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Exciton crystal melting and destruction by disorder in a bilayer
quantum Hall system with a total filling factor of one
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A bilayer quantum Hall system with a total filling factor of one was studied in the regime of a heavy layer
imbalance in a recent transport experiment (Y. Zeng et al., arXiv:2306.16995), with intriguing new findings. We
demonstrate in this paper that (1) the exciton Wigner crystal in this regime can melt into a superfluid phase,
giving rise to reentrant superfluid behavior; and (2) in the presence of disorder, electron and hole Wigner crystals
in the two layers go through a locking-decoupling transition as the layer separation increases, resulting in a
sudden change in the counterflow conductance. A comparison will be made with the findings of the experiments.

DOI: 10.1103/PhysRevB.110.195307

I. INTRODUCTION

A bilayer quantum Hall system with a total filling factor
ν1 + ν2 = 1 has been actively studied for several decades
[1–24]. The long-lasting interest in it is due to its extremely
rich phase diagram and the fascinating physics associated with
the novel phases and transitions among them, which is yet
to be exhausted. A recent transport experiment [25] focused
on a regime that was underexplored, namely when the two
layers are heavily imbalanced, such that �ν = ν1 − ν2 � 1,
namely ν2 � 1 is the minority layer of electrons, and the
hole filling factor in the majority layer 1 is 1 − ν1 = ν2. The
experiment observed an exciton superfluid-insulator transition
predicted more than 20 years ago [10], and revealed some new
surprises. The purpose of this paper is to provide theoretical
understandings of two of the new findings.

We start by briefly summarizing the relevant observations
and basic idea/conclusion of our theoretical work. The exper-
imentalists pass a (drive) current through one of the layers,
and measure the current and/or voltage response of the same
as well as the opposite layer; the latter corresponds to the drag
response [26]. Symmetric and antisymmetric combinations of
these responses form normal and counterflow response func-
tions; the latter is usually attributed to the flow of interlayer
excitons which are bound pairs of electrons in one layer and
holes in the other, assuming they are present and dominate the
counterflow transport channel. Bounding between electrons
and holes results in the suppression of the free-charge carrier,
and hence an insulating state of net in-plane charge trans-
port. The excitons, on the other hand, may either condense
to form a superfluid (SF), or crystallize and form an insu-
lating Wigner crystal (WC) state. We will demonstrate that
under appropriate conditions an exciton Wigner crystal may
melt into a superfluid state, giving rise to reentrant superfluid
behavior in the counterflow channel seen in the experiment.
We further demonstrate that the presence of an uncorrelated
disorder potential in the two layers can disrupt the formation
of the interlayer excitons, driving a transition between the ex-
citon Wigner crystal and decoupled electron and hole Wigner

crystals in each layer. This transition manifests itself in some
transport anomalies observed in the counterflow channel. It
should be noted that there could be other phase transitions,
e.g., transitions between the decoupled fractional quantum
Hall phase and superfluid at �ν = 1/3 [27]. They will com-
pete with the Wigner crystal phase when |�ν| moves away
from 1.

The rest of the paper is organized as follows. In Sec. II,
we calculate the critical temperature of a bilayer exciton
superfluid using two previously established effective models
[7,10] at a layer imbalance 1 − |�ν| � 1, and demonstrate
it is often higher than the melting temperature of an exciton
Wigner crystal. As a result, the crystal melts into a superfluid
when this is the case. In Sec. III, we consider the interplay
of disorder and interlayer coupling and analyze the compe-
tition between them. Clearly, interlayer Coulomb coupling
drives the formation of interlayer excitons, while uncorrelated
disorder favors the formation of decoupled electron and hole
Wigner crystals in each layer. By comparing the energy gains
from exciton formation and uncorrelated electron and hole
WC distortion in the two layers, we obtain the phase dia-
gram of the system. Some concluding remarks are provided
in Sec. IV.

Unless otherwise stated, the magnetic length is assumed to
be the length scale, i.e., lB = 1.

