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Pinning of vortices by impurities in unconventional superconductors
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We carry out a microscopic study of a vortex lattice in a strongly correlated, type-II, d-wave superconductor
(SC) using Bogoliubov-de Gennes (BDG) formalism. In weak-coupling theory, a commonly accepted truism is
that a vortex binds to an impurity. We demonstrate that in a class of unconventional SCs proximity to a Mott
insulator, the binding of a vortex to an impurity depends on relevant parameters. In particular, we illustrate
this dependency on the sign of impurity, i.e., attractive or repulsive, as well as doping. We emphasize that
this seemingly unanticipated behavior arises from strong correlation effects and is absent in weak-coupling
descriptions.
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I. INTRODUCTION

Individual effects of disorder and orbital magnetic field on
a superconductor (SC) are well established by now [1–3].
However, the response of an SC to the simultaneous pres-
ence of impurities and the external magnetic field is more
subtle [4], particularly for an unconventional SC [5]. From
a technological perspective, controlled pinning of a super-
conducting vortex lattice (VL) is of keen interest, because it
could enhance the critical current in the SC [6–8]. While an
impurity (or inhomogeneities, in a broader sense) is expected
to trap a vortex in a conventional SC, unconventional SCs
proximity to a Mott insulator, often driven by strong electronic
correlations, feature intriguing responses to disorder or inho-
mogeneity [9–11].

The effect of disorder on both conventional and uncon-
ventional superconductors (SCs) has been under extensive
scrutiny by both theoretical [12–15] and experimental [16–18]
techniques. The stark contrast in the role of nonmagnetic
impurities on s-wave superconductors (sSC) and d-wave su-
perconductors (dSC) attracted initial attention, highlighting
the remarkable immunity of sSC to disorder (known as
Anderson’s theorem [19]), whereas Abrikosov and Gor’kov
predicted extreme sensitivity of dSC to impurities [20,21].
Subsequent research integrated state-of-the-art experimental
and theoretical techniques, comprehending predominantly the
physics of disorder-driven superconductor-insulator transition
[22–26].

Another route to make a pure superconductor inhomoge-
neous is by applying an orbital magnetic field. It is well known
that the magnetic field penetrates a type-II SC by generating a
periodic array of Abrikosov vortices [27], which has a normal
metallic core of size ξ , and with circulating currents around
each vortex. These current rings around each vortex extend
up to the scale of the penetration depth λ. With increasing
H , the density of vortices increases and overlaps at a crit-
ical field strength Hc2, and beyond that the superconductor
transitions into a metal. Vortices are like “punched holes”

in the superconducting pairing amplitude �. Interestingly,
impurities too deplete the pairing amplitude around it. Thus,
it is natural to expect, at least naively, that a type-II SC in the
combined presence of impurities and orbital magnetic field,
vortex centers and impurities attract each other. Such pinning
of vortices at impurities is crucial for their application in the
electric power industry and even in the search of fundamental
particles in the broad area of high-energy physics [28,29].
Theoretical attempts to grasp the routes to controlled pinning
have been put forward [5,30–32]; however, no convergence
has yet been reached. A complementary approach, in which
vortices were treated as interacting classical objects and their
equation of motion is addressed in the background of impu-
rities, described transport in a system of disordered vortex
lattice [33–38].

How are inhomogeneities arising from vortices and impu-
rity intertwined? The pinning of a vortex by an impurity seems
natural in a conventional sSC. Both impurity and magnetic
field deplete the SC pairing amplitude individually, and this
costs condensation energy. The energy cost is minimized if
the depletion of pairing amplitude from the two sources (i.e.,
the vortex and impurity) overlaps in space. As a result, vor-
tices (and hence the whole VL) get pinned by impurities in
conventional superconductors.

The situation is more subtle for an unconventional SC’s
proximity to a Mott insulator. Unlike their conventional
cousins, the vortices in an unconventional SC accumulate
charge carriers in the core region [39–43]. In particular, it has
recently been established [44,45] that the electronic density
profile in an unconventional vortex core depends on doping. In
this backdrop, the effect of sparsely distributed impurities (ef-
fectively emulating the physics of a single impurity [46,47])
on the mixed state of a strongly correlated superconductor
becomes more challenging.

In this paper, we address the issue of binding a vortex in a
strongly correlated dSC in the proximity of an impurity. Our
key findings are: (a) In the presence of a strong correlation, the
binding of vortex to impurity depends on both the nature of the
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impurity as well as doping. (b) The local electronic structure
is mapped out. (c) We show how the LDOS at the impurity
site, which is routinely obtained from STS studies, determines
the binding of a vortex to an impurity in a strongly correlated
d-wave superconductor.

II. MODEL AND METHOD

We describe our two-dimensional (2D) strongly correlated
d-wave superconductors (dSC) by the Hubbard model [48],

HHubb = −t
∑
〈i j〉,σ

ĉ†
iσ ĉ jσ + h.c. + U

∑
i

n̂i↑n̂i↓ − μ
∑

iσ

n̂iσ .

