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Topological bands and correlated states in 
helical trilayer graphene
 

Li-Qiao Xia    1,9  , Sergio C. de la Barrera    1,2,9  , Aviram Uri    1,9  , 
Aaron Sharpe    1,3, Yves H. Kwan4, Ziyan Zhu5, Kenji Watanabe    6, 
Takashi Taniguchi    7, David Goldhaber-Gordon    5,8, Liang Fu    1, 
Trithep Devakul1,8 & Pablo Jarillo-Herrero    1 

The intrinsic anomalous Hall effect (AHE) is driven by non-zero Berry 
curvature and spontaneous time-reversal symmetry breaking. This effect 
can be realized in two-dimensional moiré systems hosting flat electronic 
bands but is not usually seen in inversion-symmetric materials. Here, we 
show that this physics is manifested in helical trilayer graphene—three 
graphene layers, each twisted in sequence by the same angle—although 
the system retains global in-plane inversion symmetry. We uncover a phase 
diagram of correlated and magnetic states at a magic twist angle of 1.8∘, 
which is explained by a lattice relaxation that leads to the formation of large 
periodic domains where in-plane inversion symmetry is broken on the moiré 
scale. Each domain harbours flat topological bands with opposite Chern 
numbers in the two valleys. We find correlated states at multiple integer 
and fractional electron fillings per moiré unit cell and an AHE at a subset of 
them. The AHE disappears above a critical electric displacement field at one 
electron per unit cell, indicating a topological phase transition. We establish 
helical trilayer graphene as a platform that presents an opportunity to 
engineer topology due to its emergent moiré-scale symmetries.

The combination of strong electronic correlations and non-trivial band 
topology is fertile ground for exotic electronic phenomena. Driven by 
Berry curvature and orbital magnetization, the spontaneous emer-
gence of the anomalous Hall effect (AHE) in non-magnetic materials 
is a notable example. It requires a periodic system that breaks both 
time-reversal symmetry (TRS) and the product of spatial inversion and 
TRS1. Two-dimensional moiré materials are ideal for realizing these 
conditions because constituent layers with specific symmetries can 
be combined in a controlled way to engineer both the electronic band 
structure and its topology. Indeed, the AHE has been realized in vari-
ous xy-inversion-broken moiré platforms, including graphene-based 

systems2–18 and transition-metal dichalcogenides19–25, where at least one 
of the van der Waals constituents intrinsically breaks xy-inversion (C2z) 
symmetry. These systems rely on a single moiré to generate flat bands 
and strong correlations, whereas crystalline portions of the stack with 
broken C2z symmetry (such as Bernal-stacked bilayer graphene) give 
rise to Berry curvature.

Three layers of graphene twisted with two independent angles, 
θ12 and θ23, between the top two layers (1 and 2) and bottom two layers 
(2 and 3), respectively, unlock a new engineering degree of freedom 
by combining more than one moiré lattice, opening up a new way  
to generate Berry curvature. Although much of the two-angle space 
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incommensurate and the effective structure for low-energy electrons 
is a moiré quasicrystal26. Lattice relaxation on the moiré scale is most 
prominent at small angles, θ ≲ 1∘, and is typically less important for 
larger angles36. However, even at angles as large as θ = 1.8∘, relaxation 
can have a profound effect on the supermoiré scale, favouring certain 
relative shifts between the two moiré patterns. The calculated relaxed 
structure of HTG forms large moiré-periodic domains, termed h-HTG 
and h -HTG, that are related by a C2z transformation33,35. Figure 1d,f,g 
show the calculated relaxed moiré structure (Methods section ‘Relax-
ation’). Importantly, within each periodic domain, C2z symmetry is 
spontaneously broken, allowing for Berry curvature and non-trivial 
topology.

The local non-interacting band structure within a domain is 
described by a pair of narrow-bandwidth topological bands (per spin 
and valley) separated by large gaps of order 100 meV from the remote 
bands (Fig. 1c,e). The absence of C2zT symmetry removes the protection 
of the three Dirac points (κ, κ′, γ), thus gapping the charge-neutral point 
(Fig. 1e, inset) and endowing the flat bands with valley-contrasting 
Chern numbers CK,K′ = ±(1, −2) (Fig. 1e)33–35,37. Electronic interactions, 
facilitated by the quenched kinetic energy of the flat bands, can sponta
neously break the flavour degeneracy, similar to magic-angle 
graphene38–40, resulting in spontaneous flavour ferromagnetism in spin 
(↑, ↓), valley (K, K′) and Chern-sublattice (A, B) space41. We will refer to 
the Chern-sublattice basis as sublattice for short hereinafter. 
Valley-polarized states break TRS and result in a non-zero net Chern 
number within each domain. In states where h-HTG and h -HTG bands 
have different Chern numbers per valley, the network of domain walls 
between them hosts gapless edge modes33,35.

Relaxation into periodic moiré domains comes at the cost of 
increased moiré aperiodicity within the domain walls33. The overall 
structure of HTG is therefore a triangular tiling of moiré-periodic 
domains (on the scale of a few hundred nanometres) that are separated 

(θ12, θ23) is filled with mutually incommensurate moiré lattices forming 
moiré quasicrystals26, some angle combinations give rise to periodic 
domains on the moiré scale27. Some commensurate combinations of 
twist angles, pθ12 = qθ23 (p, q integers) (refs. 28–30), may locally escape 
quasiperiodicity once lattice relaxation is taken into account. Large 
supermoiré (or moiré of moiré) domains form, hosting periodic moiré 
lattices. Here, we demonstrate moiré engineering of local periodicity 
with (p, q) = (1, 1) equi-angle helical trilayer graphene28,31,32, which we 
henceforth refer to as simply HTG. In HTG, lattice-relaxation calcula-
tions predict the formation of large moiré-periodic domains, support-
ing electronic Bloch bands, emergent broken symmetries and Chern 
numbers defined within each domain33–35. Although HTG is made purely 
of C2z-symmetric components and is globally C2z-symmetric, within 
each domain the system breaks C2z symmetry (and also the product of 
C2z and TRS, C2zT), generating Berry curvature and non-trivial topology. 
Furthermore, the moiré bands can be sufficiently flat to spontaneously 
break TRS, leading to our observation of the AHE at certain fillings. 
Our observation of the AHE in HTG provides strong evidence for the 
emergent topological flat bands and brings to light the importance 
of local symmetries on length scales comparable to the interparticle 
distance, n−1/2.