II. EXCITON SUPERFLUID AND MELTING
OF A WIGNER CRYSTAL

We start by discussing the phases relevant to this section.
It is well established that a single-layer two-dimensional (2D)
electron gas forms a Wigner crystal at zero temperature for
small ν [28–44]. Putting two layers together and holding the
total filling factor ν1 + ν2 = 1, the electron (in the minority
layer 2) and hole (on the majority layer 1) Wigner crystals
with an identical structure lock into an exciton crystal [10],
which may melt due to either quantum or thermal fluctuations.
Comparisons between the drag current versus drive current,
and parallel flow versus counterflow conductance, indicate
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(a) (b)

FIG. 1. Finite-temperature phase diagrams near �ν = 1 based on Eqs. (8) and (9). The green dashed line is the natural extension of the
zero-temperature phase boundary between the exciton superfluid and Wigner crystal phases. The blue line is the superfluid KT temperature.
The orange line is the melting curve of an exciton Wigner crystal. (a) Case with d > dc � 2 in which the exciton Wigner crystal can melt into
either a superfluid or normal liquid, depending on �ν. (b) Case with d < dc where the exciton Wigner crystal can only melt into a superfluid.
It should be noted that region far from �ν = 1 shall not be taken too literally.

that the resulting zero-temperature phase is indeed correlated
between the two layers [25]. Electrons in one layer and holes
in the other tend to bind and condense into an exciton super-
fluid when d is small and 1 − |�ν| is not too close to 1, and
form an exciton Wigner crystal otherwise; see the orange line
of Fig. 2 for the schematic zero-temperature phase diagram
near �ν = 1. With increasing temperature the exciton Wigner
crystal melts into a liquid. We find, surprisingly, that under
appropriate conditions the resultant liquid state may be a
superfluid.

To understand this we go back to zero temperature, where
the exciton superfluid and Wigner crystal phases compete with
each other. They are (most likely) separated by a first-order
phase boundary, allowing us to consider thermal effects on
them at finite temperature separately. As discussed earlier, the
exciton Wigner crystal melts into a liquid at some melting
temperature which we estimate below. The exciton superfluid,
on the other hand, goes through a Kosterlitz-Thouless (KT)
transition and becomes a normal fluid. If the superfluid critical
(KT) temperature is lower than the melting temperature, we
expect WC melts into a normal fluid, which is the usual
situation. If it turns out the KT temperature is higher than
the melting temperature, we conclude that the WC melts into
a superfluid instead, resulting in reentrant superfluidity. The
resultant (schematic) phase diagram takes the form of Fig. 1.
Our results compare favorably with those of Ref. [25].

To determine the phase diagram we start by calculating the
superfluid stiffness which determines the KT temperature of
the superfluid phase, and then compare it with the melting
temperature of the WC.

A. Phase stiffness and Kosterlitz-Thouless temperature
of an exciton superfluid

When �ν is fixed, the low-temperature superfluid behavior
can be described by an effective XY model. In this section we
calculate the phase stiffness from two different models: a
spin-1/2 easy-plane ferromagnet [7] and a dilute exciton
[10]. Once the phase stiffness ρs is obtained, the critical

temperature of SF is bounded by Tc = πρs

2 . It turns out in that
the vicinity of �ν = 1, the two models lead to the same result.
Let Q2 = e2/(4πε) for simplicity.

1. Spin-1/2 easy-plane ferromagnet

To begin with, we set up the notations here. Letting ν1 =
ν↑ = 1 − δ, ν2 = ν↓ = δ, we have �ν = (1 − 2δ) = cos θ =
2(S↑ − S↓) = mz and δ = 1−�ν

2 = sin2(θ/2), and the density
of an electron in one layer

n = δ/2π = sin2(θ/2)/2π. (1)

The gradient energy density of the xy components of local
spin is

ρE

2
[(∇mx )2 + (∇my)2], (2)

where ρE = − ν
32π2

∫ ∞
0 V E

k h(k)k3dk, and V E
k = V A

k e−kd , V A
k =

2πQ2

k are Fourier transforms of the intralayer Coulomb poten-
tial and interlayer Coulomb potential, respectively [7]. h(k) =
ν

2π

∫
d2r(g(r) − 1) exp(−ik · r) and g(r) = 〈c†(r)c(0)〉 are

particle-hole correlations of the Laughlin function in momen-
tum space and real space.

