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Topological semimetals with massless Dirac and Weyl fermions represent the forefront of quantum
materials research. In two dimensions, a peculiar class of fermions that are massless in one direction and
massive in the perpendicular direction was predicted 16 years ago. These highly exotic quasiparticles—the
semi-Dirac fermions—ignited intense theoretical and experimental interest but remain undetected. Using
magneto-optical spectroscopy, we demonstrate the defining feature of semi-Dirac fermions—B2=3 scaling of
Landau levels—in a prototypical nodal-line metal ZrSiS. In topological metals, including ZrSiS, nodal lines
extend the band degeneracies from isolated points to lines, loops, or even chains in themomentum space.With
ab initio calculations and theoretical modeling, we pinpoint the observed semi-Dirac spectrum to the crossing
points of nodal lines in ZrSiS. Crossing nodal lines exhibit a continuum absorption spectrum but with
singularities that scale asB2=3 at the crossing.Ourwork sheds light on the hiddenquasiparticles emerging from
the intricate topology of crossing nodal lines and highlights the potential to explore quantum geometry with
linear optical responses.

DOI: 10.1103/PhysRevX.14.041057 Subject Areas: Condensed Matter Physics, Optics,
Quantum Physics

I. INTRODUCTION

Conventional 2D fermions are described by parabolic
energy (E) momentum (k) dispersion EðkÞ ¼ ℏ2k2=ð2mÞ
with effective massm. In contrast, Dirac andWeyl fermions
[1,2] have linear dispersion EDðkÞ ¼ ℏvFk and are mass-
less. The striking manifestations of massless Dirac fer-
mions are revealed through the anomalous half-integer

quantum Hall effect [3,4], Klein tunneling [5,6], and
ffiffiffiffi
B

p
scaling of Landau levels (LLs) with magnetic fields (B) [7–
9] in graphene. All these effects are observed in graphene,
where the characteristic

ffiffiffiffi
B

p
scaling provides a litmus test

for Dirac quasiparticles.
Semi-Dirac fermions [10–12], with dispersion ESDðkÞ ¼

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðℏvk1Þ2 þ ½ℏ2k22=ð2mÞ�2

p
being linear in one momen-

tum direction (k1) and quadratic in the orthogonal direction
(k2), have been proposed to appear in materials where
multiple Dirac points merge [10,13] into a semi-Dirac
point. Despite intense theoretical and experimental interests
[14–22], semi-Dirac fermions remain undetected. Strained
graphene may be a candidate system to host semi-Dirac
quasiparticles. However, the required uniaxial strain level is
unrealistically large [10,23,24]. Black phosphorus is pro-
posed as another candidate semi-Dirac fermions system
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upon strong doping [25]. Yet the precise semi-Dirac
dispersion in black phosphorus has not been established
either experimentally [26] or theoretically [27]. Thus far, the
semi-Dirac dispersionESD has been experimentally explored
only in synthetic platforms including honeycomb lattices of
ultracold atoms [28], photonic resonators [29,30], and polar-
itons systems [31]. Identifying the fermionic counterpart is
crucial to realize the diverse topological [13,17] and corre-
lated [18,32] phases predicted for semi-Dirac fermions, but
remains challenging in 2D systems. A defining feature of
semi-Dirac fermions is the unique B2=3 dependence [10,12]
of inter-LL transitions [Fig. 1(a)]. Here we report on the first
observation of this characteristic B2=3 power law in a
topological metal, ZrSiS, through LL spectroscopy.
Semiclassically, a magnetic field induces cyclotron

motion and the area of the cyclotron orbit at energy E
is SðEÞ ∝ E3=2 ffiffiffiffi

m
p

=v for the semi-Dirac dispersion ESD
[10]. Following the Onsager quantization [34] SðEÞ ¼
2πðnþ γÞeB=ℏ, the characteristic B2=3 scaling of LLs is
obtained: En ∝ ½ðnþ γÞB�2=3, where n is the LL index and
γ is the phase factor ð0 ≤ γ < 1Þ. The 2D semi-
Dirac spectrum can also arise as singularity points of a
continuum absorption spectrum of a 3D material. For

example, the LL spectrum of a nodal ring ENR ¼
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ðk2x þ k2y − k20Þ=2m�2 þ v2zk2z

q
with field in the x-y

plane exhibits a continuum absorption with a lower edge
scaling as B2=3, arising from the semi-Dirac structure (see
the Appendix).
The prototypical nodal-line semimetal ZrSiS [35–37]

[Fig. 1(b)] hosts two planar nodal squares linked by vertical
nodal-lines [38,39], forming a chainlike structure [40–44]
[gray lines in Fig. 1(c)] in momentum space. The low-
energy physics of the ZrSiS family of nodal metals is
further enriched by the Fermi energy variations along the
Dirac nodal lines [45–47], reflected by the coexisting
electron (blue) and hole (red) pockets [Fig. 1(c)].
Ab initio calculations and theoretical modeling show that
the observed semi-Dirac fermions originate from the cross-
ing points (CPs) of the nodal lines in ZrSiS [black dots in
Fig. 1(c)]. Near the CP, the band structure at kx ¼ kCP
shows quadratic [Fig. 1(d)] and linear dispersion [Fig. 1(e)]
along kz and ky, respectively. Under magnetic field oriented
along the a axis (Bkkx), the cyclotron motion of electrons
becomes quantized in the ðky; kzÞ plane and reflects the
semi-Dirac fermions through the unique LL scaling. The

