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We consider the impact of Berry phase on the Wigner crystal (WC) state of a two-dimensional electron sys-

tem. We consider first a model of Bernal bilayer graphene with a perpendicular displacement field, and we show

that Berry curvature leads to a new kind of WC state in which the electrons acquire a spontaneous orbital angular

momentum when the displacement field exceeds a critical value. We determine the phase boundary of the WC

state in terms of electron density and displacement field at low temperature. We then derive the general effective

Hamiltonian that governs the ordering of the physical electron spin. We show that this Hamiltonian includes a

chiral term that can drive the system into chiral spin-density wave or spin liquid phases. The phenomena we

discuss are relevant for the valley-polarized Wigner crystal phases observed in multilayer graphene.

The Wigner crystal (WC) is perhaps the prototypical

strongly correlated electron phase. First proposed in 1934

[1], the WC arises in situations where the Coulomb inter-

action between neighboring electrons is much stronger in

magnitude than the electrons’ kinetic energy. In such sit-

uations the electron system minimizes its energy by spon-

taneously breaking translation symmetry and crystallizing

into a regular lattice called the Wigner lattice [depicted in

Fig. 1(b)]. For the traditional two-dimensional electron gas

with parabolic dispersion and uniform positive background

(i.e., the jellium model), the Wigner crystal phase corre-

sponds to the limit of large values of the dimensionless inter-

action parameter rs = [Ãnℏ4/(m2e4)]−1/2, where n is the two-

dimensional electron concentration, m is the electron band

mass, and e2 is the squared electron charge divided by the

dielectric constant. The value of rs can be thought of as the

ratio between the interaction energy and the kinetic energy

(Fermi energy) at low temperature; rs becomes large when

the electron density is low.

In this paper we consider how the WC state is modified

when the electron band has a nontrivial Berry curvature. Our

motivation arises from the physics of multilayer graphene,

where electron bands can be designed to have large den-

sity of states that promotes the formation of strongly corre-

lated electron states. Indeed, dramatic cascades of electronic

phase phase transitions have been observed experimentally

in twisted bilayer graphene [2–14], Bernal bilayer graphene

(BBG) [15–24], and in multilayer rhombohedral graphene

[25–36]. These experiments have prompted intense theo-

retical interest, with most theory works focusing on either

the nature of the observed superconducting state (see, e.g.,

Ref. [37] for a recent review) or on the transition between

isospin-polarized states within the metallic phase (e.g., [38–

41]).

Here we focus on the WC state, and we show that the

Berry phase associated with the electron dispersion relation

can produce new WC phases with unusual properties. We

begin by considering a model of BBG, and we show that
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FIG. 1. (a) Schematic illustration of the conduction band dispersion

relation ε (p) for electrons in BBG with a perpendicular displace-

ment field [Eq. (2)]. (b) Schematic depiction of the WC, which can

be described as a triangular lattice of nearly-independent quantum

harmonic oscillators, each in the ground state of the confining po-

tential created by its neighbors. (c) The ground state energy of an

electron in the WC as a function of its angular momentum ℓ and the

Berry flux Φ through the interior of its wave function [see Eq. (7)].

When |Φ| > Ã, the ground state acquires finite angular momentum,

ℓ = ±1.

when the band gap parameter (controlled in practice by the

strength of a perpendicular displacement field) exceeds a

critical value, each electron acquires a nonzero orbital angu-

lar momentum. The angular momentum is of opposite signs

in opposite momentum valleys, e.g., ℓ = +1 in valley K and

ℓ = −1 in valley K′. If the graphene band is valley-polarized

– as it often is in both moiré and non-moiré systems [34–

36, 42–46] – all electrons in the WC have the same angular

momentum. This causes a sudden change in magnetization

at the critical displacement field.

We also show that the Berry phase generically leads to an

unusual Hamiltonian for the physical electron spin, which

includes new terms that are not found in nonchiral magnetic

systems. For valley polarized electrons, this Hamiltonian im-

plies a phase diagram with chiral spin-ordered phases and,
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potentially, chiral spin liquid phases.