For ν = 1, g(r) = exp(−r2) and h(k) = − exp(−|k|2
2 ),

hence we have

ρE =− Q2

16π

[
d −

√
π

2
(d2 + 1)e

d2

2 erfc (d/
√

2)

]
≡ Q2 f (d )

16π
,

(3)
where d is the interlayer spacing, f (d ) = √

π
2 (d2 +

1)e
d2

2 erfc(d/
√

2) − d , and erfc(x) = 1 − erf (x) is the com-
plementary error function.

After we obtain ρE , the phase stiffness of the XY spin is
ρs = ρE sin2 θ ,

ρXY
s = Q2 f (d )

4π

sin2(θ )

4
= Q2 f (d )

8π

1 − (�ν)2

2
, (4)

and the critical temperature TKT � π
2 ρs.
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2. Dilute dipolar exciton

From Ref. [10] the inverse effective mass of the exciton is

m(d )−1 = Q2

2

∫ ∞

0
x2e−xd−x2/2dx

= Q2

2

(√
π

2
(d2 + 1)e

d2

2 erfc (d/
√

2) − d

)

= Q2

2
f (d ). (5)

The boson spectrum given by the Bogoliubov theory (see, e.g.,
Chap. 18 of Ref. [45]) is

Ek =
√

ε2
k + 2nṼq=0εk

k→0−−→
√

2nṼ0εk = h̄vsk, (6)

where the effective interaction Ṽk = 2�Vk −
2
N

∑
q �Vqe−q2/2, �V = V A − V E [10]. The Goldstone

mode velocity vs =
√

nṼ0
m is also reported in Ref. [10].

Thereafter the superfluid phase stiffness ρs = n
m can be

obtained from nvs = ρs∇θ and vs = ∇θ/m where n is given
in (1):

ρexciton
s = Q2 f (d )

4π
sin2 θ

2
= Q2 f (d )

8π
(1 − �ν). (7)

This expression of superfluid density coincides with the re-
sult (4) when �ν → 1 (or θ → 0) since 1−(�ν)2

2 = 1 − �ν −
(1 − �ν)2/2 � 1 − �ν.

We will stick to Eq. (7) and use TKT = πρexciton
s /2 as our

estimate of KT temperature,

tKT ≡ TKT/Q2 = f (d )

16
(1 − �ν). (8)

B. Melting temperature of an exciton Wigner crystal
and phase diagrams

In this section we compare the melting temperature of an
exciton Wigner crystal, Tm, with the KT temperature estimated
above, and determine the finite-temperature phase diagram of
the system.

The melting temperature of a classical exciton Wigner
crystal was reported to be Tm ≈ 0.0907 d2Q2

a3 [46,47]. The rela-

tion a = [
√

3
8π

(1 − �ν)]−1/2 can obtained from 1−�ν
2 = ne

1/2π
,

where ne = 2/(
√

3a2). We then have dimensionless tempera-
tures

tm = 0.0907d2

[√
3

8π
(1 − �ν)

]3/2

, (9)

where tm = Tm/Q2. Comparing Eq. (9) with Eq. (8), we are
able to determine the finite-temperature phase diagrams in
Fig. 1 for two different situations, both of which are included
in the zero-temperature phase diagram in Fig. 2. Two situ-
ations are separated by dc � 2. When d > dc, the Wigner
crystal could melt into either a superfluid or normal liquid,
otherwise it only melts into a superfluid. In the dilute limit
1 − �ν � 1, the exciton Wigner crystal always melts into a
superfluid phase since tm < tKT is always true.

FIG. 2. Schematic zero-temperature phase diagrams near �ν =
1. The orange region denotes the superfluid phase which, due to
disorder, terminates before �ν = 1 is reached. The orange solid
line is the schematic zero-temperature phase boundary between the
superfluid and Wigner crystal. The blue and blank regions are both
Wigner crystals at zero temperature, while the blue one melts into
a superfluid with increasing temperature and the blank one melts
into a normal liquid (see the arrows in the right panel). The blue
dashed line is obtained by equating Eq. (9) with Eq. (8). The red
dotted line marked by d∗ = 0.6, reported in Ref. [10], is obtained by
comparing the correlation energy per exciton in the superfluid phase
and kinetic energy in the crystal phase, above which the superfluid
phase is unfavored.