(a)

(c)

(d)(b)

(e)

FIG. 1. Semi-Dirac fermions at nodal-line crossing points in ZrSiS. (a) Cyclotron energy (ℏωc) as a function of magnetic field (B) for
conventional fermions (black line), Dirac fermions (orange line), and semi-Dirac fermions (purple line). Insets show three-dimensional
plots of their band structures (gray surfaces) overlaid with Landau levels (red and blue contour lines). (b) The lattice structure of ZrSiS,
showing the square lattice of Si atoms (blue) and the Zr (brown)-S (yellow) layers above and below. (c) Ab initio calculation of the Fermi
surface and nodal-line structure of ZrSiS. Only the kx > 0 part of the Fermi surface is shown for better visualization of the nodal-line
structures (gray lines). Black spheres indicate the crossing points (CPs) of multiple nodal lines. Purple shaded planes at kx ¼ �kCP1 ¼
�0.1971ð2π=aÞ cross the CP1 formed by nodal lines at kz ¼ 0 and kx ¼ �ky. The circular purple arrow illustrates the cyclotron motion
around one of the CP1 for magnetic field (green arrow) applied along kx (a axis of the crystal). Calculated band structure (see the
Appendix and Supplemental Material Sec. VII [33]) near CP1 at kx ¼ kCP1 plane shows quadratic dispersion along kz (d) and linear
dispersion along ky (e), characteristic of semi-Dirac fermions.
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anticipated B2=3 power law in ZrSiS is robust against
material complexities and can be readily identified in
infrared magneto-optics experiments.

II. EXPERIMENTAL RESULTS

We now proceed to the magnetoreflectance spectra
Rðω; BÞ normalized by the zero-field data Rðω; 0TÞ for
ZrSiS with in-plane magnetic fields up to 17.5 T (see the
Appendix), shown in Fig. 2(a). The most prominent features
are a series of dips in the reflectance spectra hardening with
increasing field (gray dashed lines). For a highly metallic
system like ZrSiS, the infrared reflectance approaches unity
and, therefore, dips in RðBÞ=Rð0Þ correspond to absorption
AðωÞ ¼ 1 − RðωÞ [45,47]. We attributed these absorp-
tion features to interband LL transitions from massive
Dirac fermions (E�n ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2eℏjnjBv̄2 þ Δ2

p
), which exhibit

notable departures from the linear-in-B scaling expected for
fermions in parabolic bands [Fig. 1(a)]. Here,Δ is half of the

spin-orbit coupling (SOC) gap [47–50] and we find
2Δ ≈ 28 meV, in excellent agreement with previous
lower-field studies [45,51] and calculations [35].
Surprisingly, above a critical field Bc ≈ 7 T, weaker subgap
features [red and purple dots in Fig. 2(a)] appear at around
100 cm−1 and harden with increasing field. To better
visualize these subgap structures, we report the second
derivative d2R=dB2 analysis in Fig. 2(b). The local minima
of the second derivative coincidewith the dips inRðBÞ=Rð0Þ
(see Supplemental Material Sec. III [33]), which we identify
as the LL transition energies in all analyses.
In Fig. 2(b), we show the d2R=dB2 spectra for ZrSiS

obtained with in-plane magnetic fields up to 17.5 T. The
gray dashed lines denote the model calculation of interband
LL transitions across the gapped Dirac cone [48,55]:
ET ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2eℏjnjBv̄2þΔ2

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2eℏðjnjþ1ÞBv̄2þΔ2

p
, where

n is the LL index and v̄ is the averaged Fermi velocity.
The intraband LL transitions [56], if present, would follow
a field dependence distinct from the observed subgap

(b)(a)

FIG. 2. Landau level (LL) spectroscopy of ZrSiS with in-plane magnetic fields. (a) Magnetoreflectance Rðω; BÞ normalized by zero-
field reflectance Rðω; 0TÞ for sample S1. Gray dashed lines mark the positions of the series of interband LL transitions across the spin-
orbit coupling gap (2Δ ≈ 28 meV). The red-shaded region indicates a potential phonon feature [52–54] that is not dispersing with
increasing field. Above a critical field of Bc ≈ 7 T, additional subgap transitions (red and purple dots) emerge and harden with
increasing field. The inset is a schematic of the experimental configuration with near-normal incident and unpolarized light while the
magnetic field is applied in-plane (B⊥c, Bka, Voigt geometry). (b) Second derivative d2R=dB2 data of sample S1 overlaid with model
fitting (gray dashed lines) of the LL transitions across the gapped Dirac cone. The top schematic shows a gapped Dirac cone with gap 2Δ
and the first LL transitions LL−0ð−1Þ → LL1ðþ0Þ (gray arrows). Orange lines are the guides for the subgap LL transitions [red dots in (a)]

that follow approximately
ffiffiffiffi
B

p
scaling, characteristic of a Dirac-like fermion (bottom schematic). The subgap features near the purple-

shaded region follow a distinct B2=3 power law and originate from semi-Dirac fermions.
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features (see Supplemental Material Figs. S8 and S25).
Importantly, beyond the two series of subgap transitions
labeled as

ffiffiffiffi
B

p
and B2=3 (red and purple dots, respectively),

two additional dispersive features are apparent above
150 cm−1. As indicated by the thick orange lines, the
dispersions of these latter features also follow approxi-
mately the

ffiffiffiffi
B

p
scaling.

