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Evidence for pre-Noachian granitic rocks on 
Mars from quartz in meteorite NWA 7533
 

V. Malarewicz    1,2, O. Beyssac    1 , B. Zanda    1,3, J. Marin-Carbonne    4, 
H. Leroux    5, D. Rubatto    4,6, A. S. Bouvier    4, D. Deldicque7, S. Pont1, 
S. Bernard    1, E. Bloch8, S. Bouley2, M. Humayun    9 & R. H. Hewins    1,10

The surface of Mars has long been seen as a basaltic, monotonous world, 
but observations in the past decade have revealed more petrological 
diversity. Orbital and in situ rover investigations show that Mars developed 
a silica-rich crust early in its history. This is supported by studies of 
the Martian regolith breccia Northwest Africa (NWA) 7533 (and paired 
meteorites). When and to what extent rocks on Mars differentiated, and 
which geodynamical process could lead to this evolution, is still unclear. 
Here we use petrology and in situ geochemical analyses to document the 
presence of quartz in lithic clasts of NWA 7533. The clasts have a granitic 
composition with a mineral assemblage dominated by quartz, potassium 
feldspar and plagioclase. Such quartz-bearing clasts are the most evolved 
silicic rocks yet recognized among differentiated Martian lithologies. These 
clasts suggest the likely existence of pre-Noachian granitic rocks on Mars 
that formed in the presence of water. In bulk composition they resemble the 
oldest terrestrial rocks (Acasta gneisses, Canada) and also rocks from the 
large Sudbury impact structure. Therefore, we suggest that the combined 
action of hydrothermal activity and impact melting could have triggered the 
formation of granitic rocks and evolved crust on early Mars and Earth.

Quartz, the emblematic mineral of the Earth’s continental crust, is 
rarely found in other planetary bodies. On Earth, quartz is an ultimate 
marker of magmatic differentiation of the continental crust, but it 
can also be locally crystallized by hydrothermal processes. Finding 
quartz and investigating the initial formation of continental crust in 
the primitive Hadean Earth (>4 Gyr ago; Ga) is challenging as plate 
tectonics perpetually recycles the crust, and the relevant rock record 
has largely vanished1. However, this early history may be traced on Mars 
because it experienced an early geodynamic evolution similar to that 
of the Earth without having subsequently developed plate tectonics1. 

Therefore, Mars preserves abundant pre-Noachian (>4.1 Ga) and 
Noachian (~4.1–3.7 Ga) rocks at its surface1, including a thick crust in 
the southern highlands2 as well as bodies of differentiated rocks3 (Sup-
plementary Note 1). Interestingly, in situ exploration of the Noachian 
terrains of Gale Crater by the Curiosity rover detected silica-rich float 
rocks with granodioritic compositions, including K-feldspar and ‘trans-
lucent grey grains’4 (evocative of quartz). Quartz-free, differentiated 
monzonitic and related lithic fragments occur in the Martian polymict 
breccia Northwest Africa (NWA) 7533 and in paired meteorites5–8 with 
alkali compositions similar to those of Gale Crater rocks. Here we report 
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quartz grain (Extended Data Fig. 6). Two FIB sections contain thin 
planar defects (a few nanometres wide) in the form of dislocations 
oriented according to (0001), interpreted as mechanical twins (Fig. 2b 
and Extended Data Fig. 6), indicative of a low-intensity shock process16. 
The density of such planar defects is quite variable among and within 
the grains. In one sample (Extended Data Fig. 6c), we detected an amor-
phous lamella with an orientation close to (10 ̄13). One sample contains 
thin planar defects parallel to (10 ̄11) (Extended Data Fig. 6e). Planar 
defects in planes (10 ̄13) observed are comparable to planar deforma-
tion features developed in quartz subjected to shock pressures of ~10 
GPa (ref. 17).