In order to study the phase diagram and orbital ordering

of the WC state, let us first consider a model of the dis-

persion relation of BBG, which consists of two untwisted,

A-B stacked graphene layers. BBG (and other multilayer

graphenes) are conducive to WC formation because a per-

pendicular displacement field flattens the bottom of the con-

duction band and leads to an abnormally small kinetic en-

ergy for a given low electron density. Specifically, in BBG

the displacement field creates a difference U in potential en-

ergy between the top and bottom layers, and the resulting

dispersion relation for the conduction band is [47]

ε (p) =
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








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




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


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






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








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1/2

,

(1)

where µ1 is the interlayer tunneling amplitude and v is the

single-layer graphene Dirac velocity [48]. In the remainder

of this paper, except where noted explicitly, we use dimen-

sionless units where ℏ = v = µ1 = 1 so that all energies

are in units of µ1 ≈ 400 meV, and all densities are in units

of n0 ≡ (µ1/ℏv)2 ≈ 4 × 1013 cm−2. Equation 1 describes a

“Mexican hat” (MH) shape (see Fig. 1a), with a ring of min-

ima located at a certain value |p| = p0. For momenta close to

this ring of minima, the dispersion can be expanded as

ε (p) ≃ U

2
√

1 + U2
+

(p − p0)2

2m
, (2)

where p0 = (U/2)[(2 + U2)/(1 + U2)]1/2 and m = (1 +

U2)3/2/[2U(2 + U2)]. Here and below, we neglect trigonal

warping; we comment briefly on the effects of trigonal warp-

ing at the end of this paper and leave a detailed discussion to

an accompanying work [49].

The conventional semiclassical model for the WC in two

dimensions describes individual electrons as localized to

points in a triangular lattice that minimizes the classical elec-

trostatic energy (see Fig. 1b). In this arrangement, each elec-

tron resides in a local minimum of the electrostatic poten-

tial created by all other electrons. The lowest-order quantum

correction to the energy of the WC can be estimated by de-

scribing each electron as a harmonic oscillator (HO) residing

in a locally parabolic potential whose strength is determined

by the Coulomb interaction [50, 51]. (In general, one needs

to take into account the effects of screening of the Coulomb

interaction; we discuss these in the Supplemental Material.)

Thus, the lowest-order quantum correction to the energy per

electron can be approximated by the ground state energy of

a two-dimensional HO. In the conventional WC, the HO de-

scription correctly gives the lowest-order quantum correction

with an accuracy better than 10% [50]. The HO picture also

offers a simple method to estimate the critical density associ-

ated with quantum melting of the WC. Specifically, melting

is associated with the Lindemann ratio ¸ =
√

ïr2ð/a becom-

ing larger than a critical value ¸c (the Lindemann criterion),

where
√

ïr2ð is the typical radius of the HO ground state and

a = (
√

3n/2)−1/2 is the lattice constant of the Wigner lattice.

The value of ¸c typically falls within the range 0.20−0.25 for

any two-dimensional freezing-melting transition [52–54]. In

this way, our discussion of the WC state is reduced to solving

a single-particle problem: that of a single-particle harmonic

oscillator in a confining potential created by Coulomb inter-

actions with its neighbors [55].

When considering an electron with an arbitrary dispersion

relation ε(p) in a parabolic confining potential, it is simplest

to write the Hamiltonian in momentum space:

H = ε(p) +
1

2
kr̂2, (3)

where r̂ is the position operator and k is the confinement

strength. For the WC problem, the value of k is determined

by the Coulomb repulsion with neighboring electrons and is

generally of order e2n3/2 – an exact expression for k is given

in the Supplementary Material. For a band that has nonzero

Berry curvature, an effective Hamiltonian can be found by

writing the position operator r̂ in momentum space and then

projecting the resulting Hamiltonian to the band of inter-

est (see Supplemental Material for details). This procedure

yields

H = ε (p) +
k

2

(

º̇∇p +A (p)
)2
, (4)

where A (p) is the Berry connection of the band of interest

[56–59]. Comparing Eq. (4) to the usual HO Hamiltonian

written in position space, one observes that the dispersion

relation ε(p) acts like a scalar potential in momentum space,

while the Berry connection A(p) acts like a magnetic vector

potential. The Berry connection A is particularly straightfor-

ward to write in the Coulomb gauge when the Berry curva-

ture Ω(p) is radially symmetric (see, for example, Ref. [60])

for the expression for the Berry curvature in BBG). In this

case

A =
Φ (p)

2Ãp
ϕ̂, (5)

where Φ(p) =
´ p

0
Ω (p′) 2Ãp′dp′ is the Berry flux through a

disk in momentum space of radius p. In BBG, each valley

has ±2Ã Berry flux (with opposite signs in opposite valleys),

so that |Φ(p)| is between 0 and 2Ã.