The dipole selection rule δjnj ¼ �1 [7,9] for Dirac
fermions dictates that the energy ratios of the lowest three
interband LL transitions are 1∶1þ ffiffiffi

2
p

∶
ffiffiffi
2

p þ ffiffiffi
3

p
. Using a

single averaged velocity of 0.82 eVÅ, the three branches of
the transitions can be approximated by the lowest three
interband LL transitions from massless Dirac-like fermions
(orange lines) and are labeled LL0→1, LL−1→2, and LL−2→3.
Detailed analysis on the multiple peak splitting of LL0→1

below shows evidence of a small gap and spin splitting due
to Zeeman effect. On the other hand, the remaining subgap
features [near purple shaded region in Fig. 2(b)] follow
sublinear B dependence that is distinct from

ffiffiffiffi
B

p
. We will

confirm next that these peculiar LL transitions’ field
dependence scales precisely as B2=3, a fingerprint of
semi-Dirac fermions in ZrSiS.
To quantify the power-law scaling of the subgap features,

we extract the transition energies from Fig. 2(b) (see
Supplemental Material Sec. III and Figs. S7 and S8 [33])
and plot them against

ffiffiffiffi
B

p
and B2=3 in Figs. 3(a) and 3(b),

respectively. Figure 3(a) shows the experimentally

determined LL transition energies (red dots) for the three
groups of transitions labeled LL0→1, LL−1→2, LL−2→3 in
Fig. 2(b). Remarkably, all these LL transitions can be
understood as originating from a Dirac fermion with a small
gap 2Δ0 ¼ 2.4 meV and Zeeman-split LLs. The resulting
model calculations (orange lines) show good agreement with
the data (see Supplemental Material Figs. S24 and S35). For
LL−2→3, variation of v̄D shows a logarithmic reduction with
increasing B field [v̄D ∝ − lnðBÞ; see Fig. S27 in
Supplemental Material]. Alternatively, the LL−1→2 and
LL−2→3 transitions can arise from the cyclotron resonance
of another gappedDirac cone [56] (Fig. S27 of Supplemental
Material), and the exact origin of these transitions awaits
future studies.
As we alluded to previously, a series of subgap features

displays the B2=3 scaling that is characteristic of semi-Dirac
fermions [Fig. 3(b)]. Fine splitting of LL transitions is also
apparent and all the split peaks agree with the predicted
power-law behavior (green dashed lines) for semi-Dirac
fermions. These latter features are reminiscent of the spin
and valley splitting of Landau levels in Dirac fermions
[57,58] and we discuss several possible scenarios for peak
splitting in the Supplemental Material Sec. IV and
Figs. S10–S13 [33]. Because of the nonanalytical nature
of the LLs of semi-Dirac fermions [10], the selection rules
have only been explored numerically for type-I semi-Dirac
fermions. Nevertheless, we discuss several possibilities for
the absence of additional high-order semi-Dirac LL

(a) (b)

�

FIG. 3.
ffiffiffiffi
B

p
and B2=3 power-law behaviors of Landau levels in ZrSiS. (a) Subgap transition energies (red dots) in Fig. 2 are plotted as a

function of
ffiffiffiffi
B

p
. Orange lines represent the fitting based on Dirac-like fermions with an averaged Fermi velocity v̄D ¼ 0.88 eVÅ, a

small gap 2Δ0 ¼ 2.4 meV, and Zeeman g factor g ¼ 2.6. Solid and dashed lines represent the spin-conserving and spin-flip transition,
respectively. Orange shaded areas indicate the uncertainties in v̄D for the LL−1→2 (0.91� 0.04v̄D) and LL−2→3 (1.02� 0.07v̄D)
transitions. (b) Higher-energy subgap transitions in Fig. 2 (purple dots) are plotted as a function of B2=3, following the exact power-law
behavior expected for semi-Dirac fermions (green dashed lines). The bottom inset shows the calculated Fermi surface of ZrSiS. The
shaded purple plane indicates the kx ¼ kCP1 plane, which cuts through CP1 (black dot at kz ¼ 0). The top inset shows the calculated
band structure E versus ky, kz for CP1 at the plane kx ¼ kCP1, with linear dispersion along ky and quadratic dispersion along kz,
characteristic of semi-Dirac dispersion.
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transitions in ZrSiS in the Supplemental Material Sec. IX
and Fig. S28.
Importantly, the semi-Dirac fermions in ZrSiS are con-

firmed both from ab initio calculations and from theoretical
modeling of the crossing points of nodal lines. As shown in
the bottom inset of Fig. 3(b), there are two nonequivalentCPs
in ZrSiS, labeled as CP1 (at kz ¼ 0) and CP2 (at kz ¼ π=c).
The observedB2=3 scalingLL transition is dominated byCP1
since the energy of the CP is very close to the Fermi level,
while the energyofCP2 is about 0.1 eVbelow theFermi level
(see Fig. S19 [33]). The calculated semi-Dirac bands near the
CP1 [top inset of Fig. 3(b)] are also asymmetric in ky, in
contrast to the usual type-I semi-Dirac dispersion [10]:

