance
of 2.552 Å), the N−H2···O2 HB is very weak. As a result, the
δiso(1H) values for H1 and H2 are 15.5 and 8.2 ppm, respectively.
The CBHB network in 4 can be denoted as N−H2···O2−C−
O3···H1−O4−C−O3. This arrangement is also similar to that
seen in 3.
After having established the 1H and 17ONMR signal identities

and their relationships with the CBHB geometry for each of the
compounds, it is highly desirable to have a simple way of
visualization for all of the 1H and 17O chemical shift results. To

Table 1. A Summary of Experimental Solid-State 1H and 17O NMR Parameters Obtained for Compounds 1−4a

compound δiso(1H) (ppm) δiso(17O) (ppm) CQ (MHz) ηQ δ3Q,iso (ppm calc.)b δ3Q,iso(ppm expt.)

1
H1 20.1
H2 12.9
O1 295 7.5 0.35
O2 228 6.2 0.70

2
H1 20.5
H2 14.9
O1 308 8.2 0.05 329.1 329.9
O2 307 8.0 0.20 328.0 327.7
O3 231 5.7 1.00 244.4 246.3
O4 225 6.0 0.60 238.3 242.7

3
H1 19.8
H2 13.1
O1 340 8.7 0.05 363.7 358.8
O2 290 7.6 0.40 310.2 304.9
O3 227 6.2 0.65 241.4 240.0
O4 166 7.3 0.15 183.2 180.8

4
H1 15.5
H2 8.2
O1 341 8.6 0.05 359.1 356.5
O2 276 6.8 0.50 289.0 286.3
O3 268 7.0 0.60 282.2 279.2
O4 180 6.9 0.00 191.5 190.0

aThe uncertainties in experimental δiso(1H), δiso(17O), CQ, and ηQ values are ±0.1 ppm, ±1 ppm, ± 0.1MHz, and ±0.05, respectively. bδ3Q,iso
(expressed in ppm) is defined as: ( )( )( )1 10

C
3Q,iso iso

3
850 3

6Q Q

0
= + + × , where ν0 is the Larmor frequency for 17O.

Figure 5. Partial crystal structures of (a) 1, (b) 2, (c) 3, and (d) 4 to
illustrate the CBHB networks in these compounds. Color coding for
atoms: H (white), C (gray), N (light blue), and O (red). Relevant HB
lengths are shown.
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this end, we set out to design a simple graphical representation,
in which the observed 1H and 17O chemical shifts are displayed
according to the H and O atomic positions appearing along the
CBHB network. As illustrated in Figure 6, because compound 1
has a CBHB network of the type O−H···O−C−O···H···O−C−
O···H−O, there are three H atoms with two distinct δiso(1H)
values and four carboxylate O atoms with two distinct δiso(17O)
values. When the color-coded data points are connected, a
“wavy” pattern appears. In this study, we refer to this kind of
wavy pattern along a CBHB network as “1H/17O chemical shift
waves.” This term is analogous to the known concepts of
“dipolar waves” and “chemical shift waves” that are often used
for describing the 1H−15N dipolar couplings and 1H or 15N
chemical shifts along the protein backbone for oriented
transmembrane peptides.97−100 Here, we follow the 1H and
17O chemical shifts along the atomic chain that forms the CBHB
network. However, it is important to point out that both dipolar
and chemical shift waves are perfect sine waves. In the present
case, there is no underlying principle suggesting that the 1H/17O
chemical shift waves must be sine waves. Rather, the use of sine
waves tomimic the observed wavy patterns is simply to guide the
eye for easy visualization and pattern recognition. At this time,
we note a few general features in the 1H/17O chemical shift

waves. First, the plotting range for δiso(1H) is between 5 and 25
ppm, which covers essentially the whole δiso(1H) range for all H
atoms involved in HBs. Second, the range for δiso(17O) is
between 150 and 350 ppm. Once again, all 17O chemical shifts
observed for carboxylic acid functional groups fall into this
range. Third, if a blue data point for δiso(1H) lies at the peak of a
1H/17O chemical shift wave, this feature indicates that this H
atom is involved in a very strong HB. Fourth, the relative
positions between two adjacent red data points are a direct
measure of the ionization state of a carboxylate group. More
specifically, if two adjacent red data points are close to one
another (e.g., with a difference of δiso(17O) values of less than 50
ppm), the two O atoms must belong to a carboxylate COO−

group. If the two adjacent red data points are far apart (e.g., with
a difference of δiso(17O) values close to 200 ppm), the two O
atoms then belong to a neutral COOH group.
It is also interesting to note that the 1H/17O chemical shift

waves observed for compounds 1−4 can be divided into two
general types. One is that observed for compounds 1 and 2 as
seen in Figure 6a,b, and the other is the type displayed by
compounds 3 and 4 in Figure 6c,d. In the first type, the
characteristic feature is that a blue data point appears as the peak
of the wave flanked by two red data points, whereas in the
second type, a blue data point appears on a slope between the
two red data points. The structural reasons for these two types of
1H/17O chemical shift waves are quite clear. To give rise to the
first type, one side of the bridging carboxyl group must be
involved in a very strong H···O HB, and the other side has a
rather weak one. If the HB interactions on both sides of the
bridging carboxyl group are relatively weak, then the second type
will be observed. On the basis of this observation, one may be
able to predict that proteins of 1k7c and 4kxw should display the
first type of 1H/17O chemical shift waves, and that the protein of
5mop should give rise to the second type; see Scheme 2.

4. CONCLUSIONS
We obtained extensive solid-state 1H and 17O NMR parameters
for four organic compounds each consisting of a CBHB network.
One common feature in these characteristic CBHB networks is
that very often multiple strong HBs are linked together. Thus,
the solid-state 1H and 17ONMR parameters observed for CBHB
networks are very different from those seen in the most
commonly found carboxylic acid dimers. We have introduced a
simple graphical representation to illustrate how 1H and 17O
chemical shift data can display a 1H/17O chemical shift wave
along the CBHB network. This is the first attempt to
simultaneously examine 1H and 17O chemical shifts from the
perspective, where the H and the O atoms are linked to form an
extended HB network. Because CBHB networks are commonly
found in proteins, this study offers a glimpse of what might be
expected in solid-state 1H and 17O NMR spectra for proteins.
While we focused only on 1H and 17O chemical shifts in the
present study, it is conceivable that the concept of 1H/17O
chemical shift waves may be extended to include all other atoms
in the entire HB network (e.g., 1H, 17O, 13C, and 15N chemical
shifts for the CBHB network).
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Figure 6. Illustration of the “1H/17O chemical shift waves” observed in
(a) 1, (b) 2, (c) 3, and (d) 4. The horizontal axis corresponds to the
atomic positions of the H (blue) and the O (red) atoms along the
CBHB network for each compound.
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