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One-dimensional Coulomb drag has been an essential tool to probe the physics of interacting Tomonaga-
Luttinger liquids. To date, most experimental work has focused on the linear regime while the predictions
for Luttinger liquids beyond the linear response theory remain largely untested. In this Letter, we report
measurements of reciprocal momentum transfer induced Coulomb drag between vertically coupled quasi-
one-dimensional quantum wires in the nonlinear regime. Measurements were performed at ultralow
temperatures between wires only 15 nm apart. Our results reveal a nonlinear dependence of the drag voltage
as a function of the drive current superimposed with an oscillatory contribution, in agreement with
theoretical predictions for Coulomb drag between Tomonaga-Luttinger liquids. Additionally, the observed
current-voltage characteristics exhibit a nonmonotonic temperature dependence, further corroborating the
presence of non-Fermi-liquid behavior in our system. These findings are observed both in the single and in
the multiple subband regimes and in the presence of disorder, extending the onset of this behavior beyond
the clean single channel Tomonaga-Luttinger regime where the predictions were originally formulated.
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Strongly interacting systems have garnered significant
interest owing to the rich array of correlated physical
phenomena they exhibit [1–5]. Owing to their reduced
screening and their strong confinement potential, coupled
quantum wires represent a prime example of such strongly
interacting systems. These one-dimensional electrons are
well-described by the Tomonaga-Luttinger liquid (TLL)
theory [6–8], a paradigm which replaces the Fermi liquid
model, [9–11] predominantly utilized in higher dimen-
sions, by a framework where low energy excitations are
described by independent spin and charge bosonic modes.
Nonlocal transresistance has been recognized as a power-

ful diagnostic for probing interactions in 1Dsystems [12–25],
as it enables direct investigation of TLLs without the
complicating influence of scattering in higher-dimensional
reservoirs [26]. In a pair of closely spaced 1D wires, the
electron flow in one wire induces a corresponding electron
motion in the adjacent wire, a phenomenon known as
Coulomb drag (see [27] for a comprehensive review). This
drag effect has been interpreted as either arising from
momentum transfer between the charge carriers or charge
rectification in mesoscopic circuits. For reciprocal momen-
tum transfer induced drag, charge carriers in the drive wire
induce directional momentum transfer with the charge
carriers of the drag wire, causing the drag signal to reverse

sign when the drive current direction is inverted. For
charge rectification induced drag, energy fluctuations in
the drive wire induce momentum transfer to carriers in the
drag wire in arbitrary directions. The asymmetric energy-
dependent transmission of electrons and holes, inherent to
mesoscopic circuits anddependingon themicroscopic details
of the system, ultimately determines the sign of the drag
signal [20,28]. Indeed, in mesoscopic 1D wires, defects,
and potential nonuniformity can introduce left-right asym-
metry, explicitly breaking inversion symmetry in the
system. This asymmetry manifests itself in a difference
in the energy-dependent transmission probability between
both sides of the quantum wires, ultimately giving rise to a
rectified nonreciprocal drag signal [20,29] even in the
absence of a magnetic field. While time-reversal symmetry
breaking, through the application of a magnetic field for
instance, can also contribute to nonreciprocal transport, it is
by nomeans necessary for the emergence of a nonreciprocal
drag signal [29].
Various TLL signatures, including power-law depend-

encies [16,30], spin-charge separation [31–33], and an
upturn of the drag resistance as the temperature approaches
zero [22,23], have been experimentally observed in inter-
acting 1D systems, primarily in the linear regime and, in the
case of Coulomb drag measurements, in the reciprocal
regime. While a few theoretical works have been devoted to
1D Coulomb drag in the nonlinear regime [13,19,20], this
regime remains largely unexplored experimentally [24].*Contact author: dlaroc10@ufl.edu
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Differentmechanisms have been theoretically proposed to
calculate Coulomb drag in the nonlinear regime. In electro-
statically coupled finite 1D channels, Nazarov and Averin
[13] predicted a nonlinear drive current dependence of drag
voltage in the perturbative regime, while Peguiron et al. [19]
predicted similar drag current nonlinear oscillations as a
function of the drive voltage in the weak interwire coupling
regime with backscattering interactions for inhomogeneous
TLLs. This model, which predicts voltage oscillations with a
period proportional to the plasmon frequency and a rich
temperature dependence of the drag current, has remained
experimentally elusive.
In contrast to previous work in laterally coupled quantum

wire devices with a large interwire separation (d≳ 150 nm)
where the drag signal arises from charge rectification [24],
this Letter focuses on the nonlinear regime of the reciprocal
momentum transfer induced component of 1D Coulomb
drag observed in vertically integrated quantum wires only
dvert ¼ 33 nm apart. A schematic of these devices is pre-
sented in Figs. 1(a) and 1(b), and additional details on device
fabrication, operation, and characterization are provided in