ESD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k4y=4m2 þ v2k2z

q
. We demonstrate below that a

unique semi-Dirac fermion that originates from the merging

of three Dirac points [13] is realized near CP1 in
ZrSiS, distinct from the merging of two Dirac points
[10,14] realized in a single nodal ring (see Supplemental
Material Video 1 [33]).

III. THEORY AND CALCULATION

We now turn to the theoretical interpretation of the
results. The complex 3D nodal-line cage obtained in
density functional theory (DFT) reveals 8 CPs each in
the kz ¼ 0 and kz ¼ π=c plane. Building on the 2D
Hamiltonian for square net motifs [59], we add the 3D
hoppings (tz; t0z) and obtain a minimal four-band (not
including spin) tight-binding model which reproduces all
nodal lines and CPs, as shown in Fig. 4 (see Supplemental
Material Sec. V for details [33]):

FIG. 4. Nodal-line structure of ZrSiS. The 3D nodal-line structure of ZrSiS calculated using DFT (a) and the tight-binding model (b).
The tight-binding model Eq. (1) (Supplemental Material Sec. V [33]) captures faithfully the complex structure of nodal-line crossings in
DFT. Gray dashed lines connect the high symmetry points at kz ¼ 0. Blue spheres indicate the location of the four symmetry-related
crossing points at kz ¼ 0 (CP1). The crossing of curved vertical nodal line and straight horizontal nodal line at CP1 hosts semi-Dirac
fermions. (c) Expanding the tight-binding model (b) near CP1 and retaining the leading order terms in k leads to the two-band
continuum model Eq. (2). The CP1 is formed by two nodal lines: the vertical nodal line defined by kx ¼ −ky ¼ 2 arctan

ffiffiffiffiffiffiffiffiffiffiffiffiffi
txx=tyy

p
with

finite curvature and the horizontal nodal line on kz ¼ 0 with negligible curvature.
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h3DðkÞ¼ txxz cos
kxa
2

cos
kya

2
ðcoskzc−1Þτ1σ0

þ txyz sin
kxa
2

sin
kya

2
ðcoskzc−1Þτ1σ1

þ tzð1−coskzcÞsinkxasinkyaτ0σ1
þ t0zðcoskxa− coskyaÞsin

kxa
2

sin
kya

2
sinkzcτ2σ1;

ð1Þ

where τ, σ represent the sublattice and px, py orbital degrees
of freedom, respectively. The a and c are the in-plane and
out-of-plane lattice constants, respectively. Despite the
complexity of the band structure, this model is analytically
solvable, and yields closed form expressions for the nodal
lines in terms of a small number of physical parameters. This
model not only captures the global features of the nodal cage
over the entireBrillouin zone [Fig. 4(b)], but also allows us to
obtain k:p models at each CP derived directly from the
microscopic hoppings. In contrast to the intersection of two
straight nodal lines [41] or two nodal rings [44], the CP1 in
ZrSiS is composed of a straight nodal line and a curved nodal
line [see Figs. 1(c) and 4], which can be described by a
minimum two-band model for the CP:

HCP ¼ t1k2zτ0 þ
�
k2z
2m

þ vk⊥
�
τz þ t2kkkzτx þ Δ0τy; ð2Þ

where τ0 is the identity matrix, τiði ¼ x; y; zÞ are the Pauli
matrices, m is the effective mass along the kz direction, v is
the Fermi velocity along k⊥ ¼ kx − ky direction, t1 controls
the electron-hole asymmetry (tilt of the nodal line along z), t2
controls the dispersion along kk ¼ kx þ ky (parallel to the in-
plane nodal line), andΔ0 is half of the SOC gap. As shown in
Fig. 5(a), the spectrum of Eq. (2) describes the crossing of a
straight in-plane nodal line (NL1, bounded by the kz ¼ 0 and
kx ¼ ky planes) and a curved vertical nodal line (NL2,
bounded by the kx ¼ −ky and ky ¼ k2z=4mv planes). The
Fermi surface (FS) of themodel [Fig. 5(a)] captures the main
features of the FS in ZrSiS near the CP2 [bottom inset of
Fig. 3(b)]. In particular, the crescent-shaped contour refers to
the purple dashed line in Fig. 5(a) at the CP (purple dashed
line) is consistent with band structure calculations of ZrSiS
and further corroborated with quantum oscillation measure-
ments (Supplemental Material Figs. S5 and S6 [33]). Under
the external magnetic field along x, the 2D plane normal to
the field at negative kx will cross NL1 once and cross NL2
twice, forming three isolated Dirac points (D1 andD2�). As
the 2D plane moves to the right, the three Dirac points get
closer andmerge at kx ¼ 0 (purple shaded plane), realizing a
type-II semi-Dirac fermion [13]:H0

SD¼ t1k2zτ0þ½ðk2z=2mÞ−
vky�τzþ t2kykzτx ([Fig. 5(b)].
At kx > 0 the spectrum becomes a single Dirac again.