Microtexture and geochemistry
Quartz-bearing clasts (QBC) display diverse mineral assemblages and 
microtextures (Fig. 1 and Extended Data Fig. 4). Some clasts are textur-
ally similar to noritic–monzonitic clasts previously described in NWA  
7533 (refs. 6–8), but with large quartz crystals as well as K-feldspar  
(An0.8–2.7Ab7.7–19.3Or78.0–91.4) and plagioclase (An0.8–65.9Ab30.8–93.7Or3.3–5.5),  
± pyroxene (En45.5Fs46.2Wo8.3), ± ilmenite ± chlorapatite (Supplementary 
Table 2 and Extended Data Fig. 7). One felsite clast (Fig. 1d) contains 
intergrowths of quartz and K-feldspar, with a microtexture similar to 
that of clasts in the lunar regolith breccia NWA 11962 (ref. 18). Other  
clasts (Extended Data Fig. 4b) resemble microgranites, with quartz finely 
intergrown with perthitic feldspar (An0.8Ab12.5Or86.7–An1.6Ab88.2Or10.2). 
Such microtextures of quartz and feldspar are common in terrestrial 
granitic plutonic rocks due to the simultaneous crystallization of quartz 
and feldspar19. Lastly, some clasts (Extended Data Fig. 4a) share a similar 
mineral assemblage and texture with the granitic clast described in the 
ordinary chondrite regolith breccia Adzhi-Bogdo20.

Quartz δ18O values show large variability ranging from +5 to +12 ‰, 
with most data clustered in the 8–12‰ range (Fig. 3a) for both isolated 
and QBC grains. This is higher than the bulk values of Martian shergot-
tites, nakhlites and chassignites (SNC meteorites; 3.5–5.5‰) and NWA 
7034 breccia (6.35 ± 0.5‰)21, and the Earth’s bulk mid-ocean ridge 
basalt (MORB) value (5.5 ± 0.5‰)22. Such δ18O values are consistent with 
terrestrial granitic quartz, especially that older than 2 Gyr (ref. 23), but 
also with hydrothermal quartz24. Quartz δ30Si values also show large 
variability, from around +0.5 to +6 ‰ (Fig. 3b), significantly higher than 
for hydrothermal, magmatic or Archaean sedimentary (chert) quartz 
on Earth24–26 or bulk Martian SNC meteorites27. Such elevated δ18O and 
δ30Si values, and their variability, are best explained by the magma 
incorporating a component previously altered by low-temperature 
water–rock interactions and bearing clay minerals (Supplementary 
Note 2). Furthermore, the Ti content measured in quartz yields crystal-
lization temperatures of ~650–880 °C in a pressure range of 2–10 kbar 
(ref. 28), within the present-day thickness range (30–72 km)29 of the 
Martian crust (Extended Data Fig. 8).

The textures of the QBC, the structure of the quartz, and its O and 
Si isotopic and Ti compositions are consistent with a magmatic origin. 
The chemical compositions of the QBC plotted in geochemical clas-
sification diagrams (Fig. 4, Extended Data Fig. 9 and Supplementary 
Tables 3 and 4) show that the compositions of clasts 2, 3 and 5 are those 
of a granite. Clasts 1 and 4, including various oxides and pyroxene 
(En45.3Fs46.9Wo7.8), are closer to quartz diorite and granodiorite. Clasts 
2 and 3 could be related to the monzonitic clasts described by previ-
ous studies6–9, and represent the most differentiated endmember of 
this crystallization sequence. QBC and their host CLMR most prob-
ably formed along with the other differentiated clasts of the breccia 
~4.31–4.48 Ga. Unfortunately, no zircon has been found in them to 
confirm this. However, all zircon grains found in other differentiated 
clasts yielded U–Pb ages of 4.31–4.48 Gyr (refs. 5–11), while 146Sm–142Nd 
and 147Sm–143Nd ages for mineral separates from the bulk rock show that 
all breccia components formed ~4.44 Ga (ref. 30).

Quartz has not been formally characterized in situ on Mars, either 
by robotic or orbital exploration, although its presence may explain 

the discovery of multiple silica grains in a specific clast-laden melt 
rock (CLMR)8 of NWA 7533. Some silica grains are contained within 
felsic igneous clasts and some are isolated in the melt matrix. We 
show that these grains are crystalline quartz and characterize their 
chemistry, isotopic composition, structure and microtexture down to 
the sub-micrometre scale. We then discuss the processes that may be 
involved in the formation of this quartz and present some implications 
for the earliest history of Mars and Earth.