Appendix A. Such devices have been shown to exhibit
notable contributions fromboth reciprocal and nonreciprocal
Coulomb drag [25]. In the single subband configuration, we
observe a nonlinear and oscillatory Coulomb drag signal
exhibiting a nonmonotonous temperature dependence, as
predicted theoretically [13,19]. A similar behavior is also
observed beyond the single subband limit, offering insights
into the underlying mechanisms of nonlinear multisubband
Coulomb drag, a regime not addressed within the previous
theoretical predictions [19].
To investigate the reciprocal component of the Coulomb

drag signal, the data are separated into a symmetric compo-
nent, VS

drag ¼ ½ðVR
drag þ VL

dragÞ=2�, and an antisymmetric
component,VAS

drag ¼ ½ðVR
drag−VL

dragÞ=2�. The symmetric com-
ponent is associated with charge rectification while the
antisymmetric component corresponds to the reciprocal
contribution [25]. Here, VR

drag represents the drag signal
for right-bound drive currents andwithVþ on the left andV−
on the right side of the drag wire. Similarly, VL

drag represents
the drag signal for left-bound currents while the voltage
probes remain unchanged, as shown in Fig. 1(b).

(a) (b)

(c) (d)

FIG. 1. (a) Schematic of the active part of the double quantum wire device. Each wire consists of a plunger (PL) and a pinch-off (PO)
gate. In the interacting region of the device, two vertically superimposed independent quantum wires are created, leveraging selective
layer depletion with the PO gates. (b) Schematic of the double quantum wire device with all gates properly biased. The conducting part
of the top layer is shown in pink, and that of the bottom layer is shown in blue. (c) The antisymmetric component of Coulomb drag VAS

drag
as a function of the top (drive) and bottom (drag) gate voltages when the drive current is around 0.85 nA at the cryostat base electron
temperature, lower than 15 mK. (d) VAS

drag as a function of the drag wire density and of the drive current Idrive when the drive wire density
is constant at TPL ¼ −0.55 V at T ∼ 15 mK. The black lines at BPL ¼ −0.34 V, BPL ¼ −0.32 V, BPL ¼ −0.31 V, and Idrive ¼
22.5 nA highlight the oscillations of the drag signal with both density and drive current.
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The drag signal has been measured at various TPL and
BPL gate positions, corresponding to different electron
densities in the drive and drag wires. The antisymmetric
component exhibits an amplitude comparable to that of the
symmetric component, contrasting with the dominance of
the symmetric component observed in previous studies
[24]. The antisymmetric component of Coulomb drag VAS

drag

is plotted in Fig. 1(c) to illustrate the sizable strength of
reciprocal drag. To study the current voltage (I-V) relation
of this reciprocal Coulomb drag signal at a constant drive
wire density, several horizontal line cuts are selected and

analyzed. A typical line cut at TPL ¼ −0.55 V is shown in
Fig. 1(d), where VAS

drag is plotted as a function of the BPL
gate voltage and the drive current. The behavior observed at
TPL ¼ −0.55 V is qualitatively similar to what is observed
at different drive wire densities, as shown in Supplemental
Material, Fig. S5 [34]. Besides a strong nonlinearity, the
antisymmetric component of the drag voltage exhibits
amplitude oscillations as a function of the drive current
over a drag wire density ranging from one subband to more
than three subbands, corresponding to gate voltages in the
range BPL ¼ −0.35 V to BPL ¼ −0.29 V. These newly