Due to the rotational symmetry of the problem, the cor-

responding Schrödinger equation (SE) can be solved using

separation of variables as È(p) = (g(p)/
√

p) exp(º̇ℓϕ), where

ℓ is the angular momentum quantum number and ϕ is the

azimuthal angle in momentum space. The resulting SE be-

comes














− d2

du2
+

1

u2















−1

4
+

(

−ℓ + Φ
(uÃ)

2Ã

)2














+ (u − u0)2















g(u) = ϵg(u).

(6)

Here u is a dimensionless momentum u ≡ p/Ã, u0 ≡ p0/Ã,

with Ã =
√

mÉ being the characteristic momentum of a HO
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and É =
√

k/m is the characteristic HO frequency. We have

also defined ϵ ≡ E
/

(ℏÉ/2) and we have used Eq. (2) to ap-

proximate the dispersion relation ε(p). The full justification

of Eq. (6) is presented in the Supplemental Material.

As the harmonic confinement experienced by each elec-

tron becomes asymptotically weak (i.e., at very low electron

density), the value of the constant u0 becomes large, and the

eigenstates g(u) are concentrated around u = u0. In other

words, the single electron wave function resembles a thin

ring in momentum space with radius p0. In this limit Eq. (6)

becomes precisely the SE for a 1D HO [61–63]. We can now

read off the low-energy spectrum as

Eℓ ≃
É

2
+

É

2u2
0

(

ℓ − Φ(p0)

2Ã

)2

− É

8u2
0

. (7)

Equation (7) implies that the Berry flux Φ enclosed by the

wavefunction in momentum space plays a crucial role in de-

termining the electron’s energy spectrum. In particular, if

|Φ| > Ã, the ground state has |ℓ| = 1 rather than ℓ = 0, as

illustrated in Fig. 1c. Thus, a transition from zero to finite

angular momentum can be induced by increasing the dis-

placement field U, which increases p0 and thereby results

in more Berry flux being enclosed within the wavefunction.

Evaluating this condition numerically gives a critical value

U = Uc ≈ 1.07 associated with the transition.

We can map out the full phase diagram for the WC phase

by implementing a numerical solution of the effective one-

dimensional radial SE [see Eq. (6), with ε(p) given by

Eq. (1)] for a given density n and interlayer potential U. As

mentioned above, the stability of the WC phase is estimated

by numerically calculating ïr2ð for the ground state wave-

function and using the Lindemann criterion (with ¸c = 0.23

[52]). We ascertain the ground state’s angular momentum,

whether ℓ = 0 or ℓ = 1, by comparing energies obtained

numerially. The result is shown in Fig. 2, which generally

shows the WC phase occupying a regime of low density and

not-too-low displacement field. The extension of the WC

state toward large n at small U is associated with the effec-

tive mass at the bottom of the band becoming very heavy as

U is reduced. The disappearance of the WC state as U → 0

arises due to interband dielectric screening, which truncates

the long-ranged part of the Coulomb interaction when the

band gap vanishes (this screening is discussed in more detail

in the Supplemental Material).

The discontinuous change in angular momentum at U =

Uc leads to observable effects in the magnetization of the

WC state. The magnetization operator can be expressed as

M̂z =
e

2

(

vp × r
)

, (8)

where vp = ∇pε(p) is the velocity operator. The expecta-

tion value of the magnetization is

〈

M̂z

〉

=
e

2

ˆ

d2p

(2Ã)2
vp

(

−ℓ + Φ(p)

2Ã

)

|È(p)|2 . (9)
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FIG. 2. The phase diagram of the WC in BBG in the space of

electron density (n) and displacement field (U). The blue lines rep-

resent the phase boundaries between the ℓ = 0 WC, ℓ = ±1 WC,

and Fermi Liquid (FL) phases, calculated by numerical solution of

the Schrodinger equation. The dashed red lines correspond to an-

alytical approximations derived in the Supplemental Material. The

inset shows the jump in the magnetization per electron as U passes

through the critical value Uc, calculated along the line cut indicated

by the black dotted line in the main figure. The solid green line

corresponds to the analytical result of Eq. (10), and the dots are re-

sults from inserting the numerical solution of the wave function into

Eq. (9).