(1)

Here, t and U denote the hopping amplitude and on-site Hub-
bard repulsion respectively, c†

iσ (ciσ ) creates (annihilates) an
electron on site i with spin σ on a 2D square lattice, and n̂iσ

is the spin-resolved number operator. Strong electronic corre-
lations imply U >� t . In this limit, the low-energy physics
of the above HHubb is well described [49] by the t-J model
[50]. The vortices are generated by an orbital magnetic field
perpendicular to the 2D plane. Including this magnetic field,
as well as impurities, our t-J model reads as

Ht−J = −t
∑
〈i j〉,σ

(eiφi j c̃†
iσ c̃ jσ + H.c.) +

∑
iσ

(Vi − μ)n̂iσ

+ J
∑
〈i j〉

(
S̃i · S̃j − n̂i · n̂i

4

)
. (2)

Here, the magnetic field H = ∇ × A and the vector poten-
tial A (in Landau gauge A = Hxŷ) is incorporated through
the Peierls factor, φi j = π

φ0

∫ j
i A · dl, where φ0 = h/2e is the

superconducting flux quantum, and Vi is the impurity strength
at site i. Note that c̃†

iσ (c̃iσ ) appearing in the t-J model are not
the standard creation (annihilation) operators, as they incor-
porate the restriction on double occupancy enforced by that
strong on-site Hubbard repulsion. Thus, c̃iσ = ciσ (1 − niσ̄ ) is
the annihilation operator on the restricted Hilbert space of no
double occupancy. μ is the chemical potential that fixes the
average density of the system to a desired value ρ. Here, Si is
the spin operator and the exchange interaction J = 4t2

U .
The methodology for studying inhomogeneous super-

conductors arising satisfies the Hamiltonian in Eq. (2) is
Bogoliubov-de Gennes (BdG) mean-field theory in which
Ht−J decomposes to

HMF =
∑
iδσ

(
−tgt

i,i+δ − J

4

(
3gJ

i,i+δ − 1
)
τ δ

i

)
eφδ

i c†
iσ ci,i+δσ

+
∑

iδ

[(
−J

4

(
3gJ

i,i+δ + 1
))

�δ
i c†

i↑c†
i+δ↓ + H.c.

]

+
∑

iσ

(Vi + μi )n̂iσ (3)

where the self-consistent order parameters are super-
conducting paring amplitude, site density, and bond

densities,

�δ
i = 1

2

∑
σ

〈ψ0|ĉiσ ĉi+δσ̄ |ψ0〉,

ni =
∑

σ

〈ψ0|ĉ†
iσ ĉiσ |ψ0〉,

τ δ
i = 1

2

∑
σ

〈ψ0|ĉ†
iσ ĉi+δσ |ψ0〉. (4)

We have written the Hamiltonian (3) on bonds connecting
sites i and j, where j = i + δ, with δ = ±x̂,±ŷ. μi is the
effective chemical potential, which anchors the average den-
sity to the desired value (see Appendix E for details). The
suppression of double occupancy arising from strong corre-
lations is implemented via Gutzwiller approximation (GA)
[51] in which t and J get renormalized, ti j → tgt

i j Ji j → JgJ
i j ,

here gt
i j and gJ

i j are Gutzwiller renormalization factors (GRFs)
[51,52]. Within GA, expectation value of an operator(Ô) can
be written as

〈ψ |Â|ψ〉 ≈ gA
〈ψ0|Â|ψ0〉
〈ψ0|ψ0〉 (5)

where gA represents the GRFs. Here, ψ and ψ0 represent the
wave functions with and without the restriction on the doubly
occupied states in the Hilbert space, respectively.

GRFs depend on the local density as

gt
i j = gt

ig
t
j ; gt

i =
√

1 − ni

1 − ni/2
,

gJ
i j = gJ

i gJ
j ; gJ

i = 1

1 − ni/2
. (6)

We diagonalise HMF employing Bogoliubov-de Gennes
(BdG) transformations,

ĉiσ =
∑

n

(γnσ ui,n − γ
†
nσ̄vi,n) (7)

where γnσ and γ †
nσ are quasiparticle operators, which leads to

the eigenvalue problem(
ξ̂ �̂

�̂ −ξ̂ ∗

)(
un(i)
vn(i)

)
= En

(
un(i)
vn(i)

)
, (8)

{un(i), vn(i)} are the eigenfunctions with eigenvalues En. Note
that here ε̂ and �̂ are N × N matrices (see Appendix E for
details). N is the total number of lattice sites.

The inclusion of an orbital magnetic field generates vor-
tices. The spatial profile of pairing amplitude produces
inhomogeneities arranged in the vortex core region. Vortices
are periodically repeated to form the vortex lattice. Taking
advantage of this periodicity we consider a single magnetic
unit cell (UC) of size Nx × Ny (where Nx = Ny/2) and repeat
the UC in x̂ and ŷ direction using ideas similar to Bloch’s
theorem and thus realize a system of P × Q UCs, which
satisfy periodic boundary condition. We call this procedure
a repeated zone scheme (RZS). In this process, we promote
un(i) → un

r (R), here r represents lattice sites within a UC and
R is the lattice translation vector in vortex-lattice space (not
the microscopic lattice). Carrying out a transformation from
R to k space, we can block diagonalize for each k.
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Matrix in Eq. (3) for each k becomes(
ξ̂ (k) �̂(k)
�̂(k) −ξ̂ ∗(k)

)(
un

r (k)
vn

r (k)

)
= En(k)

(
un

r (k)
vn

r (k)

)
, (9)

here k is the Bloch wave vector representing the repetition of
magnetic UC.