Quartz in NWA 7533
NWA 7533 regolith breccia (and paired meteorites) contains a wide vari-
ety of clasts embedded in a fine-grained crystalline matrix of basaltic 
composition5–9. These clasts include CLMRs and spherules, plus crystal 
shards and igneous clasts, such as monzonitic and noritic clasts and 
fine-grained microbasaltic fragments, all interpreted as impact melt 
rocks5,8. The mineralogy of these clasts includes K-feldspar, plagioclase, 
pyroxene, chlorapatite and (Ti)–Fe oxides. Zircon has been found in 
clasts and as grains within the matrix, revealing complex crystallization 
processes that began ~4.48 Ga according to the U–Pb age of zircon in 
NWA 7533 and paired samples5,9–11. Petrological investigations of NWA 
7533 (Fig. 1a and Extended Data Fig. 1) revealed a body with a dendritic 
groundmass (dendrites <10 µm in length) and a vitrophyric melt core 
(Extended Data Fig. 2) interpreted as a CLMR. The bulk composition of 
this CLMR is depleted in MgO and enriched in CaO compared with the 
breccia matrix and other CLMRs of the meteorite (Extended Data Fig. 3 
and Supplementary Table 1). More than 130 SiO2-rich grains of various 
shapes and sizes were detected in this CLMR (Fig. 1a and Supplementary 
Fig. 1). Electron microprobe analyses confirm that these grains have a 
pure SiO2 composition (Supplementary Table 2), consistent with quartz.

Raman spectra of these SiO2-rich grains are consistent with crystal-
line quartz (Fig. 2a). More than 40 of the largest silica grains (>20 µm) 
were analysed and show comparable spectra with a sharp peak at 
464 cm−1 (involving O motion in Si–O–Si symmetric stretching–bending  
mode) and less intense peaks at 128, 206, 265 and 355 cm−1 (torsional 
vibrations and O–Si–O bending modes) consistent with crystalline 
quartz12. Raman hyperspectral mapping shows that the position and 
full width at half maximum of the 464 cm−1 peak are constant within 
the quartz grains, reflecting their homogeneous high crystallinity. 
We did not find the Raman features characteristic of SiO2 glass, or of 
high-pressure or high-temperature SiO2 polymorphs found in other 
Martian meteorites13,14. No important shift in position or broadening of 
the main peak at 464 cm−1 was detected within or between grains, sug-
gesting at most a low density of shock-induced defects. Quartz crystals 
scattered throughout the melt zone vary from rounded to angular, 
sometimes compact or with a more irregular texture (Supplementary 
Fig. 1). Crystal length ranges from sub-micrometre to ~130 µm, mostly 
exceeding 10 µm in length. Most quartz grains are isolated in the melt 
matrix and are not euhedral as they are fragments of originally larger 
grains. A few large grains form lithic clasts with feldspar and pyroxene 
(Fig. 1b,c and Extended Data Fig. 4). The cathodoluminescence signal, 
caused by structural heterogeneities such as lattice defects15, varies 
among the grains (Fig. 1e and Supplementary Fig. 1). Quartz grains in 
lithic clasts show a strong, homogeneous luminescence signal. Isolated 
grains in the melt matrix often have a zoned luminescence pattern 
indicating growth layers. In some isolated grains, the truncation of 
the luminescence patterns at the crystal edges (Fig. 1e) indicates that 
quartz grains crystallized and were fragmented prior to their incor-
poration into the CLMR.

Four ultrathin sections were extracted by focused ion beam (FIB) 
from representative quartz grains, isolated in the melt matrix or from 
lithic clasts, exhibiting diverse luminescence patterns (Extended Data 
Fig. 5). Transmission electron microscopy (TEM) imaging and electron 
diffraction show that all quartz grains are single crystals (Fig. 2b and 
Extended Data Fig. 5). Only minor structural defects and a few mineral 
inclusions, mostly sulfides and (Ti)–Fe oxides, were identified in one 
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some findings by Mars Science Laboratory Curiosity like CheMin X-ray 
diffractograms31 or the observation of ‘translucent grey grains’ in 
felsic rocks4, or visible–infrared reflectance spectral data from orbit 
(Supplementary Note 1). Two main occurrences of quartz in Martian 