The unique semi-Dirac fermion described by H0
SD is

predicted to exhibit nontrivial Berry phase and finite
Chern number when a gap opens [13]. This is in stark
contrast with the zero Berry phase for semi-Dirac fermions
formed by merging an even number of Dirac points (π × 2n
modulo 2π ¼ 0). Crossing nodal lines in Eq. (2) therefore
offer a new platform for studying the rich phenomena of
merging Dirac points [28,60] (see Supplemental Material
Video 2 [33]), where topology and correlation effects
intertwine.
We have calculated the Landau level spectrum of Eq. (2)

in the presence of an in-plane field directed along x as a
function of kx, and the results are shown in Fig. 5(c). Since
kx is a good quantum number for Bkkx, at each kx the LL
spectrum is a series of discrete levels, with level spacing
determined by the projection of the constant energy
contours onto the plane perpendicular to kx. The LLs exhibit
extremal points near kx ¼ 0 and lead to peaks in the density
of states (DOS), indicated by purple dots in Fig. 5(c). Optical
transitions (vertical purple arrow) between these LL singu-
larities are observed experimentally in LL spectroscopy. We
remark again that only the lowest-order momentum-con-
serving LL transitions (LL−1→þ1) have been observed in this
work (SupplementalMaterial Sec. IX [33]). Higher-order LL
transitions are in general weaker and may be forbidden by
selection rules (see, e.g., Ref. [61] for type-I semi-Dirac
fermions). We further demonstrate the B2=3 scaling of the
LLs at the CP using both semiclassical quantization below
and full LL calculation with SOC (Supplemental Material
Sec. VIII). Apart from enhanced DOS, we remark that the
semi-Dirac fermions realized by Eq. (2) also show stronger
divergence in the quantum metric gðkÞ compared to Dirac
fermions [see Fig. 5(d)]. In Fig. 5(d), we compared the
calculated k-space distribution of gðkÞ at kx ¼ 0 (semi-
Dirac) and kx ¼ 0.2 Å−1 (Dirac) based on Eq. (2)
(Supplemental Material Sec. VI). We remark that the effects
of quantum geometry in solids have been discussed mostly
theoretically in terms of nonlinear optical response [62,63],
but recent [64] and classic work [65,66] have connected the
linear response to the integrated Fubini-Study metric. Our
experimental observation of semi-Dirac fermions highlights
the potential to explore quantum geometry from novel
quasiparticles using linear optical and magneto-optical
response.
Before concluding, we comment on the robustness of the

observed B2=3 scaling of Landau levels from crossing nodal
lines inZrSiS. There are several differentways that twonodal
lines cross inmomentum space [41,44].We illustrate three of
the lowest orders crossing in Fig. 6, where the two nodal lines
are Fig. 6(a) both straight [41] (H1¼kyτxþkxkzτz), Fig. 6(b)
both parabolic [44] H2 ¼ ðkx þ k2y − k2zÞτx þ kykzτz, or
Fig. 6(c) consisting of one straight and one parabolic nodal
line H3¼ tk2zτ0þðk2z=2mþvkyÞτzþkxkzτxþΔτy, where
Δ is half of the SOC gap. Under an external magnetic field
along kx, the cyclotronmotions of electronswill be quantized
in the 2D plane normal to the magnetic field direction
(constant kx planes). The band structures corresponding to
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the three models in Figs. 6(a)–6(c) at the plane kx ¼ 0 are
shown inFigs. 6(d)–6(f), respectively. The cyclotronmotions
for charge carriers from the three different nodal-line cross-
ing points can nowbe assessed by their distinct Fermi surface
cross sections at the Fermi level [black dashed lines in
Figs. 6(d)–6(f)]. Importantly, the band structure at the CP
from H3 [Fig. 6(f)] is electron-hole asymmetric (see also
Fig. S30 [33]), disctinct from H1 and H2.
We can evaluate the Landau level scaling from a semi-

classical approach for these three different crossing points.
First, it is evident that the crossing of two straight nodal

lines (H1) will leads to an open orbit at the CP [Fig. 6(g)],
and therefore will not give rise to quantized energy levels.
For the crossing of two parabolic nodal lines (H2), the area
of the cyclotron orbit SðEÞ increases linearly with energy E
[Fig. 6(h)]. According to the Onsager quantization relation
[34], SðEÞ ¼ 2πðnþ γÞeB=ℏ, where n is the Landau level
index and γ is the phase factor, the LL scaling will be linear
in B. In contrast, as derived in the Appendix, the cyclotron
orbit area increases as E3=2 [Fig. 6(i)] for the CP of a
straight and parabolic nodal line (H3), which results in an
LL scaling that is strictly B2=3. This semiclassical analysis

(a)

(b) (c)

(e)

(d)