Details of the above derivation, along with some analytical

results, are provided in the Supplementary Material. The

magnetization has two contributions, one from the angular

momentum of the wavefunction and the other from the un-

derlying Berry curvature. Tuning the value of U across the

ℓ = 0 to ℓ = 1 transition results in a jump in the magnetiza-

tion. In the limit of u0 k 1 (small electron density or large

displacement field), we can evaluate ïM̂zð analytically as

〈

M̂z

〉

≃ e

2m













Ã2

2p2
0













[

ℓ − Φ(p0)

2Ã
+ Ω (p0) p2

0

]

. (10)

Equation (10) implies that at the critical field Uc, the mag-

netization has a jump of magnitude (e/2m)
(

Ã2/2p2
0

)

. This

jump is depicted in the inset of Fig. 2.

We now consider the impact of the Berry phase on the or-

dering of the physical electron spin in the WC state. Our

considerations in the remainder of this paper make no as-

sumption about the specific nature of the dispersion relation,

so that our conclusions apply beyond BBG and are indepen-

dent of the magnetization transition discussed above.

In the conventional WC, the electron spin is described by

the Hamiltonian [64, 65]

Hspin =
∑

a

(−1)na Ja

(

Pa + P−1
a

)

, (11)

where a labels a ring exchange process involving na elec-

trons, Ja > 0 is the exchange constant for such processes, and
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(a) (b)

FIG. 3. Schematic depiction of a three-particle exchange process

J3 among neighboring electrons in the WC. Arrows indicate least-

action, semiclassical tunneling trajectories. The real-space trajecto-

ries are depicted in (a) (with black dots indicating the Wigner lattice

positions), while (b) shows the same trajectories in reciprocal space.

Pa is the permutation operator associated with the exchange

process. At large rs (deep inside the Wigner crystal phase),

the dominant exchange processes are a 2-particle exchange

between nearest-neighboring electrons and a 3-particle ring

exchange among nearest neighbors that form an equilateral

triangle (see Fig. 3a). The Hamiltonian can therefore be ap-

proximated as

Hspin ≃ J2

∑

ïi, jð

(

Pi j + P ji

)

− J3

∑

i, j,k∈△,▽

(

Pi jk + Pk ji

)

. (12)

The two-electron permutation operator Pi j = P ji = 1/2 +

2Si · S j, where Si is the spin operator for electron i [66].

The three-electron permutation operator Pi jk = Pi jP jk =

1/4+Si ·S j+S j ·Sk+Si ·Sk−2iSi ·(S j×Sk), and Pk ji = P 
i jk

.

Thus, in the conventional WC, the (imaginary) chiral term

Si ·(S j×Sk) cancels from the spin Hamiltonian, and Eq. (12)

is equivalent to a simple nearest-neighbor Heisenberg Hamil-

tonian, Hspin ≃ 2(J2 − J3)
∑

ïi, jð Si · S j + const.

At not-to-low electron density (only moderately large rs),

the value of J2 is apparently larger than J3, so that the

ground state ordering is antiferromagnetic (AFM). However,

at asymptotically large rs, the order is inverted, J3 k J2,

leading to ferromagnetic (FM) ordering. This dominance of

ring exchange over direct exchange at large rs is a unique

feature of the WC and the long-range Coulomb interaction

that produces it. It arises because the semiclassical trajectory

associated with three neighboring electrons simultaneously

exchanging their positions has a lower tunneling action than

that of the two-electron exchange [64] (e.g., rotating three

electrons in the confining potential of their triangular-lattice

neighbors is “almost free”). Evidence for this transition from

AFM to FM order of the WC as a function of increasing

rs has been seen in quantum Monte Carlo calculations [67],

and recent experiments have reported evidence of AFM order

near the transition [68, 69] and FM order at larger rs [69, 70].

However, if the electron system experiences a consistent

sign of Berry curvature, as arises when the electrons are val-

ley polarized, there is explicit time reversal symmetry break-

ing that introduces a relative phase 2ϕ between the clock-

wise and counterclockwise three-particle exchange. Conse-

quently, the spin Hamiltonian becomes [71]

Hspin = J2

∑

ïi, jð

(

Pi j + P ji

)

− J3

∑

i, j,k∈△,▽

(

eiϕPi jk + e−iϕPk ji

)

= 2 (J2 − J3 cos ϕ)
∑

ïi, jð
Si · S j

+ 4J3 sin ϕ
∑

i, j,k∈△,▽
Si ·

(

S j × Sk

)

≡ J
∑

ïi, jð
Si · S j + JÇ

∑

i, j,k∈△,▽
Si ·

(

S j × Sk

)

. (13)

Thus, the Berry phase introduces a chiral term in the spin

Hamiltonian, which can lead to chiral ordering or chiral

spin textures, as has been pointed out in the Fermi liquid

setting [72, 73]. The nearest-neighbor exchange constant

J = 2(J2 − J3 cos ϕ) can be either positive or negative, de-

pending on the value of rs (i.e., on the electron density), and

the chiral term JÇ = 4J3 sin ϕ has a sign given by the sign of

the Berry curvature (and therefore on the choice of valley K

or K′). The magnitude of the Berry phase ϕ can be estimated

from the area subtended by the reciprocal-space tunneling

paths (depicted in Fig. 3b) for three-particle exchange. This

estimate gives ϕ ∝ 1/rs, as we discuss in the Supplementary

Material.