meteorites are known before our discovery in NWA 7533. Quartz ± 
cristobalite occurs in small crystallization pockets interstitial to other 
phases in Nakhla32 and shergottites33,34. These interstitial pockets con-
tain K-feldspar and minor fayalitic olivine33 but no plagioclase, ilmenite 
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Si mapping of the clast shown in b. Note the fine textural mixing of K-feldspar and 
plagioclase. d, SEM image of another quartz-bearing clast (Qtz no. 5) composed 
of quartz lamellae finely intergrown with K-feldspar and plagioclase (see EDS 
mapping in Extended Data Fig. 4d). e, Cathodoluminescence image of Qtz no. 
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or pyroxene as observed in the QBCs. These pockets are interpreted as 
late-stage crystallization products, due to a high degree of fractional 
crystallization of a basaltic magma. Different mineral assemblages 
and more diverse microtextures in QBCs probably reflect different 
magmatic processes for QBC formation. In the second case, quartz 
occurs with high-pressure SiO2 polymorphs (for example, coesite) 
and SiO2 glasses in shocked Martian meteorites13,14. Our investigations 
show that quartz occurs in NWA 7533 as a major phase in lithic clasts, 
and as single crystals with no high-pressure SiO2 polymorphs, which 
rules out scenarios involving late-stage crystallization in local pockets 
and/or shock for its formation. This is also consistent with the absence 
of any other evidence for major shock in this meteorite.

Quartz formation by hydrothermalism and impact 
melting
From a broader perspective, orbital spectroscopy has reported that 
plagioclase is abundant in some regions of Mars as well as other dif-
ferentiated lithologies3 (Supplementary Note 1). Udry et al.35 used 
models of fractional crystallization and terrestrial geochemical data 
to test formation scenarios for the evolved rocks at Gale Crater, and 
in meteorites including NWA 7533. They determined conditions that 
could produce monzonitic and granitic liquid compositions. They 
concluded that the Martian evolved rocks are more comparable to 
fractionated magmas produced in Earth’s intraplate volcanoes than to 
terrestrial felsic magmas such as tonalite–trondhjemite–granodiorite 
(TTG) suites widespread in the Archaean Earth36. The finding of QBCs 
moderates this interpretation because their high bulk SiO2 (>70%) is 

consistent with TTG composition, but rare in intraplate magmas (Fig. 4 
and Extended Data Fig. 9). Nonetheless, the QBCs show FeO enrichment 
as well as lower Na2O/ K2O ratio compared with TTGs (Extended Data 
Fig. 9). Comparing QBCs and the oldest rocks known on Earth may, 
however, still prove instructive. The oldest terrestrial minerals are the 
4.0–4.2-Gyr-old (refs. 37–40) Jack Hills zircons, with a few grains going 
to ~4.3 Ga (ref. 39), yet these are detrital grains with no remnants of their 
initial host rock. However, these zircons have silica-rich mineral inclu-
sions (for example, quartz, K-feldspars, plagioclase, phyllosilicates)39 
plus rare-earth element patterns40,41 and Lu–Hf isotopes42, suggesting 
crystallization in a TTG-like granitoid magma. In addition, Jack Hills 
zircons have supracrustal δ18O values of 4.3–7.3‰ (refs. 37,38), suggest-
ing the presence of liquid water very early in Earth history39,40. A similar 
conclusion was reached recently by the analysis of Hadean zircons in 
the Barberton Greenstone Belt in South Africa43. Calculation of the δ18O 
value of zircon in equilibrium with our quartz grains at 700–800 °C 
(Extended Data Fig. 10) yields δ18O values (~5–9‰), comparable to the 
values of the Jack Hills zircons, suggesting a similar process of incor-
poration of a recycled hydrous component in the parent magma39.

The oldest terrestrial rocks are the ~4.02-Gyr-old Idiwhaa ton-
alitic gneisses of the Acasta Gneiss Complex (Canada). The Idiwhaa 
gneisses are characterized by FeO enrichment and high Na2O + K2O 
compared with Archaean TTGs or Acasta felsic gneisses (<3.95 Gyr 
old)44,45. The composition of the QBCs is most similar to the Idiwhaa 
tonalitic gneisses, despite greater variability (Fig. 4 and Extended 
Data Fig. 9), suggesting similar formation processes. The Idiwhaa 
gneisses may have formed in an Iceland-like tectonic setting involving 
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assimilation of hydrothermally altered rocks by a fractionating basaltic 
magma45. Alternatively, they may have formed by partially melting 
Fe-rich hydrated basaltic rocks (amphibolites) requiring consider-
able heat at shallow depth, best explained by impact melting44. The 
latter is a logical interpretation for the origin of Martian QBCs if the 
prevalence of large impact craters on the pre-Noachian surface of 
the planet is taken into account. All the paired breccia meteorites are 
essentially identical and represent a point source in a vast crater, yet 
we have evidence of a different horizon with ‘granitic’ material and a 
peculiar composition CLMR, implying diverse crustal remelting. Nota-
bly, the second-largest surviving terrestrial crater, Sudbury (Canada), 
has a thick melt sheet of granodioritic bulk composition comprising 
granophyre overlying norite46,47 with compositions comparable to 
those of the noritic to granitic clasts in NWA 7533. We conclude that 
NWA 7533 collected at least two different rock types from various 
stratigraphic levels of the melt sheet. It has also been proposed that 
large impact basins formed on the Hadean Earth had (total) impact 
melt pools that differentiated and crystallized abundant felsic rocks48. 
The largest Martian impact basins would also generate partial melt 
zones at mantle depths, causing intrusion into the crust and formation 
of differentiated rocks49.