In the RZS, the self-consistent equations in the bulk of the
UCs are then given by

�δ
qn(r) = 1

N
∑
qn

(
un

r (q)vn∗
r+δ (q) f (−Eqn)

+ un
r+δ (q)vn∗

r (q) f (Eqn)
)
,

n(r) = 2

N
∑
q,n

(
u∗n

r (q)un
r (q) f (Eqn)

+ v∗n
r (q)vn

r (q) f (−Eqn)
)
, (10)

τ δ
qn(r) = 1

N
∑
qn

(
vn

r (q)vn
r+δ (q) f (−Eqn)

+ un∗
r (q)un

r+δ (q) f (Eqn)
)
,

where N = P × Q, the total number of magnetic unit cells
and f (Eqn) is the Fermi function. These equations are evalu-
ated self-consistently by

Step (i): updating HMF with the inputs of �δ
i , ni, τ

δ
i .

Step (ii): Diagonalising HMF.
Step (iii): Recalculating �δ

i , ni, τ
δ
i using Eqs. (10). We

follow these steps iteratively until the inputs and outputs of
�δ

i , ni, τ
δ
i become the same within a tolerance.

The restrictions on double occupancy are expected to
reduce the effective hopping on a link, and similarly an in-
crease of effective J due to reduced double occupancy. GA
is designed to emulate these effects [51]. Once the effects
of strong correlations are incorporated using GRFs, we set
up a fully self-consistent inhomogeneous mean-field theory
(IMT), which is commonly termed as Bogoliubov-de Gennes
(BdG) calculations [3,25,53]. We refer to such Gutzwiller-
augmented IMTs as GIMT calculations, whereas an IMT
calculation will refer to those where all GRFs are set to unity,
and hence IMT calculations will exclude the effects of strong
correlations.

The numerical solution of the BdG method is common
in the literature [3], and we discuss below only the note-
worthy features of our implementation. In our calculations,
we consider systems with 16 × 8 (magnetic) unit cells where
each unit cell is of size 24 × 48 (lattice spacing is taken as
unity). We chose a field strength that corresponds to two
superconducting flux quanta through each unit cell. Since a
superconducting flux quantum holds half of a regular flux
quantum (Cooper pair charge being 2e), we include an even
number of superconducting flux quanta in our system to
satisfy the periodic boundary condition. The resultant vor-
tices constitute a square vortex lattice. In our simulation, we
consider a square vortex lattice instead of an energetically
favorable triangular vortex lattice in the continuum. For our
simulation on limited system sizes, a square vortex lattice is
favorable as it is consistent with the symmetry of the underly-
ing microscopic lattice under consideration. We start our BdG
simulation with the order parameter taken from the Abrikosov

solution of the Ginzburg-Landau equations in the presence of
the magnetic field.

Here we choose our rectangular magnetic unit cell (L ×
2L) containing two flux quanta in such a way as to place the
center of each vortex at the center of half of the magnetic unit
cell of size L × L.

We then place a single impurity on a lattice site three lattice
spacing away from the center of a vortex (i.e., the position of
the vortex center in the pure system). Although the impurity
position is inside the coherence length [44], we demonstrate
in Appendices C and D that vortex pinning is not affected by
impurity distance from the core. We then solve the above Ht−J

fully self-consistently using the scheme of GIMT [15,54]. The
goal is to understand how the new vortex position is influenced
by including the impurity. We present all energies in units of t
and we consider U = 12t resulting into J = 4t2

U = 0.33 [55].
Our GIMT results are also contrasted with IMT calculation,
to highlight the role of strong correlations in determining the
interplay of vortices and impurities.

III. RESULTS

We start presenting our results on dSC pairing amplitude,
〈 ˜ciσ c̃ jσ̄ 〉ψ ≈ gt�i j [56,57]. Here 〈· · · 〉ψ denotes the expec-
tation value, evaluated using GIMT formalism, and �i j =
〈ciσ c jσ̄ 〉0—now the expectation value 〈· · · 〉0 is calculated uti-
lizing the IMT framework.

A. d-wave SC order

The spatial profile of the local dSC order parameter

�OP
d (i) = J

4

∣∣[gt
i,i+x̂�

x̂(i) + gt
i,i−x̂�

−̂x(i)

− eibxgt
i,i+ŷ�

ŷ(i) − e−ibxgt
i,i−ŷ�

−̂y(i)
]∣∣ (11)

(here b = H
φ0

) is shown on half of the unit cell containing
one SC flux quantum in Fig. 1 for different parameters. Fig-
ure 1(a) presents pairing amplitude for near-optimal doping
(ρ = 0.78) when a repulsive impurity (of strength V0 = 0.5)
is attached to a site, which is three lattice spacing away
from the vortex position of a clean square vortex lattice. The
resulting self-consistent pairing amplitude indicates that the
vortex tends to follow the impurity. Figure 1(b) shows re-
sults similar to Fig. 1(a) but for stronger impurity strength,
V0 = 1.8. In this case, the vortex center moves to the impu-
rity location. Figures 1(c) and 1(d) show results similar to
Figs. 1(a) and 1(b) respectively, but for attractive impurities
(V0 = −0.5,−1.8, respectively). The results demonstrate that
the vortex does not move to bind to the attractive impurities,
i.e., the vortex lattice remains unaltered upon introducing the
impurity.