HTG
The three graphene layers in HTG, rotated sequentially by the same 
angle θ (Fig. 1a), form two moiré patterns between adjacent layer pairs. 
The two moiré lattices share the same lattice constant, λm ≈ a/θ ≈ 7.8 nm 
for θ = 1.8∘, but differ in orientation by θ (here, a = 0.246 nm is the 
atomic lattice constant of graphene). The misorientation between the 
two moiré patterns produces a position-dependent relative shift 
between them that is approximately periodic. The resulting super-
moiré pattern has a lattice constant λsm ≈ λm/θ ≈ 250 nm. In the absence 
of lattice relaxation, the two moiré patterns are mutually 
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Fig. 1 | HTG. a, Schematic of the magic-angle HTG structure comprising three 
layers of graphene with successive layers rotated in the same direction by the 
same relative twist angle, θ ≈ 1.8∘. b, Circuit diagram of HTG surrounded by two 
hBN dielectric layers and top and bottom gate electrodes (Au and graphite, Gr, 
respectively) kept at electric potentials Vtg, Vbg relative to HTG. c, The rotated 
Brillouin zones of the three monolayers (left). Without lattice relaxation, the 
three Dirac points (light-coloured dots) lie on an arc. Including lattice relaxation 
(grey arrows), in the h-HTG and h -HTG domains, they lie on a straight line, 
forming a periodic moiré Brillouin zone. d, Supermoiré structure of HTG 
including lattice relaxation. Crimson and purple dots represent AA stacking of 
the top and bottom pairs of adjacent layers, respectively. The small atomic lattice 

relaxation is enough to form moiré-periodic domains (h-HTG and h -HTG) hosting 
topological flat bands with large gaps, Δ±4, to remote bands. Scale bar, 50 nm. 
Background colour represents Δ+4 × CK calculated for the local shift δ between the 
two moiré lattices, where CK is the total Chern number per spin of the pair of flat 
bands in valley K. Green circles indicate centres of approximate C2z rotation 
symmetry. e, Local non-interacting band structure in the h-HTG domain for valley 
K (Chern number of each flat band is indicated) with detail of flat bands and band 
path shown on the right. f,g, Moiré arrangement in the h -HTG (f) and h-HTG (g) 
periodic domains, where C2z symmetry is broken on the moiré scale. Circular 
callouts show the local atomic stacking of the three graphene layers in different 
regions.
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by gapless moiré-aperiodic domain walls (Fig. 1d). The global structure 
has approximate C2z symmetry, as h-HTG and h -HTG are C2z counter-
parts (Fig. 1f,g). We note that heterostrain can substantially deform the 
triangular supermoiré structure. However, the topology of the struc-
ture is expected to remain the same.

Correlated states
To probe the transport properties of HTG, we constructed dual-gated 
devices encapsulated by hexagonal boron nitride (hBN) (Methods 
section ‘Device fabrication’ and Extended Data Fig. 1). By applying 
voltages to the top and bottom gates (Vtg and Vbg, respectively; Fig. 1b), 
we controlled the electron density, n, and the perpendicular electric 
displacement field, D, independently while performing four-terminal 
magnetotransport measurements (Methods section ‘Electrical trans-
port measurements’). The data shown throughout were measured using 
Device 2 unless stated otherwise.

Figure 2a shows the longitudinal resistance Rxx versus n and D 
measured at B = 0 and T = 300 mK, where B is the applied out-of-plane 
magnetic field. The large resistance peak at n = 7.45 × 1012 cm−2 indicates 
the gap between the flat and remote moiré bands at a filling of four 
electrons per moiré unit cell, ν = nAuc = 4, where Auc is the area of the 
moiré unit cell. This reflects a twist angle of θ = 1.79∘ (Methods section 
‘Twist angle determination’ and Extended Data Fig. 2). Additional 
resistance peaks appear at integer fillings ν = 1, 2 and 3, indicative of 
flavour-symmetry-broken correlated electronic states. We observed 
similar behaviour in two more devices with twist angles 1.77∘ and 1.75∘ 
(Extended Data Figs. 3a and 4a) indicating that the magic angle for 
HTG is θm ≈ 1.8∘. For the appearance of correlated states in HTG devices 
with twist angles away from θm, see Supplementary Section 1 and Sup-
plementary Table 2. Figure 2b shows the Hall density, nH (Methods 
section ‘Calculation of the Hall density’), measured versus n and D (see 
also Supplementary Fig. 2 for a line cut). For electron doping, n > 0 and 
small D, nH shows ‘resetting’ behaviour around ν = 1, where nH drops 
towards zero39,40. Additionally, we find Van Hove singularities near 
ν = 1.5 and 2.2. Similarly to magic-angle twisted trilayer graphene, the 
Van Hove singularity at ν = 1.5 may trigger a flavour-symmetry-breaking 
phase transition42. However, we cannot verify the change in flavour 
degeneracy due to the absence of clear quantum oscillations. At ν = 2 
under low ∣D∣, field nH shows a Dirac point or a gapped state behaviour 
as seen in magic-angle twisted trilayer graphene42. Near ν = 3, Fig. 2b 
does not reflect the correct Hall density because we do not account 
for the strong AHE in this region (see details below) in our extraction 
of nH. Therefore, the oval-shaped discontinuities at ν ≈ 3 and ν ≈ 3.5 do 
not reflect resets or Van Hove singularities.

The Rxx and nH maps reveal pronounced electron–hole asymmetry. 
Correlated states only appear on the electron side, an observation 
we find consistently in all of our HTG devices (Extended Data Figs. 3  
and 4, Supplementary Fig. 4 and Supplementary Table 2). The electron–
hole asymmetry can be accounted for by introducing higher-order 
momentum-dependent tunnelling terms in the single-particle model 
(Methods section ‘Theoretical electronic band structure calculation’). 
Although these terms give only small corrections for alternating-twist 
trilayer graphene systems models, they prove crucial in modelling 
HTG. Extended Data Fig. 5 shows the non-interacting calculated Van 
Hove singularity, which is in agreement with our measurements for 
hole doping.

AHE
Figure 3a–f show the measured field-symmetrized Rxx and 
field-antisymmetrized Ryx as we sweep B up and down at different 
temperatures (see Methods section ‘Symmetrization and antisym-
metrization’ for a description of the symmetrization and antisym-
metrization procedure). We observe non-zero Hall resistance at B = 0 
accompanied by pronounced magnetic hysteresis consistent with fer-
romagnetism near ν = 1 and 3. Considering the small intrinsic spin-orbit 
coupling in graphene, the ferromagnetism in our system is almost 
certainly of orbital origin rather than spin alone43,44, as was shown in 
other graphene-based moiré systems in which AHE was previously 
reported8,45. Combined with the topological flat bands (Fig. 1e)33–35, 
this points to orbital ferromagnetism driven by Berry curvature in 
valley-polarized states41. Although Ryx is not quantized in our measure-
ments, we would only expect to observe quantization from a single 
Chern domain. The magnitude of ∣Ryx∣ ≳ 1.5 kΩ at B = 0 in our experiment 
reflects the net effect of multiple domains and the network of gapless 
domain walls between the Ryx contacts. We find multiple Barkhausen 
jumps and hysteresis in Ryx-versus-B loops that persist up to a tempera-
ture of Thys ≈ 7.5 K. The Ryx discontinuity at B = 0 disappears at a Curie 
temperature of TC ≈ 10.5 K (see also Methods section ‘Extraction of Curie 
temperature’ and Extended Data Fig. 6), which is the highest reported 
among graphene-based moiré systems (Supplementary Table 1). The 
raw data, without symmetrization and antisymmetrization, shows 
strong mixing between Rxx and Ryx that we ascribe to strong anisotropy 
due to the gapless domain walls (Supplementary Figs. 8–10).