In conclusion, the process that crystallized quartz in NWA 7533 
requires the prior existence of an altered component. This implies 
strong interactions between the Martian hydrosphere and the planet’s 
surface during the initial 100 Myr of its history. The QBCs and other 
clasts in NWA 7533 represent the most ancient fragments of a nascent 
Si-rich crust forming almost immediately after planetary accretion. 
The interplay between impact melting and hydrothermal activity 
played a key role in the formation of such crustal rocks on Mars, as in 
the Hadean Earth.
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Methods
Three new polished sections, labelled SP9, SP10 and SP11, were cut 
and polished from a centimetric sample of NWA 7533 (MNHN, Paris).

Scanning electron microscopy
Backscattered electron (BSE) imagery and energy-dispersive spectros-
copy (EDS) mapping were performed at 15 keV on the carbon-coated 
polished sections using various scanning electron microscopes (SEM): 
a Tescan VEGA II LSU SEM with an SD3 (Bruker) EDS detector (IMPMC, 
MNHN, Paris), a Zeiss Zigma field emission gun SEM (Laboratoire de 
Géologie, École Normale Supérieure, Paris) and a Zeiss Ultra 55 field 
emission gun SEM with two Bruker X-Flash EDS detectors (IMPMC, 
Sorbonne Université, Paris). Images were taken with the angle-selective 
backscatter detector under the following conditions depending on 
the sample: energy 15 or 20 kV, working distance 7.5–8.3 mm with the 
backscatter detector aperture 25–120 µm. EDS analyses and maps were 
also acquired under these conditions.

Cathodoluminescence images were taken on a ZEISS Supra 55 VP 
Schottky field-effect SEM with a variable-pressure chamber from the 
Camparis platform (Sorbonne Université, Paris). This microscope 
is equipped with an OPEA catholuminescence device (imaging and 
spectral) with a parabolic mirror. Cathodoluminescence images on 
quartz grains were obtained at 10 keV and a working distance of 6 mm.

Electron microprobe
All quantitative mineral analyses were made by wavelength-dispersive 
spectrometry at 15 keV and 10 nA on the Cameca SXFive electron micro-
probe equipped with LaB6 source at the Camparis analytical platform 
(Sorbonne Université, Paris).

Representative analyses for the quartz-bearing CLMR and for vari-
ous minerals are given in Supplementary Tables 1 and 2, respectively.

Given the unique and rare nature of the sample, the least destruc-
tive analytical methods were used to obtain the composition of 
QBC, thus avoiding laser ablation inductively coupled plasma mass 
spectrometry. We opted for electron microprobe analysis paired 
with additional EDS mapping (Extended Data Fig. 7). The main min-
eral phases identified in BSE images inside the clasts were targeted 
with one or more microprobe analyses, depending on the grain size. 
The bulk QBC composition (Supplementary Table 3) was estimated 
from these microprobe analyses (Supplementary Table 4) and the 
surface area ratio of each mineral component. In some clasts, min-
eral grains were too small or too complex to be targeted with the 
microprobe (~1 µm spot). In such cases, a composition for these 
phases has been quantified based on EDS mapping, using the ESPRIT 
software from Bruker. This method prevents any structural degrada-
tion of the targeted clasts and allows exclusion of the contribution 
of secondary phases (calcite veins, oxides and sulfides) from the 
total composition.

FIB milling and TEM
Four ultrathin sections in quartz grains, about 100 nm thick, were 
extracted by the FIB milling technique using an FEI Strata DB 235 at 
IEMN, University of Lille, France. The samples were then studied by TEM 
with an FEI Tecnai G2-20 Twin (LaB6, 200 kV) at the Electron Microscopy 
Centre of the University of Lille, France. The images were taken in bright 
field, thus using the transmitted beam and stopping the diffracted 
beams with an aperture in the diffraction plane. Planar crystal defects 
were oriented parallel to the electron beam to determine the habit 
plane. Diffraction patterns were recorded by selected area electron 
diffraction to index the crystallographic orientation of these defects.