FIG. 2. Antisymmetric component of Coulomb drag VAS
drag as a function of the drive current Idrive when the drive wire has a single

subband (TPL ¼ −0.73 V) for (a) Ndrag ¼ 1 at BPL ¼ −0.341 V and (b) Ndrag ¼ 2 at BPL ¼ −0.317 V, and when the drive wire has 2
populated subbands (TPL ¼ −0.55 V) for (c) BPL ¼ −0.341 V, (d) BPL ¼ −0.317 V, (e) BPL ¼ −0.308 V, and
(f) BPL ¼ −0.291 V, corresponding to Ndrag ¼ 1, Ndrag ¼ 2, Ndrag ¼ 3, and Ndrag > 3, respectively. The dashed curves show the

dominant contribution in the moderate bias regime. This contribution evolves as I4g−2drive , with the g values calculated from the extracted
oscillation periods and electron densities. In the high-bias regime, the data are fitted with a power-law dependence, as indicated by the
dotted lines. The extracted exponents for the high-bias powers are 3.2, 3.8, 4.6, 5.8, 4.7, and 2.7 for panels (a)–(f), respectively, and all
exceed 2.
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observed oscillations had been predicted by the capacitively
coupled TLL constrictions and the finite-length inhomo-
geneous TLLmodels [13,19]. Notably, this effect persists in
the multiple subband regime and for disordered wires with
mismatched densities, extending beyond the stricter require-
ments of the theoretical predictions. We also note that these
oscillations are significantly larger than the noise level of the
signal, as shown in Supplemental Material, Fig. S9 [34]
and detailed in the accompanying text. As detailed in
Supplementary Material, parasitic coupling has been found
to be a minor contribution to the overall drag signal and
cannot explain the reported observations.
We now study the electron density dependence of the I-V

relation. Several subband configurations are selected, with
the drag wire subband number Ndrag ranging from 1 to a
value above 3, while the drive wire subband number ranges
from 1 to 2. In Figs. 2(a) and 2(b), VAS

drag oscillates with

drive current until Idrive > 30 nA, with a period I0drive ¼
9.4 nA and 16.5 nA, respectively. When the drive wire has
two populated subbands, the oscillation period is instead
I0drive ¼ 11.45 nA, 12.35 nA, and 17.9 nA for Figs. 2(c)–2
(e), respectively. I0drive is estimated from the distance
between two neighboring local minima. The magnitude
of this oscillation is dampened with increasing subband
occupancy and becomes too weak to reliably extract for
Ndrag > 3, as shown in Fig. 2(f). Notably, the magnitude of
the drag signal in the nonlinear regime is greatly enhanced
for Ndrag ¼ Ndrag ¼ 1. Density matching and reduced
screening arising from the lower electron density could
potentially explain this effect. A weakening of electron-
electron interactions beyond the single-subband limit could
also be at play.
For two interacting 1D wires of the same length L

coupled to noninteracting (Fermi-liquid) electron reser-
voirs, the oscillation period of the drag signal is drive wire
bias dependent: eV0

drive ≃ 2πℏωL [19]. Here, ωL ¼ vF=gL
is the collective plasmonic excitation frequency, and g is the
TLL interaction parameter, with g < 1 for repulsive inter-
actions. From this oscillation period, we can extract the g
values for different subband configurations. Here, the one
subband density is assumed to be n1D ¼ 1.68 × 108 m−1,
based on the difference between the 1D electron densities
of five populated subbands and six populated subbands
from our previous measurements [24] in laterally coupled
devices. In the single-subband configuration, our results
and the extracted g factors are in full agreement with the
theoretical calculations of Ref. [19] and the theory of
Luttinger liquids. In the multisubband configurations,
unrealistically large g values (g > 1) are extracted if the
total 1D density is used to estimate vF. In quasi-1D
quantum wires, the electron’s energy in each subband,
assuming a parabolic confinement potential, is given by
E ¼ ðnþ 1

2
Þℏω0 þ ½ðℏkzÞ2=2m⋆� [37]. Here, ω0 describes

the strength of the confinement potential, and kz is the wave

vector of the electrons. In this case, the Hamiltonian has a
fixed energy contribution from the 1D subband occupancy,
and a kinetic contribution coming only from electrons
within the nth 1D subband, effectively setting back the
electron’s Fermi velocity to 0 as a new subband populates.
As the electrons in filled subbands lie well below the Fermi
surface and contribute minimally to scattering processes
[37], they have little impact on the Coulomb drag effect
through momentum transfer. Therefore, it is reasonable to
consider only the density of electrons in the highest
populated subband, which is comparable to the electron
density in the single subband regime, when estimating vF.
While this assumption gives reasonable g values in the
multisubband regime, additional theoretical work will be
required to rule out alternate explanations. From the
oscillation period in I0drive and the drag wire conductance
measurement, the calculated g values are 0.29� 0.09 and
0.6� 0.1 for Ndrag ¼ Ndrive ¼ 1 and Ndrag ¼ 1, Ndrag ¼ 2.
When two subbands are populated in the drive wire, the
calculated g values are 0.4� 0.1, 0.9� 0.1, and 0.87�
0.07 when Ndrag ¼ 1, Ndrag ¼ 2, and Ndrag ¼ 3, respec-
tively. The errors on g are calculated from the uncertainty in
determining the current oscillation period, arising mainly
from the current step size (2.5 nA or larger). The smaller g
values at lower subband occupancy align with the enhanced
interaction strength as the electron density decreases. The
extraction of single g values in the multiwire regime is
theoretically justified in Appendix B.
In Ref. [19], an analytic expression was derived for the