Notably, we find the AHE at ν = 1, 3 in two additional devices with 
similar twist angles (Extended Data Figs. 3 and 4), demonstrating the 
robustness of the AHE in HTG. Apart from non-trivial band topology, 
another critical requirement for interaction-driven orbital magnetism 
is that the ground state favoured by strong correlations spontaneously 
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breaks TRS, resulting in a net Chern number. In twisted monolayer–
bilayer graphene, previous studies suggested that a close competi-
tion exists between different many-body ground states, including a 
valley-polarized state that breaks TRS and an intervalley-coherent 
state that preserves it5,9. This potentially makes the AHE in twisted 
monolayer–bilayer graphene more sensitive to strain and twist angle 
disorder16,46. In contrast, the robustness of the AHE in HTG suggests 
that valley-polarized states are strongly favoured at odd fillings. This 
aligns with the strong-coupling theory of HTG41.

Figure 3g provides an overview of the AHE in our system by plotting 
the difference ΔRyx between Ryx taken at B = ±60 mT after training at 
high fields, ±1 T, respectively. In the ranges 0.9 ≲ ν ≲ 1.1 and 2.8 ≲ ν ≲ 3.3, 
we find non-zero ΔRyx indicating AHE, corroborated by the B-sweep 
hysteresis loops. In contrast, the correlated state near ν = 2 shows no 
AHE, indicating a state that preserves TRS. At ν = 2, theory points to a 
quantum valley-Hall state within the periodic domains41. The approxi-
mate symmetry of the AHE about D = 0 indicates that it does not rely 
on aligning the graphene trilayer to a substrate (see also Extended 
Data Fig. 1d).

There is a weaker ΔRyx hot spot near ν = 2/3 and D/ϵ0 = 0.3 V nm−1 
(Fig. 3g). Figure 3e shows Ryx versus B measured at ν = 0.62, 
D = 0.41 V nm−1 showing AHE. We note that at the same D field, there is 
no AHE at ν = 1 (Fig. 3f); hence the AHE at fractional filling is a distinct 
state. This observation may indicate the presence of a topological 
charge density wave or fractional Chern insulator (Methods section 
‘Hartree–Fock calculations at ν = 7/2, 2/3’). The latter was predicted in 
HTG at D = 0 (ref. 33); however, whether the HTG bands favour fractional 
Chern insulators at large D fields is unclear. Thus, further investigation 
is required to identify the ground state. The appearance of the ν = 2/3 
feature only at one sign of D may be due to a slight difference in the 
effective screening from the top and bottom gates in combination 
with closely competing ground states that strongly depend on the 
interaction strength.

Lastly, there is an isolated resistive state centred on ν = 7/2 and 
D = 0 (Fig. 2a), indicating a symmetry-broken phase. The temperature 

dependence in Extended Data Fig. 7 shows that the ν = 7/2 and ν = 3 
states occur on different temperature scales, indicating that they are 
distinct. Furthermore, we find AHE that extends from ν = 3 to beyond 
ν = 7/2 (Extended Data Fig. 8b), indicating the non-trivial topology of 
this state. At this filling, our Hartree–Fock calculations find closely 
competing topological states that include charge density waves47 
and a tetrahedral antiferromagnet (Methods section ‘Hartree–Fock 
calculations at ν = 7/2, 2/3’ and Extended Data Fig. 9).

Indications of topological phase transitions
In Fig. 2a, the resistive peak at ν = 1 centred at D = 0 disappears at 
∣D/ϵ0∣ ≈ 0.35 V nm−1 and reappears at higher ∣D∣, suggestive of a phase 
transition involving a gap closure and re-opening. We do not find evi-
dence for AHE at ∣D/ϵ0∣ > 0.35 V nm−1, and hence the high-∣D∣ phases 
preserve TRS. A leading theoretical possibility suggested by recent  
Hartree–Fock calculations of HTG41 is that at a critical displacement 
field, Dc, band inversion leads to a topological phase transition, with triv-
ial bands emerging at ∣D∣ > Dc. Although a gapped intervalley-coherent 
state is also expected to show similar transport signatures, this pos-
sibility is unlikely33,41. We observe similar behaviour of Rxx near ν = 2, 
although at this filling, both the high- and low-∣D∣ phases do not exhibit 
AHE. Theory suggests41 that at ν = 2, below Dc, the two valleys are equally 
occupied with bands of opposite Chern numbers, resulting in a zero net 
AHE. In contrast, above Dc, the bands are topologically trivial, which 
also results in no AHE.

Electrical switching of Chern domains
By sweeping ν in a fixed small magnetic field, B ≲ 0.2 T, we find that the 
sign of the AHE for a given ν depends on the sweep direction (Fig. 4a,b). 
This type of switching was observed in other moiré systems5,6,45 and 
was explained in terms of a sign flip in the orbital Zeeman energy 
per valley, −M ⋅ B (ref. 48). The sign flip is caused by a competition 
between the orbital magnetization induced by the self-rotation and 
centre-of-mass motion of the electronic wave packet1. Here, M is the 
total orbital magnetization, directed out of the plane. A calculation of 
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the orbital magnetization M(ν) for an h-HTG domain, based on Hartree–
Fock bands calculated at ν = 3, is presented in Supplementary Section 
2, demonstrating the sign change required for the above mechanism 
(Supplementary Fig. 5).

The hysteresis in Ryx(ν) shown in Fig. 4a,b exists over a large density 
range. Notably, it is present only at low magnetic fields and disappears 
abruptly as ∣B∣ is increased above a critical value, Bc ≈ 0.2 T (red arrows 
in Fig. 4a). Moreover, when sweeping ν up (Fig. 4a), Ryx in the 
high-positive-field regime (B > Bc) is almost identical to Ryx in the 
low-negative-field regime (−Bc < B < 0). This phenomenology is strik-
ingly similar to what was previously observed in near-commensurate 
hBN-magic-angle twisted bilayer graphene, where local magnetic 
imaging revealed a spatial pattern of domains with different Chern 
numbers in the low-field regime45. The similarity of the switching  
phenomena in HTG strongly suggests that Chern domains also play a 
role here. This is naturally explained by the different Chern numbers 
expected in h-HTG and h -HTG domains at integer ν (ref. 41). In Sup-
plementary Section 3, we propose a detailed scenario explaining the 
observed unique hysteresis behaviour applied to HTG. However, we 
note that the multiple domains, gapless domain walls and many degrees 
of freedom may result in complex magnetotransport behaviour. Hence, 
our picture may be incomplete.