Figures 1(e) and 1(f) depict a vortex profile in the pres-
ence of repulsive impurities similar to Figs. 1(a) and 1(b) but
for strongly underdoped cases (ρ = 0.935). Self-consistent
pairing amplitude does not move the vortex centers to the
impurity site. In fact, the results show a seemingly unusual
enhancement of dSC pairing amplitude at the impurity site.
Also, this enhancement gets sharper with the increase of the
impurity strength.
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δ=0.065

Single repulsive impurity Single attractive impurity
Doping(δ)=0.22

(a) (b) (c) (d)

(e) (f) (g) (h)

SC order parameter |ΔOP
d (i)|

Vi=0.5 Vi=1.8 Vi=1.8Vi=0.5
(a)

δ=

(b)

0 065

(c) (d)

δ

(f)(e) (h)

0.065

(g)

FIG. 1. SC order parameter profile. Spatial profile for d-wave SC OP |�OP
d (i)| at doping δ = 0.22 (a)–(d) and δ = 0.065 (e)–(h) on a

magnetic unit cell of size 24 × 24. For single repulsive impurity shows, vortex gets pinned to impurity in nearly optimally doped (a)(b) case
but remains unaltered in strongly underdoped (e)(f) region. For a single attractive impurity vortex pinned to impurity in the strongly underdoped
(g)(h) case for impurity strength 1.8 or higher but not for weaker strengths and remains unaltered in nearly optimally doped (c)(d) case.

In order to analyze this unanticipated enhancement of
�i0 j = gt (i0, j)�0

i0 j , where i0 is the impurity site and j’s are
its nearest neighbors, we have studied the spatial profile of
gt (i, j) and �0

i j , which confirms that this elevation is caused
by the enhanced GRF (gt

i0 j) connecting to the impurity site.
This occurs because the local density ni0 is depleted because
of the presence of the impurity, causing a local rise in gt (i0, j)
as per Eq. (6). �0

i0 j—the pairing amplitude evaluated at the
unprojected space, on the other hand, undergoes a weak de-
pletion at i0, yet the local enhancement of gt

i0 j overpowers that
depletion, and controls the profile of �i j . A detailed analysis
is provided in Appendix B.

Results for a single attractive impurity in the strongly
underdoped region are shown in Figs. 1(g) and 1(h). Inter-
estingly, the binding of a vortex to the impurity depends on
its strength in this case. For example, the vortex center moved
to the impurity position for stronger impurities, e.g., for V0 =
−1.8 or higher, but not for weaker attractive impurities.

Thus, we see that unlike conventional superconductors,
where a vortex always binds to an impurity, in a strongly
correlated dSC, this behavior depends crucially on various
parameters. In the following, we proceed to develop a com-
prehensive understanding of this behavior.

It is interesting to note that the binding of a vortex to an
impurity also controls the shape of the vortex interestingly
in the underdoped region, as described below. It has been
recently argued that the vortex of a strongly correlated dSC
takes the shape of a flat bottom bowl in the strongly under-
doping region [44]. We also witness the same in cases when
the vortex does not bind to impurities. On the other hand, it
assumes the usual conical shape whenever the vortex binds to
an impurity, irrespective of its sign.

In the case of results from IMT calculations, pinnin g of
a vortex to the impurity does not depend on the nature and
strength of the impurity. Here vortex is always pinned to im-
purity to minimize the energy cost associated with bending the

superconducting order parameter. This is illustrated further in
Appendix.

B. Local charge density at the vortex core

We have shown in Fig. 2 the local charge density (ni)
in the vortex core region and around the impurity site (for
both repulsive and attractive impurities). These results are for
dopings δ = 0.22 and δ = 0.065 and are displayed on half of
the magnetic unit cell of size 24 × 24, which encloses a single
vortex.

Along with the dSC pairing amplitude, local charge density
at the vortex core, as well as that at the impurity site play a cru-
cial role in determining the pinning of a vortex to the impurity,
as we discuss below. A clean system (without any impurity)
near optimal doping (δ = 0.22) features a weak dip in local
density at the vortex core, whereas charge density accumulates
in the vortex core as δ is progressively reduced. This charge
accumulation reaches close to unity (the maximum possible
value in GIMT calculations) at the vortex center for strong
underdoping (δ = 0.065). Such enhancement at underdoping
originates from the close proximity of the system to a Mott
insulator at the half-filling. As a result, the nature of the
normal state at a clean vortex core (i.e., the local phase upon
depletion of pairing in the vortex core) changes from metallic
to Mott insulating as we march towards strong underdoping
[44].

This change in the nature of the vortex core upon doping is
only realized in GIMT calculations, which highlights the role
of strong correlations on the charge distribution in the vortex
core. An IMT calculation, on the other hand, always shows
a dip in local charge density at the vortex core irrespective
of the doping level. Thus, to reduce the energy cost, pinning
of the vortex depends only on the profile of the dSC pairing
amplitude and is independent of doping level, or the sign of
impurity.
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δ=0.065

Single repulsive impurity Single attractive impurity

Doping(δ)=0.22
(a) (b)

(c) (d)

(e) (f)

(g) (h)

Spatial profile of density (ni)

Vi=0.5 Vi=1.8 Vi=0.5 Vi=1.8
(b)(a)

(d)(c)

δ=
(f)(e)

0.065

(g) (h)

FIG. 2. Local charge density. Spatial profile of local charge density around a vortex core and at impurity site for different doping δ.
With δ = 0.22, there is a dip at both the vortex core and impurity site for a single repulsive impurity, whereas, for doping δ = 0.065 charge
accumulates around the vortex core in contrast to the dip at the impurity site. For a single attractive impurity with δ = 0.22, there is charge
accumulation at the impurity site in contrast to the dip around the vortex core. Whereas for doping δ = 0.065 charge accumulates around the
vortex core and at the impurity site in case of attractive impurity.