For positive J (AFM nearest-neighbor coupling), the

Hamiltonian of Eq. (13) has been studied previously by den-

sity matrix renormalization group techniques [74, 75], which

found a wide window of parameters 0.3 ≲ JÇ/J ≲ 0.6 for

which the ground state is a chiral spin liquid phase [74]. To

our knowledge, the Hamiltonian of Eq. (13) has not been

studied for FM (negative) J. However, we expect that for

J < 0, increasing |JÇ/J| is associated with a transition from a

FM state to a state with a nontrivial chiral spin density wave

pattern. The nature of this transition, and whether a spin liq-

uid phase arises in some critical window of |JÇ/J|, remains

to be seen.

In closing, let us comment on the experimental implica-

tions of the predictions made here. Our discussion so far

has focused on the WC state at zero temperature, for which

the melting of the WC with increasing density arises from

quantum fluctuations. At finite temperatures, thermal fluctu-

ations can also melt the WC state. At densities not too close

to the critical density associated with quantum melting (at

a given value of U), one can estimate the melting tempera-

ture by setting the Lindemann ratio to be ¸ =
√

ïr2ðthermal/a,

where the amplitude of classical fluctuations is estimated us-

ing the equipartition theorem: kïr2ðthermal = kBT . The max-

imum melting temperature can be estimated by using the

largest density nc of the WC state (here, nc ≈ 0.0012, see

Fig. 2). This procedure gives a maximum melting temper-

ature on the order of ∼ 10 K, with the melting temperature

decreasing proportional to n1/2 as the density is reduced. Ex-

perimentally, the WC state can be inferred by a combination
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of distinctive transport and thermodynamic measurements,

including negative compressibility Refs. [76–83] and sharp

“pinning” behavior in the I-V curve [69, 84, 85]. The experi-

ments of Ref. [15] observed negative compressibility in BBG

emerging at low temperature and high displacement field but

not coexisting with an insulating temperature dependence.

Ref. [16] reports a state with insulating-like temperature de-

pendence that emerges within a window of relatively high

displacement field and low densities, which the authors char-

acterize as being consistent with a WC. Evidence for WC

formation has also been reported in rhombohedral 4- and 5-

layer graphene [34–36], which may be an ideal platform for

realizing the physics we discuss here, given their relatively

flat dispersion and increased Berry phase at the Dirac point.

Throughout this paper we have neglected the effects of

trigonal warping on the WC state. In general, trigonal warp-

ing splits the rotationally-symmetric “Mexican hat” band

structure into three discrete mini-valleys, so that the orbital

angular momentum ℓ is no longer a good quantum number

at sufficiently low energy. However, even in the presence of

trigonal warping, an electron in a radially symmetric con-

fining potential can still undergo a magnetization transition

with increasing displacement field associated with winding

of the wave function in momentum space. This magnetized

state competes with alternative WC states having nontrivial

mini-valley ordering [86]. We explore this competition, and

the effects of trigonal warping more generally, in an accom-

panying paper [49].

We emphasize, however, that the chiral term appearing in

the spin Hamiltonian [Eq. (13)] does not rely on rotational

symmetry of the band structure or on the existence of an

ℓ , 0 ground state; it appears generically when the elec-

trons are valley polarized. The magnitude JÇ of the chiral

term is generally small in the Wigner crystal phase, since it

is proportional to 1/rs j 1. However, the effects of this

term may still be significant, since the competing direct ex-

change J term apparently vanishes at a particular value of

rs ≈ 38 [67], which is not far from the onset of the Wigner

crystal phase rs ≈ 32. It is therefore plausible that spin liquid

physics is already arising in the spin order of valley-polarized

Wigner crystal phases that have been realized in multilayer

graphenes [34–36].
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S1. DERIVATION OF THE EFFECTIVE HARMONIC OSCILLATOR HAMILTONIAN IN A BAND WITH BERRY