Scale-dependent symmetries
The dynamics of Bloch electrons in the presence of slowly varying 
external fields is described by the semiclassical model. The model 
considers wave packets of Bloch electrons—a distribution of width δk 
about some central momentum, k0. The wave packets are required to 
be localized both in real space and in momentum space. The real-space 
uncertainty, δx, should be small on the scale of the spatial variations 
of the external fields, whereas the narrow momenta distribution, δk, 
allows approximating the wave packet velocity as the group velocity 
at k0. The semiclassical model can be applied to HTG, where the moiré 
lattice provides the periodic potential and the supermoiré plays the 
role of the slowly varying external fields. Applying the semiclassical 
model to HTG is justified when the real-space size of the wave packet 
is much smaller than the supermoiré domains: that is, δx ≪ λsm.  
Using the uncertainty relation δxδk ≥ 1/2, we can relate the minimal 
size of the wave packet to the interparticle distance, d = n−1/2, by 
d ∼ k−1F < δk−1 ≲ δx . At densities n ≳ 1011 cm−2, the condition d ≪ λsm 
holds. This allows the use of a local band structure to describe the elec-
tronic properties in individual h-HTG and h-HTG domains. Even though 
at scales larger than λsm, HTG preserves C2z symmetry, for scales cor-
responding to typical interparticle distances, d ≈ λm, it breaks C2z sym-
metry similar to other moiré systems that show AHE, such as twisted 
monolayer–bilayer graphene and hBN-aligned magic-angle twisted 
bilayer graphene. Thus, HTG demonstrates the importance of the 

symmetries of a locally periodic system at the length scale of the inter-
particle distance.

Outlook
Our results demonstrate that engineering a supermoiré system to 
break C2z symmetry on the moiré scale can induce topological bands 
despite the overall approximate C2z symmetry of the system. The 
presence of gate-switchable Chern domains and a network of gapless 
edge modes, together with the high TC and the high yield of samples 
exhibiting the AHE, establish HTG as an ideal platform for exploring 
orbital magnetism with Chern domain walls49. Owing to its predicted 
homogeneous charge distribution, near-ideal quantum geometry33 
and small interaction-induced dispersion41, HTG is also promising for 
realizing exotic electronic phases, including zero-field fractional Chern 
insulating states33,47. Lastly, superconductivity was recently predicted 
in HTG50, opening the possibility of studying the interplay between 
topology and superconductivity in a graphene system.
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Methods
Device fabrication
The van der Waals heterostructures were assembled in two parts using 
the standard dry-transfer technique. First, an hBN flake and a few-layer 
graphene strip were picked up by a poly(bisphenol A carbonate) stamp. 
This bottom stack was released onto a 285 nm SiO2/Si substrate, followed 
by 12 h vacuum annealing at 350 ∘C to remove polymer residues. Then, 
tip cleaning was performed using the Contact Mode of a Bruker Icon 
XR atomic force microscope to clean the surface further. A monolayer 
graphene flake was cut into three pieces using a confocal laser-cut setup. 
A second poly(bisphenol A carbonate) stamp was used to pick up a hBN 
flake and the three graphene pieces subsequently. Before picking up 
the second and third pieces of graphene, the stage was rotated by 1.8∘ in 
the same direction to realize a helical stacking order. The pickup of gra-
phene was done at room temperature to avoid the relaxation of the twist 
angle. The top stack was released onto the bottom stack at 150–170 ∘C.

The Hall bar was defined in a bubble-free region identified under 
an atomic force microscope. Patterns were defined using an Elionix 
ELS-HS50 electron-beam lithography system. A metallic top gate 
(25–65 nm Au with a 2–5 nm Cr or Ti adhesion layer) was deposited 
using a Sharon thermal evaporator. The device was connected using 
one-dimensional contacts (63–75 nm Au with a 2–5 nm Cr adhesion 
layer)51. Finally, the device was etched into a Hall bar geometry using 
reactive-ion etching.

Electrical transport measurements
Low-temperature electrical transport measurements were carried  
out in a helium-3 refrigerator with an 8 T perpendicular super
conducting magnet and a base temperature of about 290 mK. A 
homemade twisted-pair copper tape filter with ~20 MHz cutoff fre-
quency52 was thermally anchored at base temperature to guarantee 
the electron temperature of the device is the same as the phonon 
temperature. D.c. voltages were applied to the top and bottom gates 
using Keithley 2400/2450 source-measure units. The a.c. excitation of 
1–10 nA at 16–24 Hz was applied using SR830 or SR860 lock-in ampli-
fiers. The corresponding a.c. currents and voltages were measured 
using Stanford Research Systems SR830 or SR860 lock-in amplifiers, 
pre-amplified using DL-1211 current pre-amplifiers and DL-1201 volt-
age pre-amplifiers. The temperature was measured using a calibrated 
CX-1010-CU-HT-0.1L thermometer. n = (ϵBNϵ0/e)(Vbg/dbg + Vtg/dtg) and 
D = (ϵBNϵ0/2)(Vbg/dbg − Vtg/dtg) define n and D relations to Vbg and Vtg, 
where ϵBN = 3 is the relative dielectric constant of hBN, ϵ0 is the vacuum 
permittivity, e is the elementary charge and dbg (dtg) is the thickness of 
the bottom (top) hBN.

Dilution refrigerator measurements were performed in a Leiden 
Cryogenics CF-900 using a custom probe. The measurement lines are 
equipped with electronic filtering at the mixing chamber stage to obtain 
a low electron temperature in the device and reduce high-frequency 
noise. There are two stages of filtering: the wires are passed first through 
a cured mixture of epoxy and bronze powder to filter GHz frequen-
cies and then low-pass RC filters mounted on sapphire plates filter 
MHz frequencies. Samples were mounted using a Kyocera custom 
32-contact ceramic leadless chip carrier (drawing PB-44567-Mod  
with no nickel sticking layer under gold, to reduce magnetic effects). 
Stanford Research Systems SR830 lock-in amplifiers with NF Corpora-
tion LI-75A voltage pre-amplifiers were used to perform four-terminal 
resistance measurements. A 1 GΩ bias resistor was used to apply an 
a.c. bias current of up to 5 nA RMS at a frequency of 6.451 Hz. Keithley 
2400 source-measure units were used to apply voltages to the gates.