Raman spectroscopy
All Raman analyses were performed using a continuous-wave 
Raman microspectrometer Renishaw inVia Reflex for point analy-
ses and Raman hyperspectral mapping at the grain scale to check 

within-sample structural heterogeneity (IMPMC, Sorbonne Université, 
Paris). Measurements were performed using a green 532-nm solid-state 
laser focused on the sample through a Leica DM2500 microscope with 
short-working distance 50× or 100× objectives (numerical aperture = 
0.75–0.90). This configuration yields a planar resolution of approxi-
mately 1–2 µm for a laser power of less than 1 mW delivered at the 
sample surface, using neutral density filters to prevent irreversible 
thermal damage. This corresponds to a laser irradiance in the range of 
0.3–1.3 109 Wm−2. The spectral resolution for visible light is 1–1.9 cm−1 
and the wavenumber accuracy is better than 0.5 cm−1.

Secondary ion mass spectrometry
O and Si isotope analyses as well as titanium analyses were carried 
out in separate sessions using a CAMECA IMS 1280-HR secondary ion 
mass spectrometry (SIMS) instrument at the SwissSIMS (University of 
Lausanne). All SIMS analyses were carried out with an 8–10 µm diameter 
spot on the surface of polished sections. The polished sections were 
coated with a thin layer of gold (approximately 12 nm thick) exclusively 
for SIMS analysis. Isotopic analyses were performed using a Cs+ pri-
mary beam of 2 nA and charge compensated using an electron gun fol-
lowing routine procedures26. The mass resolving power was set at 2,400 
to resolve molecular interferences. For both O and Si measurements, 
the masses of interest were detected simultaneously in multicollec-
tion mode using Faraday cups. Each analysis lasted ~3 min including 
30 s of pre-sputtering of the targeted surface followed by automatic 
signal optimization by centring the secondary beam and 20 cycles 
of 5 s measurements. Repeated analyses of UNIL-Q1, QZCRWU and 
NL615 reference quartz26,51 allowed correction for instrumental mass 
fractionation and provided an external reproducibility of 0.36‰ for 
δ18O (2 s.d.) and 0.39–0.85‰ for δ30Si (2 s.d.). δ18O values are calculated 
relative to Vienna Standard Mean Ocean Water and δ30Si relative to 
NBS28. All O and Si isotopic data are given in Supplementary Tables 5 
and 6, respectively.

The titanium concentration of quartz was measured in another 
dedicated SIMS session using a O- primary beam of 3 nA focused 
on a 4 µm diameter spot. Masses 48Ti, 27Al and 30Si were collected in 
sequence, on the axial electron multiplier, for 10 cycles. Repeated 
analyses of reference quartz provided an external reproducibility of 
2.9% (ref. 52) and 5.6% (UNIL-Q1) for titanium concentration53.

Every analytical spot was systematically examined under optical 
microscopy to ensure measurement accuracy. Spots that completely 
or partially missed the target were not considered.

Data availability
All data used for the figures (main, Supplementary Information and 
Extended Data) and the tables are available via Zenodo at https://doi.
org/10.5281/zenodo.14623410 (ref. 54).
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Extended Data Fig. 1 | Variability and location of CLMR in several sections of 
NWA 7533. (a) SEM image in BSE mode of the NWA 7533 section (SP10) with its 
different components: CLMR (Clast Laden Melt Rock), Mo (monzonitic clast), No 
(Noritic clast) and quartz-bearing CLMR. (b) SEM EDS mapping of the NWA 7533 
section (SP10) with Si, Mg, Fe and P represented. All quartz fragments are located 
within a distinct Mg-poor and Ca-rich quartz-bearing CLMR in the right part of 
the section. This quartz-bearing CLMR (highlighted in yellow in C, D and E),  

including its inner vitrophyric melt (in orange) can be traced through 3 distinct 
polished sections in the same piece of NWA 7533: SP10 (c), SP9 (d) and SP11 
(e). Extrapolating the shape of this zone at the edge of each section suggests a 
roundish shape with a vitrophyric core. Several CLMR (in pink numbered from  
1 to 3) and some prominent lithic clasts (circled in white) can be traced through 
the sections, highlighting the spatial continuity.
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Extended Data Fig. 2 | Petrology of the quartz-bearing CLMR. (a) SEM BSE 
map of the quartz-bearing CLMR where all the quartz grains, including those 
contained in quartz-bearing clasts, were found in section SP10. (B) The close-up 