Treating WC as classical leads to an overestimation of
Tm, because quantum fluctuation tends to lower Tm as well.
Since our goal is to demonstrate the possibility of Tm < TKT,
they are justified, and does not change the phase diagram
qualitatively. A more serious issue is neglecting the effects of
disorder, which are very important when �ν → 1, where the
excitons are destroyed. This is the focus of the next section.
The resultant phase there is a single-layer integer quantum
Hall state, which dominates the experimental phase diagram
there. One should keep this in mind when comparing with
the theoretical phase diagrams in this section obtained without
taking these into account.

III. LOCKING-DECOUPLING TRANSITION
OF A BILAYER WIGNER CRYSTAL

In the previous section we discussed the various phases that
can be formed by interlayer excitons, and neglected the effects
of disorder. Reference [25] finds a single-layer integer quan-
tum Hall state when �ν is very close to 1, in which the two
layers are essentially decoupled. They also report evidence of
a transition into the exciton Wigner crystal phase discussed
above. We argue below the existence of the decoupled phase
is stabilized by disorder, which also drives the transition. In
the absence of a disorder potential, the electron and hole WCs
in the two layers always align themselves with each other
to minimize the Coulomb energy, resulting in the exciton
WC [10]. On the other hand, the disorder potential, which
is different in the two layers (assumed to be uncorrelated for
simplicity), distorts the two WCs in uncorrelated ways, which
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tends to disrupt the formation of excitons and decouples the
two layers. By comparing the energy gain and loss between
the disorder potential energy and interlayer Coulomb energy,
we are able to obtain the transition line for the two layers to
become locked/decoupled.

A. Disorder potential energy

We introduce the Gaussian white noise random potential
Vi(r) that is uncorrelated between the two layers,

〈Vi(r)Vj (r′)〉 = �2δ(r − r′)δi j, (10)

where i, j = 1, 2 are layer indices. The pinning length R of a
2D Wigner crystal, defined as 〈[u(0) − u(R)]2〉 � a2, where a
is the lattice constant and u(R) is the field of lattice distortion,
is given by balancing the energy gain of the random potential
and the energy cost of lattice distortion [48,49]

Rne� = ca2, (11)

where ne = 1/(Aca2), Ac = √
3/2 is the density of the elec-

tron, and c is the shear modulus. The left- and right-hand sides
of this equation stand respectively for the random potential en-
ergy gain and elastic energy cost due to the lattice distortion.
Since this amount of energy is for a region of linear size R,
dividing by R2 we obtain the density of the random potential
energy (for convenience in density comparison we keep one
factor of ne here)

εr = Rne�

R2
= ne�

2

cAca4
. (12)

For a single-layer Wigner crystal of an electron-type inter-
action and dipole-type interaction we simply take the shear
modulus from [50]

c1(d � a) ≈ 2.5 D2

a5 , dipole,

c2 = 0.3 Q2

a3 , charge,
(13)

where Q2 = e2

4πε
, D2 = e2d2

4πε
. The transition from a coupled to

decoupled picture lowers the disorder potential energy (den-
sity) by

�εr = 2ne�
2

c1Aca4
− ne(

√
2�)2

c2Aca4
= 2ne�

2

Aca4

(
1

c1
− 1

c2

)
, (14)

where
√

2� is the effective random potential strength seen
by the bilayer [since V (r) = V1(r) + V2(r) has 〈V (r)V (r′)〉 =
2�2δ(r − r′)]. On the other hand, in d → ∞ the inter-
layer Coulomb energy is diminished and what we have is
merely two copies of a single-layer Wigner crystal. Therefore
c1(∞) = 2c2. In this limit �Er is exactly half of that for
individual pinning. In practice, for a specific d in experiments,
the effective spacing d/a has an upper bound d/

√
2, which is

generally smaller than 1 (see below). For such considerations,
we will simply take the dipole approximation c1 = 2.5D2/a5.

�εr = 2ne�
2

AcQ2a

(
1

0.3
− 1

2.5d2/a2

)

= q
neQ2

a

(
1

0.3
− 1

2.5d2/a2

)
, (15)

where

q = 2�2

AcQ4
= 4�2

√
3Q4

(16)

is the dimensionless random potential strength.

B. Interlayer correlation energy cost

As we demonstrated above, the system can lower the disor-
der potential energy by distorting the electron and hole WCs
in the two layers independently, compared to that of the ex-
citon WC. Doing that, however, decouples the two layers and
destroys the excitons, resulting in an increase in the interlayer
Coulomb interaction energy. In this section we calculate this
energy cost.