current dependence, predicting Idrag ∼ V4g−2
drive . Naively fit-

ting the high-bias range of the data, as shown in the dotted
lines of Fig. 2, yields g values larger than 1, inconsistent
with both the period estimates and repulsive interactions.
This discrepancy could arise because the 1D subbands
begin to smear out as the drive current exceeds ∼25 nA,
because of Joule heating or because such large voltages
extend beyond the model’s limits. In addition, the finite
bias (∼5 μV at 25 nA) induced by currents larger than
20 nA has been found to shift our subband position (see
Supplemental Material, Fig. S9 [34]), which can also
explain this discrepancy. Instead, we plot AI4g−2drive with
the g values extracted from periodicity I0drive and a fitting
constant A. As shown by the dashed lines in Fig. 2, this
procedure accurately captures the signal behavior below
20 nA across different subband configurations, consistent
with theoretical drag predictions [19] for identical wires in
the single subband regime.
We now discuss the temperature dependence of the drag

signal, focusing on two subband configurations: Ndrive ¼
Ndrag ¼ 1 andNdrive ¼ 2,Ndrag ¼ 3. As shown in Figs. 3(a)
and 3(b), the oscillation amplitude in the moderate drive
current range (Idrive < 20 nA) decreases with increasing
temperature. This flattening leads to a nonmonotonous
temperature dependence at various positions within the
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oscillation period. For clarity, Fig. 3(c) provides an
enlarged view of the low-voltage regime from Fig. 3(a).
Near a maximum at base temperature, VAS

drag decreases with
increasing temperature, while the opposite behavior is
observed near the minimum of the oscillation. Similar
trends are observed for Ndrive ¼ Ndrag ¼ 1, as shown in
Figs. 3(b) and 3(d). Here, VAS

drag initially increases with
temperature for Idrive ≤ 2.75 nA, followed by a behavior
where VAS

drag first increases and then decreases as the

oscillation flattens out. Eventually, VAS
drag increases with

temperature increasing for Idrive > 30 nA. In contrast with
the linear temperature dependence predicted for Coulomb
drag between 1D Fermi liquid conductors, these observa-
tions confirm the presence of TLL physics in our system
[38] and are in good agreement with the predictions of
Ref. [19]. Indeed, the temperatures TL ¼ ℏωL=kB of these
two subband configurations are calculated to be 2.4 K and
1.1 K for Ndrive ¼ Ndrag ¼ 1 and Ndrive ¼ 2, Ndrag ¼ 3,

respectively, resulting in a temperature range consistent
with the observation of a nonmonotonic temperature
dependence.
In summary, we have investigated the nonlinear regime

of Coulomb drag between two quantum wires with tunable
contributions from reciprocal momentum transfer and
charge rectification, enabled by the small interwire sepa-
ration in our device. We systematically studied the non-
linear behavior and oscillations of the I-V characteristics of
reciprocal momentum transfer Coulomb drag across differ-
ent subband filling configurations. Notably, we report the
first observation of a subband and drive current dependent
oscillation period of the drag signal, consistent with
theoretical predictions [13,19]. This observation carries
over to the multiple subband and density mismatched
regimes, beyond the limits where the initial theoretical
predictions were realized. These oscillations provide a
reliable tool to extract the average interaction strength in
Coulomb-coupled quantum wires and confirm the strong

(a) (b)

(c) (d)