On the other hand, an impurity in a homogeneous dSC
(i.e., without orbital field, and hence vortices) modifies the
charge density profile depending on its sign (i.e., the im-
purity being attractive or repulsive). An attractive impurity
naturally accumulates charge carriers (until the maximal value
of unity) prohibiting double occupancy arising from strong
correlations. A repulsive impurity, by itself, suppresses local
electronic density below its average value. Thus, whether a
vortex binds to a nearby impurity in case of a strongly cor-
related dSC is dictated by the “compatibility” of the local
density profile arising out of the two, which in turn depends
on various factors, e.g., the doping level, the sign of impurity
and its strength, as we illustrate below.

C. Response of local charge density due to simultaneous
presence of vortex and impurity

Riding on the insights developed above, we look into the
local density profiles in two different situations separately: In
one, with only the perfect periodic vortex lattice in the clean
strongly correlated dSC, and the other with a single impu-
rity (cases of repulsive and attractive ones), whose strength
is being tuned. The competing (or collaborating) effects of
the vortex and impurity individually on the response of local
density are presented in Fig. 3. Here, a dotted trace for the
departure of the density at the vortex center from its average
value, δn = n(r0) − ρ, represents the results when only the
vortex lattice is present (i.e., no impurity) and the solid ones
are the results for impurities with different strengths in the
absence of any orbital fields. For the case of vortices alone,
we notice a charge depletion for δ = 0.22 (near optimal dop-
ing) and a charge accumulation in the strongly underdoped
case (δ = 0.065). Since these are results in the absence of
impurities, they show up as a straight line as a function of
the magnitude of the impurity strength |V0|.

Next, we address the dependence of δn on |V0|, when our
system supports a single impurity in the absence of vortex lat-

δ=0.22

δ=0.065

Repulsive impurity

δ=0.22

δ=0.065

|V0|

Attractive impurity

n(
r 0

) 
- 

ρ
n(

r 0
) 

- 
ρ

FIG. 3. Response of local charge density: This figure shows
n(r0) − ρ profile for a clean vortex without impurity (dotted line)
and a single impurity without vortex with varying impurity strength
(solid lines connecting dots). r0 stands for vortex core and impu-
rity sites respectively. For δ = 0.22, there is always a dip at the
vortex core(red dot), and for δ = 0.065, the charge accumulates
at the core (blue dot). ncore − n negative for repulsive impurity
and positive for attractive impurity. Its value increases with the
increase of impurity strength for both repulsive and attractive
impurities.
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FIG. 4. Local density of states. LDOS at clean vortex core for near optimally doped region δ = 0.22 (a), strongly underdoped region
δ = 0.065 (b), and at the impurity site [(c)–(j) for both repulsive and attractive] for the same two doping values. For a single repulsive impurity
(c)(d), in the near optimally doped region LDOS similar to that of the clean vortex core (a) but differs for a single attractive impurity (e)(f). In
the strongly underdoped case (g)–(j), the LDOS profile does not match that of the clean vortex core (b). Although for the attractive impurity of
strength 1.8 (j), vortex pinned to impurity but because of the change of the nature of SC OP profile, LDOS at the impurity site do not mimic
the LDOS at the clean core (b). For clarity, the vortex core LDOS in (b) and (j) has been scaled up by a factor of 4 and 2, respectively.

tice (i.e., H = 0). A single repulsive impurity produces a dip
in δn irrespective of doping, and the depth of this dip increases
with the enhancement of the impurity strength. Because of the
compatibility of the local charge density profile (i.e., a dip in
δn both due to the vortex lattice, as well from the impurity) in
case of a repulsive impurity and at optimally doped region, a
vortex gets pinned to the impurity. By the same token, it does
not bind to the impurity when the doping level is set to strong
underdoping, because the compatibility of the local density
profile from the two independent resources is lost. Similarly,
for attractive impurity, there is charge accumulation at the core
for both near optimally doped and strongly underdoped cases.
Now, whenever there is a match of accumulated charge den-
sity due to both vortex and impurity, the vortex gets pinned to
impurity in the strongly underdoped region. This matching of
the density profile depends on the strength |V0| of the attractive
impurity. As mentioned above, the results reflect the same:
Vortex gets pinned to an attractive impurity in the strongly
underdoped case for an impurity strength of V0 = −1.8 but the
structure of the vortex lattice remains unaltered for a weaker
impurity V0 = 0.5. In contrast, for attractive impurities in the
near optimally doped region the vortex does not prefer charge
accumulation; therefore vortex does not pin to impurity.

In sharp contrast, the IMT results show no effects of local
density profile on the binding of a vortex to the impurity.