FIG. 5. Semi-Dirac fermions and quantum geometry at the crossing point of two nodal lines. (a) Fermi surface (blue) of the two-band
model Eq. (2). The orange shaded plane at kx ¼ −0.2 Å−1 crosses the nodal line NL1 at kD1 ¼ ðkx; kx; 0Þ and crosses NL2 at
kD2� ¼ ðkx;−kx;�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4mvjkxj

p Þ. Purple shaded plane at kx ¼ 0 cuts through the CP (black sphere) of NL1 and NL2 at the origin
k ¼ ð0; 0; 0Þ. (b) Band structure E versus ky, kz at kx ¼ 0, showing a semi-Dirac point (black sphere) as a result of the merging of three
Dirac points at kD1 and kðD2�Þ. Purple dashed lines in (a) and (b) show the crescent-shaped Fermi surface contour of semi-Dirac
fermions. Purple shaded planes represent the Fermi level for CP1 (ECP1

F ≈ −5 meV) and CP2 (ECP2
F ≈ 0.1 eV). (c) Calculated LL

spectrum based on model parameters for CP1 at B ¼ 17.5 T. The right-hand panel indicates the corresponding density of states (DOS)
of the LLs. Purple dashed line represents the Fermi level of CP1. Purple dots label the extremal points in the LLs and purple arrow
indicates the lowest momentum-conserving transition (LL−1→þ1); see Supplemental Material Sec. VIII for details [33]. (d),(e)
Calculated momentum space distribution of the Fubini-Study metric gðkÞ at a Dirac point [(d) kx ¼ 0.2 Å−1] and at the semi-Dirac point
[(e) kx ¼ 0]. Near the semi-Dirac point, gðkÞ is nonzero and shows a stronger divergence than the Dirac case.
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is consistent with full quantum mechanical calculations for
the CP of a straight and parabolic nodal lines, which also
exhibits the B2=3 LL scaling (see Supplemental Material
Sec. VIII and Fig. S23 [33]).
The generic nature of our nodal-line crossing point

model and analysis (Figs. 4–6) guarantees the robustness

of the experimental observable even in real and complex
materials such as ZrSiS. In Fig. 7, we show the power-law
fitting of one of the Landau level transitions from semi-
Dirac fermions (purple dots) with function A · Bβ and the
corresponding 3σ confidence interval (purple shaded
region). The data points are consistent with the B2=3 scaling

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

FIG. 6. Nodal-line crossing point models. Three different two-band models for the crossing point of two nodal lines at k ¼ ð0; 0; 0Þ.
(a) Fermi surface (FS) near the crossing of two straight nodal lines, described by the Hamiltonian [41] H1 ¼ kyτx þ kxkzτz. (b) FS near
the crossing of two parabolic nodal lines, described by the Hamiltonian [44]H2 ¼ ðkx þ k2y − k2zÞτx þ kykzτz. (c) FS near the crossing of
one straight and one parabolic nodal line, described by the Hamiltonian H3 ¼ tk2zτ0 þ ðk2z=2mþ vkyÞτz þ kxkzτx þ Δτy, where Δ is
half of the spin-orbit coupling (SOC) gap. The band structures at kx ¼ 0 for the three different crossing points are shown in (d)–(f) for
H1, H2, and H3, respectively. (g) The FS contour at kx ¼ 0 for H1, showing an open orbit for magnetic field Bkkx. (h) The area of the
closed orbit SðEÞ at kx ¼ 0 for H2 increases linearly with energy. (i) SðEÞ increases as E3=2 at kx ¼ 0 for H3 and remains E3=2 for
energies higher than the SOC gap. Here, t ¼ 0.3, v ¼ 2,m ¼ 0.5,Δ ¼ 0.014. Note thatH3 is e − h asymmetric and exhibits open orbits
for hole doping (Fig. S30 [33]).
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and statistically different from B (conventional massive
fermions), B4=5 (three-quarter Dirac fermions [67]), and
B1=2 (Dirac fermions).
Using Landau level spectroscopy, we uncovered the

semi-Dirac fermions inside bulk ZrSiS under in-plane
magnetic fields. Our results demonstrate novel magnetic
field effect in ZrSiS not explored in previous experiments
utilizing out-of-plane magnetic fields [68–70]. In contrast
to the conventional expectation of 2D electrons at the
surface or interface of a layered material, the observed
semi-Dirac fermions reside within planes perpendicular to
the atomic layers of ZrSiS and originate from the vicinity of
points where nodal lines cross. The crossing point of nodal
lines in ZrSiS offers a unique and generic platform for
realizing semi-Dirac fermions through the merging of three
Dirac points. Our findings advance the understanding of
exotic 2D electrons in natural bulk crystals, establish the
existence of novel quasiparticles associated with crossing
nodal lines in momentum space [40,44], and open new
directions in exploring quantum geometry and topological
effects in metals.