In this section we let Q2

a be the energy scale and a, the
lattice constant of 2D triangular lattice, be the length scale.
We are evaluating the interlayer correlation energy difference
of Wigner crystal versus homogeneous electron gas (since the
random relative distribution of charges in one layer is seen on
average as a homogeneous gas of charge by the other layer),
i.e.,

�Ee =
∫

dr[g1(r) − g2(r)]
−1√

r2 + d2

=
∫

dr

[∑
i

δ(r − Ri ) − 1/Ac

]
1√

r2 + d2
, (17)

where g1(r) = 1/Ac, g2(r) = ∑
i δ(r − Ri ), and Ac = √

3/2
is the area of unit cell. Compared with Eq. (15), a transition
between the locked/decoupled phase will be determined.

In the small d limit, apart from a divergent 1/d term, this
energy difference is the classic problem of static energy of a
2D Wigner crystal. That is (see, e.g., Refs. [51,52]),

lim
d→0

[�Ee(d ) − 1/d] = −4.213 423. (18)

We now calculate this energy difference for general d . Let
�Ee = E0 + E1 + E2, where E0 = 1/d and

E1 = 1√
π

(∫ π

0
+

∫ ∞

π

)
dtt−1/2e−td

∑′
e−tR2

i ≡ E11 + E12,

E2 = − 1

Ac

∫
dr

e2

√
r2 + d2

= − 1√
πAc

∫ ∞

0
dt

∫
dre−tr2

e−td2
t−1/2

= −
√

π

Ac

∫ ∞

0
dtt−3/2e−td2

= −
√

π

Ac

∫ π

0
dtt−3/2e−td2 − 2

Ac

[
e−πd2 − πd erfc(

√
πd )

]
,

(19)

where 
(n)z−n = ∫ ∞
0 t n−1e−zt dt is used in rewrit-

ing 1/
√

d2 + r2 = 1√
π

∫ ∞
0 t−1/2e−t (d2+r2 )dt , and

√
π

∫ ∞
π

dtt−3/2e−td2 = 2√
π

[e−πd2 − πd erfc(
√

πd )].
∑′

stands for the summation excluding Ri = 0.
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Letting t = πx, we have

E12 =
∫ ∞

1
dxx−1/2

∑′
e−πx(d2+R2

i ) =
∑′

erfc
[√

π
(
d2 + R2

i

)]/√(
d2 + R2

i

)
, (20)

where
∫ ∞

1 x−1/2e−πxa2
dx = erfc(

√
πa)/a is utilized. To calculate E11 we first complete it with an Ri = 0 term,

E11 = 1√
π

∫ π

0
dtt−1/2e−td2

�
 (t/π ) − 1√
π

∫ π

0
t−1/2e−td2

dt =
√

π

Ac

∫ π

0
dtt−3/2e−td2

�
′ (π/t ) − erf (
√

πd )/d

= 1

Ac

∫ ∞

1
dxx−1/2e−πd2/x

∑′
e−πxK2

i − erf (
√

πd )/d +
√

π

Ac

∫ π

0
dtt−3/2e−td2

, (21)

with �
 (t ) ≡ ∑
Ri∈
 e−πtR2

i , 
 being a lattice. From the first line to the second line we used
∫ 1

0 t−1/2e−πtd2
dt = erf (a

√
π )/a and

�
 (t ) = t−n/2v(
)−1�
′ (1/t ), where 
′ is the dual of lattice 
, v(
) is the measure of the unit cell of 
, and n is the dimension
of the lattice 
 (see, e.g., p. 115 of Ref. [53]); from the second line to the third line, points of the dual lattice are denoted as Ki

and we let t = π/x for all Ki ≡ |Ki| �= 0 terms. Note that the very last divergent term in E11 cancels the divergent part of E2.
Since ∫ ∞

1
dxx−1/2e−π (d2/x+K2

i x) = e−2πdKi{1 + erf[
√

π (d − Ki )]} + e2πdKi{1 − erf[
√

π (d + Ki )]}
2Ki

≡φ−1/2(d, Ki ), (22)

we have

E1 + E2 = −erf (
√

πd )

d
− 2

Ac
[e−πd2 − πd erfc(

√
πd )] +

∑′ erfc
[√

π
(
d2 + R2

i

)]
√

d2 + R2
i

+ 1

Ac

∑′
φ−1/2(d, Ki ). (23)