D. LDOS at clean vortex core and impurity site

Pinning of vortex to impurity in conventional supercon-
ductors is largely independent of doping or the sign of the

impurity. As discussed, pinning a vortex to an impurity
requires a compatibility of the reorganization of the local
electronic density arising from the two sources—the vortex
and the impurity. As a result, the LDOS features compatibility
as well. Thus the presence of the impurity (in this case of
pinning of vortices at impurities) does not alter the qualitative
features of the LDOS at the vortex core. This, however, is
not true when the vortex does not bind to the impurity for a
certain range of the parameter space, as we already discussed.
Naturally, the LDOS at the impurity site under this situation
will differ significantly from that at the clean vortex core.
Within GIMT calculations, we evaluate LDOS using

N (i, ω) = 1

N

∑
k,n

gt
ii

[∣∣uk
n(i)

∣∣2
δ(ω − Ek,n)

+ ∣∣vk
n (i)

∣∣2
δ(ω + Ek,n)

]
. (12)

Here, N is the system size, and {uk
n(i), vk

n (i)} are the Bo-
goliubov wave functions, {Ek,n} corresponding to energy
eigenstates. The behavior of the calculated LDOS satisfies the
aforementioned expectations and is demonstrated in Fig. 4
for doping δ = 0.22 and δ = 0.065, where (a) and (b) show
LDOS profile at a clean vortex core. In this case, LDOS
exhibit a low-energy core state (LECS) for doping δ = 0.22
[Fig. 4(a)] and a hard U-shaped gap for doping δ = 0.065
[Fig. 4(b)] [44]. In a dSC, IMT calculation [58] shows the
presence of LECS but as the d-wave gap vanishes along the
four nodes, LECS are not truly bound but rather extended
along the node direction [59]. On the other hand, Figs. 4(c)–
4(j) represent the LDOS at the impurity sites for different sets
of parameters (δ, and V0).
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δ=0.065

Single repulsive impurity Single attractive impurity
Doping(δ)=0.22

(a) (b) (c) (d)

(e) (f) (g) (h)

SC order parameter |ΔOP
d (i)|

Vi=0.5 Vi=1.8 Vi=-1.8Vi=-0.5
(d)

(e) (f) (g) (h)

(a) (b)) (c)

FIG. 5. Superconducting order parameter profile. Spatial profile for d-wave SC OPA |�OP
d (i)| for repulsive impurity at doping δ = 0.22

(a)(b) and δ = 0.065 (e)(f) and attractive impurity at doping δ = 0.22 (c)(d) and δ = 0.065 (g)(h) on a magnetic unit cell of size 24 × 24 for
IMT calculations. Irrespective of doping and the nature of impurity, vortex binds to impurity.

In the case of (c) and (d) representing (δ,V0) = (0.22,
0.5), (0.22, 1.8), vortices bind to impurities, as explained
in the previous section. Hence, these LDOS profiles have a
significant quantitative match with the two in (a) and (b). On
the other hand, LDOS in (e), (f) and (g)–(i) for (δ,V0) = (0.22,
–0.5), (0.22, –1.8), and (0.065, 0.5), (0.065, 1.8), (0.065, –0.5)
do not match with those (a) and (b), because impurity does
not pin to vortex. An interesting departure from the above
picture occurs at strong underdoping (δ = 0.065), where the
proximity to Mottness in GIMT calculations changes the
shape of the vortices to flat-bottom bowls from the usual
conical ones [44]. On the other hand, binding of an attrac-
tive impurity (V0 = 1.8) restores the usual conical shape of
the vortex, affecting the local Mottness. As a result, the U-
shaped LDOS is lost yielding a standard d-wave nature of the
low-lying LDOS.

Therefore, it is possible to determine if the vortex core
becomes pinned to the impurity by examining not only the
dSC order parameter profile but also the local density of states
at the impurity site—an experiment routinely performed using
scanning tunneling spectroscopy (STS) [18].

IV. CONCLUSIONS

We reported how SC OP profile and local charge density
play an important role in determining the binding of the vortex
to impurity for unconventional SCs in proximity to a Mott
insulator in contrast to conventional SCs. In unconventional
SCs proximity to a Mott insulator, the nature of the vortex core
changes from metallic to Mott insulator. Hence, in the GIMT
case vortex gets pinned to the impurity whenever there is a
match of the local charge density profile between the vortex
core and the impurity site in addition to the order parameter
profile. We verified this by not only looking at the spatial
profile of the dSC order parameter but also at LDOS at the
impurity site. How does a strongly correlated superconductor
respond to multiple impurities? Our findings of conditional
pinning of a vortex to impurity (e.g., on sign, strength doping

level, etc) make this an interesting problem to explore in the
future.
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APPENDIX

In order to adequately emphasize the role of Gurzwiller
correlations in our findings in the main text, we provide in
the appendices below the results from the IMT calculations
(see main text). These IMT results ignore the effects of
strong correlations by setting all Gutzwiller factors (GRFs)
to unity. In the following, we wish to emphasize the stark
differences between the GIMT and IMT solutions. The details
of the formalism of IMT and GIMT calculations for a d-wave
vortex lattice can be found in the Supplemental Material of
Ref. [44].