In all measurements, the devices were cooled down under zero 
applied magnetic field.

Twist angle determination
Band structure calculations for the h-HTG and h-HTG domains show 
large moiré band gaps at ν = ±4, whereas the domain walls remain 

gapless throughout the spectrum. At ν = ±4, we expect the domain walls 
to form a metallic network, shunting the gapped periodic domains and 
somewhat lowering the resistance at these fillings, compared with a 
homogeneous insulating system. Nevertheless, we can still clearly 
identify resistive peaks at ν = 4 and Landau levels emerging from the 
band extrema. We therefore use the features at ν = ±4 to extract a twist 
angle for each device, with nν=±4 = ±8sin2

θ/√3a2 ≈ ±8θ2/√3a2 , using 
a = 0.246 nm as the lattice constant for graphene.

We calibrate the twist angles for our HTG devices using the densi-
ties from which Landau levels emerge at integer fillings, particularly 
from ∣ν∣ = 4 (Extended Data Fig. 2). We fit a series of integer slopes to 
the measured Landau level gaps (dips in Rxx emerging from ν = −4, 0, +4) 
and resistive states at partial fillings (Rxx peaks at ν = 1, 2, 3), using the 
density of ∣ν∣ = 4, nν=±4, as a free parameter. The best fit across all fillings  
and sloped features yields for Device 2 nν=±4 = 7.45 ± 0.17 × 1012 cm−2, 
corresponding to θ = 1.79 ± 0.02∘. Errors are estimated by aligning the 
collection of Rxx features to the left and right edges of each feature 
(Rxx minima for Landau level gaps or peaks of correlated states). See 
Supplementary Table 2 for the twist angles and error estimates of 
the other devices (errors estimated from Rxx peaks at integer filling 
for cases without clear Landau levels), along with a summery of the 
filling fractions ν for which correlated Rxx features and the AHE in Ryx 
are observed. The preponderance of correlated features and observa-
tions of the AHE clearly increases as the twist angle approaches 1.79∘, 
although the precise behaviour for angles larger than ~1.8∘ remains to 
be explored in detail. This evolution of correlated features is especially 
evident in measurements of Rxx plotted versus ν for several devices in 
Supplementary Fig. 4.

We note that in the case of a slight mismatch between the two twist 
angles, θ12 ≠ θ23, the system relaxes to a structure similar to the equi-angle 
one, only with a smaller supermoiré unit cell (Methods section ‘Unequal 
twist angles and effects of twist angle disorder’ and Supplementary 
Fig. 7). Transport measurements only allow us to extract the resulting 
local twist angle θ in the periodic domains, which is between θ12 and θ23.

Symmetrization and antisymmetrization
All the presented Rxx and Ryx data were symmetrized and anti
symmetrized, respectively, with respect to the applied out-of- 
plane magnetic field B. Specifically, Rxx = (Rraw

xx (B) + Rraw
xx (−B))/2  and 

Ryx = (Rraw
yx (B) − Rraw

yx (−B))/2, where raw indicates raw data. This allows us  
to compensate for non-ideal Hall bar geometry and for anisotropies 
that we found to be important and ubiquitous in HTG. In measurements  
where B is the fast sweep axis, such as in Fig. 3a–f, the symmetriza
tion and antisymmetrization were performed between curves of  
opposite sweep direction, so that Ryx = (Rraw↑

yx (B) − Rraw↓
yx (−B))/2 and 

Rxx = (Rraw↑
xx (B) + Rraw↓

xx (−B))/2 (here, the arrows indicate the sweep  
direction of B). In measurements where B was the slow axis, such as 
Fig. 4a,b, the antisymmetrization was performed between curves with 
opposite constant B: Ryx = (Rraw

yx (B) − Rraw
yx (−B))/2 and similarly for Rxx.

Calculation of the Hall density
We extract the Hall density nH = −e−1(dRyx/dB)

−1  from Ryx measure
ments taken at ±1 T according to nH = −(B+ − B−)/e(Ryx(B+) − Ryx(B−)), 
where B± = ±1 T, e is the elementary charge and nH > 0 corresponds to 
electron doping. In a non-interacting system at low doping, nH ≈ n and 
is expected to diverge near a Van Hove singularity. This is indeed the 
case for hole doping in our system. In contrast, on the electron doping, 
near ν = 1, we find that nH deviates below n, indicative of a flavour 
reset39,40, similar to magic-angle twisted bilayer graphene and related 
moiré systems.

Extraction of Curie temperature
We extract TC following ref. 53 by plotting R2

yx versus ∣B/Ryx∣ at different 
temperatures. Such a plot for Device 2 is shown in Extended Data Fig. 6, 
taken at ν = 2.9 and D = 0. We take Ryx as a proxy for the magnetization 
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M, reproducing an Arrott plot (M2 versus M/H) (ref. 54). The intercept 
of a linear extrapolation of the high-field regime determines the mag-
netic state. At temperatures T < 10.5 K, we find a positive intercept 
indicating a ferromagnetic phase. At T = 10.5 K, the intercept is approxi-
mately zero, and above this temperature, the intercept is negative, 
indicating a transition to a paramagnetic phase; hence, the Curie tem-
perature is approximately 10.5 K.

Theoretical electronic band structure calculation
The starting point for the single-particle band structure is the con-
tinuum model Hamiltonian33. We first define the atomic lattice vectors 
for each layer as the columns of the matrix Aℓ = λℓR(θℓ)A0, R(θ) is the 
counterclockwise rotation matrix, (θ1, θ2, θ3) = (θ, 0, −θ) are the twist 
angles, (λ1, λ2, λ3) = (1, 1/ cos(θ), 1) incorporates the biaxial strain in the  

relaxed domains, and A0 = a0 (
1 1

2

0 √3
2

), with a0 = 0.246 nm. We use  

italic text to indicate matrices and bold text to denote vectors. The  
monolayer reciprocal lattice vectors are then given by the columns  
of the matrix Gℓ = 2πA−Tℓ . The generalization of the Bistritzer– 
MacDonald continuum model to the helical trilayer structure is

H(k) =
⎛
⎜
⎜
⎜
⎝

v0σθ ⋅ [k − kθ ̂y] + U T12(r − dt) 0

T†12(r − dt) v0σ ⋅ [k] T23(r − db)

0 T†23(r − db) v0σ−θ ⋅ [k + kθ ̂y] − U

⎞
⎟
⎟
⎟
⎠

(1)

where σθ = e−iθσz (σx,σy)  are Pauli matrices. This model describes  
the physics near the K points, Kℓ = Gℓ(2/3, 1/3)  which lie on a  

vertical line, (K1,K2,K3) = KD cos(θ) ̂x + (kθ,0, −kθ) ̂y , where KD =
4π
3a0

 and  

kθ = KD sin(θ). The momentum k is measured relative to the K2 point.