FIG. 3. Temperature dependence of the drive current dependent Coulomb drag. (a) The antisymmetric component of Coulomb drag
VAS
drag as a function of the drive current Idrive at TPL around −0.55 V (Ndrive ¼ 2) and BPL ¼ −0.308 V (Ndrag ¼ 3) when the

temperature is at base, 200 mK, 400 mK, and 800 mK. (b) The antisymmetric component of Coulomb drag VAS
drag as a function of the

drive current Idrive at TPL around −0.73 V (Ndrive ¼ 1) and BPL ¼ 0.347 V (Ndrag ¼ 1) when the temperature is at base, 200 mK,
400 mK, and 800 mK. (c) Enlarged figure of (a) at moderate bias. (d) Enlarged figure of (b) at moderate bias. These data illustrate the
nonmonotonous temperature dependence of VAS

drag, with a trend changing for different drive wire voltage biases.
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electron interactions occurring between the vertically inte-
grated quantum wires studied in this Letter. Furthermore,
we studied the temperature dependence of the I-V relation,
verifying the predicted nonmonotonous temperature behav-
ior at different oscillation positions, which may result from
interference between plasmon excitations in the wires [19].
The good agreement of the nonlinear Coulomb drag data
with momentum transfer predictions is in contrast to the
discrepancies recently reported in the linear regime [25]
and highlights the need for further theoretical work to bring
a consistent model for Coulomb drag beyond the disorder-
free single subband regime.
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End Matter

Appendix A: Device fabrication and operations—The
vertically integrated quantum wire device is fabricated
from an n-doped GaAs=AlGaAs electron bilayer hetero-
structure with two 18-nm-wide quantum wells separated
by a 15-nm-wide Al0.3Ga0.7As barrier, resulting in an
interwire separation dvert ¼ 33 nm. The unpatterned
density and mobility of the GaAs quantum well are n ¼
2.98 × 1011 cm−2 and μ¼ 7.4×104 cm2=Vs, respectively.
As shown in Fig. 1(a), each wire is defined by a pinch-off
(PO) gate and a plunger (PL) gate with the top and
bottom gates separated by ∼250 nm. The measurements
were performed using standard low-frequency AC
techniques at a frequency of 13 Hz in a dilution
refrigerator at a base lattice temperature below 7 mK.
Consistent with previous works in vertically coupled
quantum wires [22,23], the PO gates are primarily used to
independently contact the quantum wires and minimize
tunneling current between them, while the PL gates are
used to adjust the wire’s width and electronic density.
With appropriate negative voltages applied to four gates,
two independently contacted quantum wires are created, as
shown in Fig. 1(b). In this vertically superimposed design,
interlayer interactions occur only in the region where
the two quasi-1D wires overlap. As depicted in Fig. 1(b),
the drive current (Idrive) is applied to the top wire, and the
induced Coulomb drag voltage (Vdrag) is measured in the
bottom wire. In the subsequent measurement, the bottom

wire is used as the drag wire since the bottom wire
exhibits sharper subbands and fewer defects compared to
the top wire [34]. Additional details regarding the device
characterization and consistency tests of Coulomb drag are

FIG. 4. The main panel shows the ratio of the Luttinger liquid
interaction constants in a two-channel quantum wire as a function
of electron density ratio in each channelp ¼ n2=n1. Different lines
correspond to different strengths of interaction described by a
dimensionless parameter β ¼ lnðkFdÞ2=ðπ2n1aBÞ that is normal-
ized to the density in the first channel, and aB is the Bohr’s radius.
The inset shows the same data but plotted as a function of β for a
few selected values of p ¼ 1

4
; 1
2
; 3
4
; 1 as shown in the legends.
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presented in a prior publication [25] and in Supplemental
Material [34].

Appendix B: Interactions in multi-channel quantum
wires—To theoretically justify the use of a single g
parameter value in the multiwire regime, we considered a
generalized TLL model of a quantum wire with multiple
transverse electron modes. We calculated the Luttinger
liquid parameters gi for each mode as a function of the
density mismatch between channels, assuming short-
range interactions (see Supplemental Material [34] for

further technical details). The results of this analysis are
shown in Fig. 4 where, as an example, we plot the ratio
of interaction constants across a broad range of system
parameters, including both electron densities and the
strength of bare interactions for the two-mode wire. We
conclude that the interaction parameters are primarily
determined by the velocity of the macroscopic plasmon
and the total electron density. From the numerical
analysis, we observe that the variability of gi between
different channels is not significant, supporting our fitting
procedure based on a single-mode theory.

PHYSICAL REVIEW LETTERS 134, 236301 (2025)

236301-8


	Quasi-1D Coulomb Drag in the Nonlinear Regime
	Acknowledgments
	Data availability
	References
	Appendix A: Device fabrication and operations
	Appendix B: Interactions in multi-channel quantum wires