CURVATURE

In this section, we derive the effective harmonic oscillator (HO) Hamiltonian in momentum space when the electrons

originate from a band with non-zero Berry curvature [S1–S4]. The single particle Hamiltonian is given by H = H0 + U(r),

where H0 comes from the underlying crystal lattice and U(r) = kr2/2 is the harmonic confinement potential. The Bloch

eigenstates of H0 are denoted by |n, pð (n and p⃗ denote the band index and quasi-momentum), which satisfies H0 exp(º̇ p⃗ ·
r⃗)|n, pð = En( p⃗) exp(º̇ p⃗ · r⃗)|n, pð, where En( p⃗) is the band dispersion of the nth band. Any eigenstates of H can be expanded in

the eigenbasis of H0(p⃗) as

|Èð =
∑

n

∑

p⃗

Èn

(
p⃗
)

exp
(
º̇p⃗ · r⃗

)
|n, pð , (S1)

where Èn, p⃗ denotes the expansion coefficients. The eigenvalue equation for the Hamiltonian H can be written as

∑

n

∑

p⃗

En

(
p⃗
)
Èn

(
p⃗
)

exp
(
º̇p⃗ · r⃗

)
|n, pð + U (r)

∑

n

∑

p⃗

Èn

(
p⃗
)

exp
(
º̇p⃗ · r⃗

)
|n, pð = ϵ

∑

n

∑

p⃗

Èn

(
p⃗
)

exp
(
º̇ p⃗ · r⃗

)
|n, pð . (S2)

For brevity, let us denote |Çn,p⃗ð = exp(º̇p⃗ · r⃗)|n, pð. Taking an inner product with ïÇm,q⃗|, the above equation yields

Em

(
q⃗
)
Èm

(
q⃗
)
+

∑

n

∑

p⃗

〈
Çm,q⃗

∣∣∣ U (r)
∣∣∣Çn, p⃗

〉
Èn

(
p⃗
)
= ϵÈm

(
q⃗
)
. (S3)

We used the orthonormality condition of the Bloch eigenstates ïÇm,q⃗|Çn, p⃗ð = ¶( p⃗ − q⃗)¶m,n. We are left with the evaluation of

ïÇm,q⃗|U(r)|Çn,p⃗ð. Let us first evaluate ïÇm,q⃗ |̂⃗r|Çn,p⃗ð. Using the identity
´

dr⃗|⃗rðï⃗r| = I and ï⃗r|Çn,p⃗ð = exp(º̇ p⃗ · r⃗)wn,p⃗ (⃗r), where

wn, p⃗ (⃗r) ≡ ï⃗r|n, p⃗ð we obtain

〈
Çm,q⃗

∣∣∣̂⃗r
∣∣∣Çn, p⃗

〉
=

ˆ

dr⃗ exp
(
−º̇q⃗ · r⃗

)
w∗

m,q⃗

(⃗
r
)

r⃗ exp
(
º̇p⃗ · r⃗

)
wn, p⃗

(⃗
r
)
. (S4)

Using the following relation, r⃗ exp(º̇ p⃗ · r⃗) = −º̇∇⃗p⃗ exp(º̇p⃗ · r⃗), the integrand in the previous equation can be rewritten

〈
Çm,q⃗

∣∣∣̂⃗r
∣∣∣Çn,p⃗

〉
= º̇∇⃗p⃗

(
ˆ

dr⃗ exp
(
º̇
(
p⃗ − q⃗

)
· r⃗

)
w∗

m,q⃗

(⃗
r
)

wn,p⃗

(⃗
r
))
+ º̇

ˆ

dr⃗ exp
(
º̇
(
p⃗ − q⃗

)
· r⃗

)
w∗

m,q⃗
∇⃗p⃗wn,p⃗

(⃗
r
)
. (S5)

The first term in the above equation can be evaluated to be

−º̇∇⃗p⃗

(
ˆ

dr⃗ exp
(
º̇
(
p⃗ − q⃗

)
· r⃗

)
w∗

m,q⃗

(⃗
r
)

wn,p⃗

(⃗
r
))
= º̇¶

(
q⃗ − p⃗

)
∇⃗ p⃗¶m,n. (S6)

The second integral in Eq. S5 vanishes unless p⃗ = q⃗, because wn,p⃗ (⃗r) is a periodic function, which gives