BSE map illustrates the varied and complex microtextures observed in this melt 
zone, including pyroxene clumps with a plagioclase aureole as described in 
Hewins et al.8. A fine-grained rim surrounds the inner vitrophyric melt (b).
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Extended Data Fig. 3 | Chemical composition of CLMR in NWA 7533. Chemical 
composition of the quartz-bearing CLMR (in yellow) and of other CLMR  
(in pink, see Extended Data Fig. 2 for location of each CLMR from corresponding 
numbers) compared to the bulk matrix of NWA 75337. (a) CaO versus MgO, 

(b) Al2O3 versus FeO. Average compositions are derived from the average of 
electron microprobe data obtained on a series of ten to twenty 12*9 µm raster 
point analyses. Error bars are standard deviations for these analyses (see 
Supplementary Table 1).
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Extended Data Fig. 4 | Petrology and chemical composition of quartz-bearing 
clasts. SEM BSE images and corresponding SEM EDS mapping of four quartz- 
bearing clasts (QBC) identified in the quartz-bearing CLMR of NWA 7533. The 

lithic clasts shown are (a) clastno. 1, (b) clast no. 3, (c) clast no. 4, and (d) clast no. 5.  
Qtz = quartz, Kfs = K-feldspar, Pl = plagioclase, Px = pyroxene, Il = ilmenite,  
Ap = apatite.
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Extended Data Fig. 5 | TEM imaging of FIB sections in quartz. Mosaic of TEM images in low magnification bright-field mode of two FIB sections from Qtz no. 13 (a) and 
Qtz no. 10 (b). In both cases, quartz appears as single crystal with only minor defects. Bragg fringes are disrupted by planar defects interpreted as shock features at low 
intensity.
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Extended Data Fig. 6 | High-resolution images within the FIB sections 
obtained by TEM in bright field mode. (a) Growth twins at the edge of the 
section from Qtz no. 10. Mechanical twinning in (0001) in Qtz no. 13 (b,c).  

(d) Lamellae of amorphous material in (10 ̄13) together with mechanical twins 
within Qtz no. 10. (e) Beam of planar defects in (10 ̄11) within the Qtz no. 2.  
(f) Small mineral inclusions linked by a thin planar defect within Qtz no. 13.
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Extended Data Fig. 7 | Mineral composition in quartz-bearing clasts. Composition of pyroxene (a) and feldspar (b) in quartz-bearing clasts (clasts 1 to 4) and  
other individual fragments found in the quartz-bearing CLMR and in the matrix of the breccia8. Compositions were analysed by electron microprobe. Mineral phases  
in clast #5 are too small to be analysed by electron microprobe.
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Extended Data Fig. 8 | Crystallization conditions for quartz from Ti-in-quartz thermometry. Ti-in-quartz calibration curves in a pressure-temperature diagram28 for 
the two Ti concentrations measured in this study. A simple depth scale is given as a comparison, calculated assuming a density of 3200 kg.m−3 within the upper Martian 
crust55.
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Extended Data Fig. 9 | Geochemistry of quartz-bearing clasts. Geochemical diagrams comparing the composition of the quartz-bearing clasts with other lithic clasts 
in the NWA 7533 (and paired meteorites) breccia6–8, and terrestrial rocks like the Archean TTGs36, the Acasta gneiss and Idiwhaa tonalite44. (a) Na2O/K2O versus SiO2, (b) 
FeO versus MgO, (c) FeO versus SiO2.
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Extended Data Fig. 10 | Isotopic comparison with Jack Hills zircons.  
(a) Calculation of δ18O for quartz in equilibrium with zircon versus temperature 
for the Hadean Jack Hills zircons. Zircon δ18O data are from 6 zircons in Peck et al.56  
and 18 zircons in Mojzsis et al.37, and the oxygen fractionation is taken from 

Valley et al.57. Each point is the average of calculated values and the error is their 
standard deviation. (b) The δ18O values measured in the Martian quartz are shown 
in the histogram plot for comparison.
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