The interlayer tunnelling terms are given by

Tℓ−1,ℓ(r) =
2
∑
n=0

e−iQ
n
ℓ−1,ℓ⋅r (

wAA wABe−
2πin
3

wABe
2πin
3 wAA

) (2)

w h e r e  Qn
ℓ′ℓ = (Gℓ′ − Gℓ)mn,  w i t h  m0 = (0,0),  m1 = (−1,0)  a n d  

m2 = (−1, −1). Explicitly, Qn
12 = Qn

23 = q0 − qn, where qn,x + iqn,y = −ikθe
2πi
3
n.  

The h-HTG and h -HTG regions are modelled by choosing the dis
placements dt − db = ±δ, respectively, where δ = 1

3
(a2 − a1) and  

a1,2 =
4π
3kθ

(±√3
2
, 1
2
) are the moiré lattice vectors. The layer potential  

U models the effect of the displacement field. We use parameters 
v0 = 8.8 × 105 m s−1, wAB = 110 meV and wAA = 75 meV.

To capture the particle-hole asymmetry, it is crucial to include 
the effect of longer-range interlayer tunnelling terms: that is, 
momentum-dependent tunnelling. This arises due to the non-local 
components of the interlayer tunnelling term, which we take to be55,56

t(r) = −te−(R−acc)/r0 r
2

R2 + t⟂e
(R−d)/r0 d

2

R2 (3)

where r = |r|, R = √r2 + d2 , d = 3.35 Å, r0 = 0.453 Å, t = 2.7 eV, t⊥ =  
0.48 eV. We define the Fourier transform of the tunnelling as 
̃t(k) = |A0|−1 ∫ e−ik⋅rt(r)dr. Because the momenta k of relevance to the 

low-energy physics are close to the K point, the value of the tunnelling 
evaluated at ̃t(K) is most important and determines the effective tun-
nelling parameter w in the Bistritzer–MacDonald model. The first-order 
correction due to the non-local tunnelling can be taken into account 
by expanding t(k) ≈ t0[1 + ξ(|k| − KD) +O((|k| − KD)

2)], where t0 ≈ 0.11 eV 
and ξ ≈ −2.1 Å. Moiré scale lattice relaxation is expected to reduce the 
tunnelling between AB sublattices, which we take into account by 
uniformly scaling the AB tunnelling strength by an overall factor 

wAB/wAA. Operationally, implementing the above amounts to replacing 
Tℓ′ℓ(r) with Tℓ′ℓ(k, r), where

Tℓ−1,ℓ(k, r)

=
2
∑
n=0

eiQ
n
ℓ−1,ℓ⋅r (1 + ξ(|K2 + k + Gℓmn| − KD)) (

wAA wABe−
2πin
3

wABe
2πin
3 wAA

)
(4)

is a tunnelling term whose strength depends on the momentum k. Note 
that the factor containing k appears on the right of those containing r 
(which is important, as the two do not commute).

Hartree–Fock calculations at ν = 7/2, 2/3
In this section, we perform self-consistent Hartree–Fock calculations 
in moiré-periodic h-HTG at non-integer fillings ν = 7/2, 2/3, the same 
fillings where correlated features were observed in Fig. 3. To the 
non-interacting Hamiltonian in Section 7, we apply layer potentials U, 
0, −U on the three layers to mimic the effect of an external displacement 
field. For simplicity, the momentum-dependent tunnelling is not 
included in this analysis. Owing to the large energy gap to the remote 
bands, we project our calculations into the two central bands per  
flavour (spin and valley). We add dual-gate screened density-density  

interactions V(q) = e2

2ϵ0ϵrq
tanhqdsc, where the gate screening length is  

dsc = 25 nm, and the effect of the hBN dielectric and remote bands is  
phenomenologically captured with the relative permittivity ϵr = 8. The 
interaction term is normal-ordered with respect to the average density 
of the central bands at charge neutrality. To allow for gapped states at 
non-integer fillings within mean-field theory, we allow translation 
symmetry-breaking (TSB) by enlarging the unit cell. We allow breaking 
of all flavour and discrete rotational symmetries. Further details of the 
Hartree–Fock procedure are provided in ref. 41.

At ν = 7/2 (Extended Data Fig. 9a–f), we additionally let the system 
break translation symmetry by doubling the unit cell length along 
both moiré axes (quadrupling the area of the unit cell). We find that 
the lowest-energy solution is a gapped state with TSB, as shown by the 
negative value of ΔE, which is defined as the Hartree–Fock energy per 
moiré unit cell measured relative to the best translation-symmetric 
solution. Its density matrix is consistent with fully filling all bands 
except a ∣C∣ = 2 band (corresponding to a B sublattice band in h-HTG), 
which is half-filled and reconstructed by TSB and spatially depend-
ent spin rotations. Although the charge density is moiré-periodic 
(Extended Data Fig. 9a), the quadrupling of the unit cell is revealed by 
the non-coplanar spin texture (Extended Data Fig. 9b), which forms 
a tetrahedral antiferromagnet similar to that theoretically proposed 
in twisted monolayer–bilayer graphene and twisted double-bilayer 
graphene in ref. 57. If we restrict the calculation to maintain spin col-
linearity, we find two other spin-polarized solutions that realize a 
C3z-symmetric charge density wave and a stripe charge density wave, 
respectively (Extended Data Fig. 9c,d). The stripe charge density wave 
is reminiscent of that proposed in ref. 10 to explain transport experi-
ments in twisted monolayer–bilayer graphene. All three solutions are 
∣C∣ = 1 states that preserve valley U(1)V symmetry and closely resemble 
the candidate ‘strong-coupling’ TSB orders expected from half-filling 
an ideal ∣C∣ = 2 band47,57. The close energetic competition between the 
different orders (Extended Data Fig. 9e) points towards the ideality 
of the topological bands in h-HTG. ∣ΔE∣ decreases monotonically as 
a function of U, suggesting that the TSB state is weakened in a dis-
placement field, although the U-dependence of the charge gap is less 
consistent (Extended Data Fig. 9f). Although the TSB solutions remain 
energetically favoured for the large range of interlayer potentials 
studied, we caution that Hartree–Fock tends to overestimate gaps 
and symmetry-breaking, such that beyond mean-field theory, the 
threshold value of U where the system recovers symmetry is expected 
to be reduced.
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In Extended Data Fig. 9g,h, we show analogous results for ν = 2/3, 
where we allow TSB to enlarge the unit cell threefold along both moiré 
axes. We again find the presence of gapped TSB solutions, although 
the gap size and TSB energy gain ∣ΔE∣ are smaller and non-monotonic 
in U. Interestingly, we find a window of non-zero interlayer potentials,  
slightly above/at the theoretical topological transition for ν = 1  
(ref. 41), where ∣ΔE∣ is locally maximal and the Hartree–Fock gap remains  
large. This suggests the possibility of a correlated state that only 
emerges at a non-zero displacement field. However, the presence 
of several closely competing states, multiple partially filled flavours 
and sensitive dependence on system parameters prevent an unam-
biguous interpretation of the Hartree–Fock results. We leave a more 
detailed theoretical investigation of the correlated physics at ν = 2/3 
to future work.