APPENDIX A: ORDER PARAMETERS AND LOCAL
DENSITY OF STATES (LDOS)

Below we discuss the spatial profile of d-wave supercon-
ducting (dSC) order parameter amplitude (OPA), local charge
density, and LDOS for IMT calculations. In IMT, OPA is
equivalent to pairing amplitude. The stark contrast of these re-
sults with those from GIMT calculations presented in the main
text is evident. This demonstrates that strong correlations play
a crucial role in determining the underlying physics.
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δ=0.065

Single repulsive impurity Single attractive impurity

Doping(δ)=0.22
(a) (b)

(c) (d)

(e) (f) (g) (h)

Spatial profile of density (ni)

Vi=0.5 Vi=1.8 Vi=-0.5 Vi=-1.8
(b)(a)

(d)(c)

(e) (f) (h)(g)

0.75 1.450.2 0.8

0.92 1.660.200 0.945

FIG. 6. Local charge density. Spatial profile of local charge density around a vortex core and impurity for different doping δ (0.22,0.065)
and impurity strength of 0.5 and 1.8 (both attractive and repulsive impurity) within IMT calculation.

1. dSC order parameter

Figure 5 shows the spatial profile of dSC OPA in a unit cell
containing one vortex of the vortex lattice (VL), plus an impu-
rity indicated by a dot, for both attractive and repulsive impu-
rity, as well as for two doping levels, δ = 0.22, 0.065. These
results, when contrasted with the GIMT finding in Fig. 1 from
the main text, indicate that within the IMT framework:

(a) An impurity pins a vortex, irrespective of the sign of
impurity or doping level.

(b) Vortices maintain conical shape even at strong under-
doping, unlike in GIMT results where their shape changes to
a “flat-bottom bowl”.

2. Local charge density

We have presented the spatial profile of local charge den-
sity within IMT calculation in Fig. 6. There is a small charge
dip at the vortex core for both doping δ = 0.22, 0.065. On the
other hand, in these two extreme values of doping, there is a
charge dip at the repulsive impurity site and charge accumu-
lation at the impurity site for attractive impurity.

3. Local density of states

LDOS at clean vortex core and impurity site for δ = 0.22
and δ = 0.065 within IMT calculation is presented in Fig. 7.
LDOS at the clean vortex core and the impurity site carry
zero-energy core states irrespective of the nature of impurity
and doping. These should be contrasted with the GIMT results
shown in Fig. 4. of the main text.

These demonstrate the sharp contrast between the IMT
and GIMT results, signifying the role of strong correlation in
determining the binding of a vortex to impurity.

APPENDIX B: INTRIGUING PEAK IN dSC ORDER
PARAMETER AMPLITUDE ON A REPULSIVE IMPURITY

LOCATION AT STRONG UNDERDOPING

The spatial profiles of dSC OP in Figs. 1(e) and 1(f) show
an intriguing peak. Here we present the comprehension of

such a feature. The spatial profile of the dSC OP is determined
by the following two factors:

(i) The spatial structure of Gutzwiller factor (GRF),
gt (i, j).

(ii) The spatial profile of the pairing amplitude (�i j , i.e.,
the dSC OP without the Gutzwiller factors).

In the presence of an impurity, spatial profiles of both
gt (i, j) and �i j get modified. Interestingly, the two modifica-
tions act against each other in the case of a repulsive impurity
and at underdoping, as shown in Fig. 8. The resultant dSC
order parameter profile, capturing both these contributions
generates a spatial pattern as shown in Figs. 1(e) and 1(f)
in the main text. In the case of overdoping, the vortex binds
to the impurity, and the pairing amplitude �i j vanishes at
the impurity site. As a result, such a feature is absent [see
Figs. 1(a) and 1(b) in the main text].

APPENDIX C: THE IMPURITY IS POSITIONED AT A
LARGER DISTANCE FROM THE CENTER OF THE

VORTEX CORE

To demonstrate that pinning of a vortex to impurity is
qualitatively independent of its position from the vortex core,
Fig. 9 shows the spatial profile of local dSC order parameter at
doping δ = 0.22 (a)–(d) and δ = 0.065 (e)–(h), placing both
attractive and repulsive impurities at a distance of six lattice
spacing (6a0) from the vortex core. Results are qualitatively
similar presented in the main text.

APPENDIX D: SPATIAL REORGANIZATION WHEN
AN IMPURITY IS PLACED OVERLAPPING

A VORTEX CENTER

We address this question if the impurity is placed in the
center of the vortex, will the two remain bound, or will the
vortex move away signaling nonbinding to the impurity? In
Fig. 10, we show the spatial profile of the superconducting
order parameter in the presence of a single attractive impurity
near the optimal doped region where binding of the vortex to
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FIG. 7. Local density of states. LDOS at clean vortex core for δ = 0.22 (a), δ = 0.065 (b), and at the impurity site (for both repulsive and
attractive) for the same two doping values within IMT calculation. Independent of doping and the nature of impurity, LDOS at the vortex core
and impurity site shows the presence of zero-energy core states.

impurity is not favorable as shown in the Sec. III A of our
main text. In Fig. 10, we started with an initial guess where
the impurity is placed at the vortex core. The self-consistent
results [Figs. 10(b) and 10(c)] show that the vortex core moves
away from the impurity position. Hence, the qualitative results
given in the main text remain robust irrespective of the impu-
rity position.