º̇

ˆ

dr⃗ exp
(
º̇
(
p⃗ − q⃗

)
· r⃗

)
w∗

m,q⃗
∇⃗ p⃗wn, p⃗

(⃗
r
)
= º̇¶

(
q⃗ − p⃗

) 〈
m, q⃗

∣∣∣ ∇⃗q⃗

∣∣∣n, q⃗〉 . (S7)

Recognizing the (non-abelian) Berry connection Am,n(q⃗) = º̇ïm, q⃗|∇⃗q⃗|n, q⃗ð [S5], we arrive at

〈
Çm,q⃗

∣∣∣̂⃗r
∣∣∣Çn, p⃗

〉
= ¶

(
q⃗ − p⃗

) (
º̇¶m,n∇⃗p⃗ + Am,n

(
p⃗
))
. (S8)
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Similarly, inserting the completeness identity twice, ̂⃗r
2

can be shown to be

∑

n

∑

p⃗

〈
Çm,q⃗

∣∣∣̂⃗r
2 ∣∣∣Çn, p⃗

〉
Èn

(
p⃗
)
=

∑

n,n′

(
º̇¶m,n′ ∇⃗q⃗ + Am,n′

(
q⃗
))
·
(
º̇¶n′,n∇⃗q⃗ + An′,n

(
q⃗
))
Èn

(
q⃗
)
, (S9)

leading to the following SE

Em

(
q⃗
)
Èm

(
q⃗
)
+

k

2

∑

n,n′

(
º̇¶m,n′ ∇⃗q⃗ + Am,n′

(
q⃗
))
·
(
º̇¶n′,n∇⃗q⃗ + An′,n

(
q⃗
))
Èn

(
q⃗
)
= ϵÈm

(
q⃗
)
. (S10)

So far, we have not made any assumptions in deriving the above equation. Now, let’s assume that the relevant band index is

m, and in the second term, only Èm(q⃗) is non-negligible. This lead to

Em

(
q⃗
)
Èm

(
q⃗
)
+

k

2

∑

n′

(
º̇¶m,n′ ∇⃗q⃗ + Am,n′

(
q⃗
))
·
(
º̇¶n′,m∇⃗q⃗ + An′,m

(
q⃗
))
Èm

(
q⃗
)
≈ ϵÈm

(
q⃗
)
. (S11)

Separating n′ = m and n′ , m terms, we can write

Em

(
q⃗
)
Èm

(
q⃗
)
+

k

2

(
º̇∇⃗q⃗ + Am,m

(
q⃗
))2

Èm

(
q⃗
)
+

k

2

∑

n′,m

(
Am,n′

(
q⃗
))
·
(
An′,m

(
q⃗
))
Èm

(
q⃗
)
≈ ϵÈm

(
q⃗
)
,

=⇒
Em

(
q⃗
)
+

k

2

(
º̇∇⃗q⃗ + Am,m

(
q⃗
))2
+

k

2

∑

n′,m

∣∣∣Am,n′
(
q⃗
)∣∣∣2

Èm

(
q⃗
)
≈ ϵÈm

(
q⃗
)
.

(S12)

We have finally arrived at the effective Hamiltonian

He f f = Em

(
q⃗
)
+

k

2

(
º̇∇⃗q⃗ + Am,m

(
q⃗
))2
+

k

2

∑

n′,m

∣∣∣Am,n′
(
q⃗
)∣∣∣2 . (S13)

The energy dispersion and Berry connection of the mth band act as a momentum space scalar and magnetic vector potential.

There is another contribution to the momentum space scalar potential given by

Eadd

(
q⃗
)
=

k

2

∑

n′,m

∣∣∣Am,n′
(
q⃗
)∣∣∣2 . (S14)

This additional term is the same as the trace of the underlying quantum geometric tensor [S6]. Using the following represen-

tation of An,n′ , we can recast the additional term into a gauge invariant form

An′,n = º̇

〈
n′, p⃗

∣∣∣
(
∇⃗p⃗H0

(
p⃗
))
|n, pð

(
En

(
p⃗
)
− En′

(
p⃗
)) . (S15)

The additional potential can be rewritten as

Eadd

(
q⃗
)
=

k

2

∑

n′,m

∣∣∣Am,n′
(
q⃗
)∣∣∣2 ,

=
k

2

∑

n′,m

∣∣∣∣
〈
m, q⃗

∣∣∣
(
∇⃗ p⃗H0

(
p⃗
))
|n′, qð

∣∣∣∣
2

(
En′

(
q⃗
)
− Em

(
q⃗
))2

.