Relaxation
When considering the atomic arrangement of twisted graphene  
systems within a single moiré unit cell, it has been shown that for  
θ ≳ 1∘, lattice relaxation does not have a substantial effect on the moiré 
scale36. This effect remains very small at 1.8∘ and does not depend on 
twist angle variations. However, even at large angles, as high as 1.8∘, 
lattice relaxation can profoundly affect the relative shift between 
moiré-12 and moiré-23—the two moiré patterns in HTG. This shift allows 
the formation of the periodic h-HTG and h-HTG domains.

To calculate the relaxation of the HTG system, we employ a con-
tinuum relaxation model in local configuration space58. Therefore, 
instead of formulating the problem in real space, we adopt configura-
tion space, which describes the local environment of every position in 
layer Lℓ and bypasses a periodic approximation59. Every position in real 
space r in Li can be uniquely parametrized by three shift vectors bi→j  
for j = 1, 2, 3 that describes the relative position between any point  
in real space r with respect to all three layers. Note that bi→j = 0   
if i = j because the separation between a position with itself is 0, which 
leads to a four-dimensional configuration space.

For a given real space position r, the following linear transfor
mation uniquely maps between the real space position r and the local 
configuration space component in layer i with respect to layer jbi→j:

bi→j(r) = (E−1
j
Ei − �)r, (5)

where Ei and Ej are the unit cell vectors of layers i and j respectively, 
rotated by θij. In the trilayer system, there is no simple linear transfor-
mation between real and configuration space. The relation between 
the displacement field defined in real space, U(i)(r), and in configuration 
space, u(i)(b), can be found by evaluating u( j)(b) at the corresponding 
bi→j(r) and bi→k(r) with equation (5) to obtain

U(i)(r) = u(i)(bi→j(r),bi→k(r)), (6)

where j, k ≠ i and j < k.
The relaxed energy has two contributions, intralayer and interlayer 

energies:

E tot (u(1),u(2),u(3)) = E intra (u(1),u(2),u(3)) + E inter (u(1),u(2),u(3)) , (7)

where u(ℓ) is the relaxation displacement vector in layer ℓ. To obtain the 
relaxation pattern, we minimize the total energy with respect to the 
relaxation displacement vector.

We model the intralayer coupling based on linear elasticity theory:

E intra (u(1),u(2),u(3)) =
3
∑
ℓ=1

∫ 1
2
[G(∂xu(ℓ)x + ∂yu(ℓ)y )

2

+ K ((∂xu(ℓ)x − ∂yu(ℓ)y )
2
+ (∂xu(ℓ)y + ∂yu(ℓ)x )

2
)]db,

(8)

where G and K are shear and bulk moduli of monolayer graphene, 
which we take to be G = 47,352 meV per unit cell, K = 69,518 meV per 
unit cell58,60.

The interlayer energy accounts for the energy cost of the layer 
misfit, which is described by the generalized stacking fault energy 
(GSFE)61,62 obtained using first principles Density Functional Theory 
with the Vienna Ab initio Simulation Package63–65. GSFE is the  
ground state energy as a function of the local stacking with respect to  
the lowest-energy stacking between a bilayer. For bilayer graphene, 
GSFE is maximized at the AA stacking and minimized at the AB stack-
ing. Letting b = (bx,by)  be the relative stacking between two layers,  
we define the following vector v = (v, w) ∈ [0, 2π]2:

(
v

w
) = 2π

a0
[
√3/2 −1/2

√3/2 1/2
] (

bx

by
) , (9)

where a0 = 2.4595 Å is the graphene lattice constant. We parameterize 
the GSFE as follows:

VGSFE
j± = c0 + c1(cos v + cosw + cos(v +w))

+c2(cos(v + 2w) + cos(v −w) + cos(2v +w))

+c3(cos(2v) + cos(2w) + cos(2v + 2w)),

(10)

where we take c0 = 6.832 meV per cell, c1 = 4.064 meV per cell, 
c2 = −0.374 meV per cell, c3 = −0.0095 meV per cell58,60. The van der Waals 
force is implemented through the vdW–Density Functional Theory 
method using the SCAN+rVV10 functional66. In terms of VGSFE

ℓ± , the total 
interlayer energy can be expressed as follows:

E inter = 1
2
∫ VGSFE

1+ (B1→2)db + 1
2
∫ [VGSFE

2− (B2→1) + VGSFE
2+ (B2→3)] db

+ 1
2
∫ VGSFE

3− (B3→2)db,
(11)

where Bi→j = bi→j + u( j) − u(i)  is the relaxation modified local shift  
vector. Note that we neglect the interlayer coupling between layers  
1 and 3. The total energy is obtained by summing over uniformly  
sampled configuration space. In this work, we discretize the four- 
dimensional configuration space by 54 × 54 × 54 × 54.

Unequal twist angles and effects of twist angle disorder
We show the relaxed supermoiré structure calculated for unequal twist 
angles (θ,0, −θ′). Supplementary Fig. 7 shows the local misfit energy 
for θ = 1.8∘ with varying θ′ = 1.8∘, 1.75∘, 1.7∘ . The h-HTG and h -HTG 
domains can be identified by the honeycomb pattern in the misfit 
energy. It can be seen that even a small variation in θ12 or θ23 will result 
in large variations in the supermoiré wavelength. However, our calcula-
tions indicate that h-HTG and h -HTG domains still form within  
every supermoiré domain regardless of its size, resulting in a qualita-
tively equivalent structure to the equi-angle one. Therefore, we antici-
pate that with twist angle variations, whereas the supermoiré pattern 
may change substantially, physical properties attributed to h-HTG and 
h-HTG moiré lattices should be robust.

We do not observe transport features at densities correspond-
ing to the supermoiré unit cell area. This could be due to the strong 
dependence of the supermoiré size on the precise local twist angles. 
Therefore, coherent supermoiré over a few unit cells requires ultra-low 
twist-angle disorder, which is beyond the controllability of our current 
fabrication techniques.