The data files for the materials growth recipe and the
characterization data are available at [71].
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APPENDIX: METHODS

1. Voigt magneto-optical spectroscopy and
the absence of surface states

High-field magneto-optical measurements were per-
formed at T ≈ 5 K under Voigt geometry (B⊥c and B ka)
at the National High Magnetic Field Laboratory. A Bruker
Vertex 80V FTIR spectrometer combined with a 17.5 T
superconducting magnet was utilized to record the reflec-
tance spectra of ZrSiS at zero and high magnetic field.
Infrared beam from a Globar lamp was focused on the (001)
surface of ZrSiS crystal. The typical size of ZrSiS crystals
used in our measurements is∼4 × 4 × 0.3 mm3 and the spot
size of the infrared beam is smaller than the lateral size of the
sample.
We remark that there are various surface states

observed by angular-resolved photoemission measurements
[35,37,72,73] from the (001) surface of the ZrSiS family of
topological semimetals. These surface states are strictly
confined to the top and bottom surfaces of ZrSiS and do
not contribute to the out-of-plane orbital motion when the
magnetic field is applied in-plane. Therefore, we conclude
that the previously reported surface states from (001) surface
of ZrSiS cannot explain the nearly massless Dirac fermions
observed in our Voigt geometry magneto-optical data.

2. Density functional theory calculation

DFT calculations were carried out using the plane-wave
pseudopotential method as implemented in the QUANTUM

ESPRESSO simulation package [74,75]. Norm-conserving

FIG. 7. Comparison of the power law of Landau level tran-
sitions for different fermions in a log-log scale plot. Power-law
fitting (purple dashed line) of the interband Landau level
transitions (purple dots) associated with the semi-Dirac fermions
in ZrSiS. Purple-shaded area indicates the 3σ confidence interval.
Orange and black lines show the power-law scaling of LLs for
Dirac (β ¼ 0.5) and massive fermions (β ¼ 1), respectively.
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pseudopotentials [76] were used in conjunction with the
local density approximation for exchange-correlation
potential. An energy cutoff of 70 Ry for the plane waves
and a convergence threshold of 10−12 Ry were used for the
self-consistent solution of the Kohn-Sham equations. The
Brillouin zone was sampled by a 14 × 14 × 6 Monkhorst-
Pack [77] k-point mesh. Lattice constants were relaxed,
resulting in a ¼ 3.4665 Å and c ¼ 7.9148 Å. The atomic
structure within the unit cell was relaxed until the residual
forces were less than 10−4 Ry=bohr.
To ensure the numerical accuracy of the Fermi surface

calculations and related properties, an interpolation scheme
based on the maximally localized WANNIER functions
(MLWF) [78] was used. For this purpose, we used the
WANNIER90 code [79] to construct an extended tight-bind-
ing Hamiltonian for ZrSiS in the MLWF basis, which
included the 3s and 3p states for Si and S as well as the 4s
and 4d states for Zr. The interpolated band energies ensure
a correct description of the DFT band structure within the
range of at least �10 eV relative to the Fermi energy. The
WANNIER-interpolated band energies were calculated on a
ð300 × 300 × 300Þ k-point mesh, and were further used to
calculate the de Haas–van Alphen (dHvA) frequencies
using the supercell k-space extremal area finder (SKEAF)
code [80].

3. Quantum oscillations in ZrSiS with torque
magnetometry measurements

The torque magnetometry measurements up to 14 Twere
performed using a piezoresistive cantilever in a super-
conducting magnet equipped with a variable temperature
insert. A single crystal of ZrSiS is fixed to the end of a
0.30 mm cantilever arm with vacuum grease. A jet of
helium-4 gas from the inlet of the variable temperature
insert onto the cryostat kept the samples at a constant
temperature of 1.6 K during the measurements. There are
two resistive elements on the cantilever, one of which is
located at the base of the arm and experiences strain with a
change in the sample magnetization. The second resistive
element is not affected by the torque but mimics the
temperature and magnetic field dependence of the first.
These are combined with two more resistors at room
temperature to form a Wheatstone bridge that can be
balanced at low temperatures before changing the magnetic
field. A small current is applied across the bridge circuit
and the measured voltage records the changing torque τ
created by the dHvA effect.

4. Semi-Dirac fermions in the nodal-ring model

To illustrate the semi-Dirac fermions in the nodal-ring
model, we consider the nodal-ring Hamiltonian [81,82],

HRðkÞ ¼ ðk2x þ k2y − k20Þτx þ vkzτz; ðA1Þ

where v is the Fermi velocity along z, τ0 is the identity
matrix, and τx, τz are the Pauli matrices for orbitals. The
corresponding energy spectrum is

ERðkÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk2x þ k2y − k20Þ2 þ v2k2z

q
; ðA2Þ

and a Dirac nodal ring at kz ¼ 0 with radius k0 ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2y

q
can be identified. This nodal ring marks a

protected crossing of two bands along a ring in momentum
space, and at any point on the ring the spectrum is Dirac.
Remarkably, at kx ¼ �k0, the projection of constant energy
contours onto the ky − kz plane yields contours of the semi-