APPENDIX E: DETAILS OF THE FORMALISM

In the main text, μi represents the effective chemical po-
tential whose expression is given by

μi = μGA
i − J

4

∑
δ

ni+δ − μ, (E1)

Single repulsive impurity

(a) (b) (c) (d)

(e) (f)
(g)

(h)

Doping(δ)=0.22
Pairing amplitude(Δij) Pairing amplitude(Δij)

Doping(δ)=0.065

Spatial profile of gt(i,j) Spatial profile of gt(i,j)

FIG. 8. Spatial profile of pairing amplitude (�i j) and GRF (gt (i, j)). Spatial profile of pair amplitude and GRF for doping (δ) = 0.22
[(a)(b) and (e)(f)] and δ = 0.065 [(c)(d) and (g)(h)] is shown for half of the magnetic unit cell.
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δ=0.065

Single repulsive impurity Single attractive impurity
Doping(δ)=0.22

(a) (b) (c) (d)

(e) (f) (g) (h)

SC order parameter |ΔOP
d (i)|

Vi=0.5 Vi=1.8 Vi=1.8Vi=0.5

δ=

(b)(a)

0 065

(c) (d)

δ

(f)(e)

0.065

(g) (h)

FIG. 9. SC order parameter profile. Spatial profile for d-wave SC OP |�OP
d (i)| at doping δ = 0.22 (a)–(d) and δ = 0.065 (e)–(h) on a

magnetic unit cell of size 24 × 24 and impurity is placed at a distance six lattice spacing( 6a0) from the vortex core. The vortex is pinned to a
single repulsive impurity in nearly optimally doped (a)(b) cases but remains unmodified in significantly underdoped (e)(f) regions. For a single
attractive impurity vortex pinned to impurity in strongly underdoped (g)(h) scenario for impurity strength 1.8 or higher but not lesser strengths
and remains unaltered in nearly optimally doped (c)(d) case.

here μGA
i is given by

μGA
i = J

∑
δ

(
τ δ

i τ ∗δ
i

4
+ �δ

i �
∗δ
i

4

)
dgJ

i,i+δ

niσ

−
∑

δ

t
dgt

i,i+δ

dniσ

(
eiφδ

i τ δ
i + e−iφδ

i τ ∗δ
i

)
. (E2)

In Eq. (8), operators ξ̂ and �̂ are given by,

ξ̂un
i =

∑
δ

(
−tgt

i,i+δ − J

4

(
3gJ

i,i+δ − 1
)
τ δ

i

)
eφδ

i un
i+δ

− (Vi − μ + μi )u
n
i ,

�̂vn
i =

∑
δ

(
−J

4
(3gJ

i,i+δ + 1)

)
�δ

i v
n
i+δ. (E3)

Single attractive impurity
SC order parameter |ΔOP

d (i)|

Inital guess

Doping(δ)=0.22
(a)

Vi=1.8Vi=0.5

(a)

V =1 8

(b) (c)

FIG. 10. SC order parameter profile. Spatial profile for d-wave SC OP |�OP
d (i)| in the presence of a single attractive impurity at doping

δ = 0.22, on a magnetic unit cell of size 24 × 24. (a) Initial guess: impurity at the vortex center. (b) and (c) are the self-consistent results for
single attractive impurities of strength 0.5 and 1.8 respectively. The blue dot denotes the position of the impurity. In both (b) and (c), the vortex
moves away from the impurity position.
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We work with the Landau gauge A(�) = (0, H�x ) and within
this gauge the magnetic translation operators are 〈�|τR|�′〉 =
δ�,�+R e−ibRx (iy+Ry ), where � is the lattice vector and iy denotes
y coordinates of lattice sites in each of the magnetic unit cell.
Using ideas from Bloch theorem, we blockdiagonalize the
BdG Hamiltonian in every k sector employing the transfor-
mation,

un
r (R) = e−ik·Re−ib(iy+Ry )Rx un

r (k),

un
r (R) = e−ik·Reib(iy+Ry )Rx un

r (k), (E4)

where k is defined as

k = 2πmx

PNx
x̂ + 2πmy

QNy
ŷ

with mx = 0, 1, 2, . . . , (P − 1) and my = 0, 1, 2, . . . , (Q −
1).

The operators in the bulk of the UCs [Eq. (9)] are given by

ξ̂ (k)un
r (k) =

∑
δ

(
−tgt

r,r+δ − J

4

(
3gJ

r,r+δ − 1
)
τ δ

r

)
eφδ

r un
r+δ (k)

− (Vr − μ + μr )un
r (k),

�̂(k)vn
r (k) =

∑
δ

(
−J

4

(
3gJ

r,r+δ + 1
))

�δ
rv

n
r+δ (k). (E5)

Equation (10) represents the self-consistent in the bulk. At
the boundaries of the unit cells, the Eq. (10) will be adjusted
to account for phase factors from Bloch functions and the
Peierls factor due to the orbital magnetic field. The modified
eigenvalue problem is then solved for all local self-consistent
parameters, �δ

qn(i), n(i), and τ δ
qn(i).

Our large system of P × Q number of UCs must contain an
even number of superconducting flux quanta. So that periodic
boundary conditions can be imposed on our entire system.
This is automatically ensured by our choice of the magnetic
unit cell (Nx × Ny, where Nx = Ny/2) containing two super-
conducting flux quanta.
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