Data availability
All the experimental data used in this work are available via Harvard 
Dataverse at https://doi.org/10.7910/DVN/TVYXOI (ref. 67). Source 
data are provided with this paper. All other data that support the 
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findings of this study are available from the corresponding authors 
upon reasonable request.
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Extended Data Fig. 1 | Optical micrographs of HTG devices. a, Device 1 - a 
secondary device with θ = 1.77∘. b, Device 2 - our main device with θ = 1.79∘.  
c, Device 3. This device shares the van der Waals heterostructure with Device 2.  
Rxx and Ryx contacts are indicated by black dots for all devices. d, Contrast-enhanced 

optical micrograph of Device 2 after stacking. The crystallographic edges of the 
top hBN, bottom hBN, and top monolayer graphene are highlighted, showing  
no accidental alignment between hBN and HTG. All scale bars are 2 μm.
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Extended Data Fig. 2 | Twist angle determination. a, Rxx Landau fan from Device 
2, measured at D = 0 and T = 300 mK. Electron-side (right) and hole-side (left) are 
plotted with different color scales to improve contrast. Dashed lines correspond 

to the best-fit series shown in b. b, Map of the best-fit slopes from a emerging 
from a consistent set of integer fillings, ν. Red lines emerge from nν=±4 and ν = ± 4 
(off-scale due to measurement limitations) in a and b, respectively.
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Extended Data Fig. 3 | Device 1 characterization. a, Rxx versus n and D, showing 
resistance peaks at charge neutrality (ν = 0), at the moiré band gaps (ν = ± 4),  
and at the correlated states at ν=1,2,3. b, Field-trained ΔRyx measured at  
T = 300 mK and B = ± 60 mT versus ν and D. Hot spots near ν=1,3 indicate AHE.  

c,d, Field-antisymmetrized Ryx and field-symmetrized Rxx taken at ν=2.9 (cyan 
circle in b) and D/ϵ0 = − 0.15 V/nm while sweeping B up (solid) and down (dashed) 
at different temperatures as indicated. Temperature colorcode in d is identical  
to c. e,f, Same as c,d, taken at ν=0.8 and D/ϵ0 = 0.1 V/nm (pink triangle in b).
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Extended Data Fig. 4 | Device 3 characterization. a, Rxx versus n and D, showing 
resistance peaks at charge neutrality (ν=0), at the moiré band gaps (ν = ± 4), and  
at the correlated states at ν=1,2,3. The contact resistance becomes very large 
when ν ≳ 3.2, leading to artifacts in the data. b, Field-trained ΔRyx measured at  
T = 300 mK and B = ± 60 mT versus ν and D. Hot spots near ν=1,3 indicate AHE.  

c,d, Field-antisymmetrized Ryx and field-symmetrized Rxx taken at ν=3.1 (cyan circle 
in b) and D/ϵ0 = 0 while sweeping B up (solid) and down (dashed) at different 
temperatures as indicated. The temperature color code in d is identical to c.  
e,f, Same as c,d, taken at ν=0.8 and D/ϵ0 = − 0.09 V/nm (pink triangle in b).
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Extended Data Fig. 5 | Single-particle density of states and Van Hove 
singularity. (left) The single particle DOS with momentum-dependent tunneling 
as a function of filling factor and layer potential. The Van Hove singularity at 

which the Hall density switches sign is indicated by the dashed lines. (right) 
Extended Fermi surfaces at the Van Hove singularity are shown for the four points 
indicated by stars in the DOS plot.
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Extended Data Fig. 6 | Extraction of the Curie temperature using an Arrott plot. R2
yx  versus ∣B/Ryx∣. Positive (negative) extrapolated intercept of the linear part at high 

B indicates a ferromagnetic (paramagnetic) state. The curve taken at T = 10.5 K has approximately zero intercept, indicating a Curie temperature TC ≈ 10.5 K.
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Extended Data Fig. 7 | Temperature dependence and gap sizes estimation.  
a, Rxx (raw data, not field-symmetrized) versus ν and T of Device 2 at D = 0 and  
B = 0. The jumps in resistance near ν=3 reflect the AHE of different magnetic 
states combined with Ryx mixing. A pronounced electron-hole asymmetry is 
demonstrated. b, line cuts of a versus 1/T at different ν as indicated. Some curves 
show non-monotonic temperature dependence due to the parallel conduction  
of the insulating domains and the metallic network of domain walls. The total 
resistance can be modelled by Rtot = (R−1

M + R−1
I )−1

, where RM and RI are the 
resistance of the metallic walls and insulating domains, respectively. When one of 
the resistances is much smaller than the other, we have Rtot ≈ min(RM,RI). At low 

temperatures, 1/T ≳ 0.2 K−1, the insulating bulk is shunted by the metal, saturating 
the increased resistance of the insulating domains. As T is increased to 
intermediate values, 1/T ~ 0.1 K−1, the domains become less resistive and Rtot ≈ RI. 
We use this regime to estimate the gap sizes for ν=0,2,3 (indicated) by fitting the 
data to R = R0 exp{−Δν/2kBT}, where Δν is the gap at filling ν and kB is Boltzmann’s 
constant. At higher temperatures, 1/T ≲ 0.05 K−1 for ν=2,3, the correlated states 
give way to a metallic phase, accounting for the increasing resistance with T at 
those filling factors. At ν=1, evidence for thermal activation is absent, indicating a 
semimetallic state without a fully developed correlated gap.
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Extended Data Fig. 8 | Correlated state at ν=7/2. a, Rxx versus ν, measured on Device 2 at D = 0, B = 0, and T = 300 mK. At ν=7/2, we find a resistance peak distinct from 
the one at ν=3. b, Waterfall plot of antisymmetrized Ryx taken by sweeping B up (solid) and down (dashed) as the fast axis at D = 0 and different ν, as indicated on the 
right of every other curve. The AHE persists beyond ν=7/2.
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Extended Data Fig. 9 | Hartree-Fock calculations at ν=7/2 and 2/3. a, Charge 
density n(r) (measured relative to that at full flat band filling nν=+4(r)) of the 
tetrahedral antiferromagnet (TAF) at ν=7/2. Grey dots indicate ABA-stacking 
regions. b, Local spin orientation in the TAF. Arrows denote spin direction in  
sx − sy plane, while red (blue) coloring indicates out-of-plane polarization along 
+ ̂sz(− ̂sz). Grey parallelogram indicates the new quadrupled moiré unit cell.  
c,d Same as a except for the ̂C3z  charge density wave and stripe charge density 

wave respectively. e, ΔE of the different translation symmetry breaking solutions 
at ν=7/2 as a function of interlayer potential U. ΔE is measured relative to that  
of the best translation- symmetric solution. f, Charge gap of the translation 
symmetry breaking solutions at ν=7/2. g,h, Same as e,f except for the best 
translation symmetry breaking solution at ν=2/3. All calculations performed  
on a 18 × 18 system using θ = 1.80∘, wAA = 75 meV.
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