Dirac form [14,82,83] ESD ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k4y=4m2 þ v2k2z

q
that

describes a massive fermion along ky (m ¼ 0.5) and
massless Dirac fermion along kz (see Supplemental
Material Video 1 [33]). Under the in-plane magnetic field,
the area of the cyclotron orbit at energy E is
SðEÞ ∝ E3=2

ffiffiffiffiffiffiffiffiffi
m=v

p
, which leads to the B2=3 scaling of

LLs [10,82]. Here, we briefly describe the solution of the
Hamiltonian in an in-plane magnetic field B directed along
x that reveals the main features of the absorption spectrum.
Choosing the Landau gauge A ¼ ð0; Bz; 0Þ and rescaling
the coordinate z → lBu with magnetic length lB ¼ k0=

ffiffiffiffi
B

p
and defining field scale B0 ¼ k20 and rescaled field
b ¼ B=B0, we have HRðkÞ ¼ 1=lB½VðuÞτx − i∂uτz� with
VðuÞ ¼ 1=

ffiffiffi
b

p f−½1 − ðk2xÞ=ðk20Þ� þ bu2g. From this form
of V one can see that for ½1 − ðk2xÞ=ðk20Þ� ≠ 0, V is
minimized at a particular u2 expanding around the two u
values that give Dirac spectra, while when k2x ¼ k20 we have
a semi-Dirac equation. We have solved the corresponding
Schrödinger equation numerically by observing that at each
kx, H2

R can be diagonalized trivially yielding two second-
order differential equations that we solve by discretization.
The current operator can then be obtained as a differential
operator and applied to the solutions. Integration of the
resulting absorption spectrum over kx gives the continuum
absorption, with singularities at the upper edge scaling as
B1=2 and lower edge as B2=3, consistent with previous
results [82]. While the nodal-ring model is not directly
relevant to the interpretation of our experimental results, it
does display the generic features of an absorption con-
tinuum with upper and lower edges scaling differently with
B, and with the characteristic Dirac and semi-Dirac
behaviors.

5. Semiclassical quantization of the
crossing nodal-line model

To obtain the Landau level scaling of the semi-Dirac
fermion at the CP of nodal lines, we consider the following
Hamiltonian:
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H3 ¼ tk2zτ0 þ
�
k2z
2m

− vky

�
τz þ kxkzτx; ðA3Þ

which has an extremal Fermi surface at kx ¼ 0 for Bkkx.
This model also describes the crossing of one straight and
one curved nodal line and is related to the model Eq. (2) by
a 45-deg in-plane rotation. The corresponding eigenvalue is
given by

E3 ¼ tk2z �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k4z
4m2

−
vk2zky
m

þ v2k2y þ k2xk2z

s
: ðA4Þ

For a magnetic field B applied along kx, the eigenvalue
spectrum has extremal values at kx ¼ 0. Without loss of
generality, we consider the Fermi surface of the electron
pockets (m > 0) and choose v > 0, E > 0, and
0 < t < ð2mÞ−1. The cross section of the electron Fermi
surface at constant energy E is then determined by

E ¼ tk2z �
k2z
2m

− vky; ðA5Þ

which is bounded by two parabolic curves:

kþy ¼ E
v
−
t − 1

2m

v
k2z and k−y ¼ −

E
v
þ tþ 1

2m

v
k2z : ðA6Þ

These two parabolic curves intersect at k2z ¼ E=t≡ a2,
forming a crescent-shaped closed contour for electron
orbits [see inset of Fig. 6(i)]. If k2z > E=t, the hole FS is
obtained with E ¼ tk2z − ðk2z=2mÞ − vky. The area of the
electron FS contour can be obtained by evaluating the
difference between the areas of the parabolic segments of
k−y and kþy :

SðEÞ ¼ S−ðEÞ − SþðEÞ ¼
Z

a

−a
ðkþy − k−y Þdkz

¼
Z

a

−a
2E=v

�
1 −

k2z
a2

�
dkz ¼

8

3

E3=2ffiffi
t

p
v
: ðA7Þ

Following Onsager’s quantization relation
SðEÞ ¼ 2πðnþ γÞeB=ℏ, where n is the Landau level index
and γ is the phase factor, we obtain the B2=3 scaling of
LLs: En ∝ ðnþ γÞ2=3B2=3.
In the presence of finite SOC, the degeneracy at the semi-

Dirac point is lifted but the characteristic band dispersions
and LL scaling recover at energies higher than the SOC
gap. We illustrate the case with SOC using the following
Hamiltonian based on Eq. (A3):

H0
3 ¼ tk2zτ0 þ

�
k2z
2m

− vky

�
τz þ kxkzτx þ Δτy; ðA8Þ

where 2Δ is the size of the SOC gap. The area of the
electron FS contour with SOC becomes

SSOCðEÞ ¼
8

3

ffiffiffiffiffiffiffiffiffiffiffiffiffi
EþΔ

p ffiffi
t

p
v

×

�
eE

�
1− 2

Δ
EþΔ

�
E− eK

�
1− 2

Δ
EþΔ

�
Δ
�
;

ðA9Þ

where eE½x� and eK½x� denote the complete elliptic integral
of the second kind and first kind, respectively.
Equation (A9) can be solved numerically and the resulting
SSOCðEÞ is shown in Fig. 6(i), where the SSOðEÞ ∝ E3=2

behavior is recovered at energies higher than around 2Δ.
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