For a sanity check, letting d → 0 we have

E1 + E2 = −2

(
1 + 1

Ac

)
+

∑′
erfc(

√
πRi )/Ri + 1

Ac

∑′
erfc(

√
πKi )/Ki

∼= −2

(
1 + 1

Ac

)
+ 6 erfc(

√
π ) + 6 erfc(

√
π/Ac) = −4.213 475, (24)

where we took the nearest lattice point approximation, i.e., only six terms with the smallest Ri, Ki in the those lattice summations
are kept. Nevertheless, the result matches the known static energy for a 2D Wigner crystal up to the fourth digit.

For general d , let δE (d ) be the nearest lattice point approximation of E1 + E2 in Eq. (23),

δE (d ) = −erf (
√

πd )

d
− 2[e−πd2 − πd erfc(

√
πd )]

Ac
+ 6 erfc

[√
π (d2 + 1)

]
√

d2 + 1

+3

{
e−2πd/Ac

(
1 + erf

[√
π

(
d − 1

Ac

)])
+ e2πd/Ac erfc

[√
π

(
d + 1

Ac

)]}
, (25)

1/Ac = 2/
√

3 comes from the lattice constant of the
dual lattice. It behaves asymptotically in the d → ∞
limit as δE (d ) + 1/d ∼ 6e−4πd/

√
3. Also for d → ∞,

erfc[
√

π (d2 + R2
i )]/

√
d2 + R2

i ∼ e−π (d2+R2
i )/[π (d2 + R2

i )]

and erfc(
√

πx) ∼ e−πx2
/(πx) results in

φ−1/2(d, Ki ) �
{
2e−2πdKi + e−π (d2+K2

i )/[π (d + Ki )]
}
/(2Ki ).

(26)

All terms generated from farther lattice points are dominated
by 6e−4πd/

√
3. In the sense that δE (d ) is a good approximation

to E1 + E2 for both d → 0 and d → ∞, we could safely take

�Ee
∼= 1/d + δE (d ). (27)

Putting back dimensions, the Coulomb energy density dif-
ference is, with δE defined in Eq. (25),

�εe
∼= ne

Q2

a
[a/d + δE (d/a)]. (28)

C. Phase diagram

Comparing (15) with (28) we can immediately see that the
transition between coupled/decoupled phases is determined
by the root of the dimensionless equation

q

0.3
x2 − x − q/2.5 − x2δE (x) = 0,

x = d/a = d

√√
3

8π
(1 − �ν), (29)
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FIG. 3. Phase diagram of the coupled/decoupled Wigner crystal
plotted from Eq. (29). q = 4�2√

3Q4 characterizes the random potential

strength, where � is defined in Eq. (10) and Q2 = e2/(4πε). The
region under the surface is a decoupled electron-hole Wigner crystal
while the region above it is an exciton Wigner crystal.

where q, defined in Eq. (16), is, up to a constant, the energy
scale of the random potential comparing with the Coulomb
energy. Putting together, we can draw a phase diagram in
Fig. 3 for the decoupled electron-hole Wigner crystal and
exciton Wigner crystal.

IV. CONCLUDING REMARKS

In this paper, we analyzed the competition between dif-
ferent phases in a bilayer quantum Hall system with a total
filling factor of one driven by temperature and/or disorder.
Our results compare favorably with a recent experiment [25].
Particularly interesting (and surprising) among our findings is
that the exciton superfluid can (often) result from melting an
exciton WC. This bears a remarkable similarity to the observa-
tion [54] that the melting of electron WC at a low filling factor
results in fractional quantum Hall liquids. Similar phenomena
were observed very recently in systems supporting (fractional)
anomalous quantum Hall states [55]. We speculate that the
melting of electron or hole WC in these systems resulted in
the formation of fractional anomalous quantum Hall states.
We also note that it is in principle possible to have the WC
and SF orders coexist, resulting in an exciton supersolid. It is
a very interesting future direction of research to look for such
a novel phase, both experimentally and theoretically.
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