(S16)

This last term Eadd(q⃗) can be neglected in the WC regime where the electron density n is small, since Eadd scales linearly with

k ∝ n3/2 while the terms we are focuse on are proportional to É ∝
√

k ∝ n3/4.

S2. SCHRÖDINGER EQUATION FOR THE HARMONIC OSCILLATOR WITH MEXICAN HAT DISPERSION

In this section, we solve the problem of a particle confined in a Harmonic oscillator potential with a Mexican hat (MH)

dispersion (the case in the presence of Berry curvature is presented in the next section). To that end, let us consider the

following Hamiltonian:

Ĥ =
1

2m

(∣∣∣∣ ˆ⃗p
∣∣∣∣ − p0

)2

+
1

2
mÉ2 ˆ⃗r2, (S17)
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where ˆ⃗p and ˆ⃗r are the momentum and position operators, É is the angular frequency, and m is the mass of the particle. Since

the position operator assumes the form of a gradient operator in momentum space, ˆ⃗r = º̇ℏ∇⃗ p⃗, this problem look like a particle

in a MH potential in momentum space. The corresponding Schrödinger equation (SE) in momentum space is given by:

[
−1

2
ℏ

2mÉ2

(
∂2

∂p2
+

1

p

∂

∂p
+

1

p2

∂2

∂ϕ2

)
+

1

2m
(p − p0)2

]
È

(
p⃗
)
= EÈ

(
p⃗
)
. (S18)

Due to the rotational symmetry of the problem, the solution to the above SE is of the variable separable form, È( p⃗) = f (p)eº̇ℓϕ,

and the allowed values of ℓ are integers. In the first step, we turn the above SE into an effective one-dimensional SE. In order

to do that, we use the ansatz f = g/
√

p, which allows us to eliminate the first-order derivative term. Substituting this ansatz,

the SE becomes:

−1

2
ℏ

2mÉ2

[
d2g

dp2
+

1

p2

(
1

4
− ℓ2

)
g

]
+

1

2m
(p − p0)2 g = Eg. (S19)

We can recast the effective radial (in momentum space) SE in a dimensionless form by dividing all the momentum scales by

Ã ≡
√
ℏmÉ, so that u ≡ p/Ã and u0 ≡ p0/Ã. We obtain:

−
[
d2g

du2
+

1

u2

(
1

4
− ℓ2

)
g

]
+ (u − u0)2 g = ϵg, (S20)

where we have defined ϵ ≡ E
/
(ℏÉ/2). In the limit where the MH is deep enough, u0 >> 1 (the wavefunction is a thin ring

in momentum space), we can find the eigenstates and eigenenergy perturbatively in 1/u0. Let us expand the above equation

around u0 by taking x ≡ u − u0 and keeping terms up to 1/u2
0
:

−d2g

dx2
+ x2g = ϵ̃g, (S21)

where we defined:

ϵ̃ = ϵ +
1

4u2
0

− ℓ
2

u2
0

. (S22)

The SE in Eq. S21 is the equation for the one-dimensional Harmonic oscillator, and its eigenvalues are given by:

ϵ̃ = 2n + 1, n ∈ Z+. (S23)

Going back to the original units, the energy eigenvalues are given by:

En,ℓ =
ℏÉ

2
(2n + 1) +

ℏÉℓ2

2u2
0

− ℏÉ
8u2

0

. (S24)

This result has a nice physical interpretation. When p ∼ p0, the particle effectively experiences harmonic confinement in

the radial direction and behaves dispersionless in the azimuthal direction. Therefore, the ground state energy of this system

corresponds to a one-dimensional harmonic oscillator. The corresponding normalized wavefunction for n = 0 principal

quantum number is given by:

Èℓ (p, ϕ) =

(
2
√
Ã

Ã

)1/2 exp

[
− (p−p0)2

2Ã2

]

√
p

exp
[
º̇ℓϕ

]
. (S25)

By Fourier transformation, we can calculate the real space wavefunction:

È̃ℓ (r, ¹) =
1

(2Ã)2

ˆ

d2 p⃗ eº̇ p⃗.⃗rÈ
(
p⃗
)
,

=

(
2
√
Ã

Ã

)1/2
1

(2Ã)2

ˆ 2Ã

0

dϕ

ˆ ∞

0

pdp

exp

[
− (p−p0)2

2Ã2

]

√
p

eº̇(pr cos(¹−ϕ)+ℓϕ).

(S26)
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The angular integral can be simplified as follows:

ˆ 2Ã

0

dϕ exp
[
º̇ (pr cos (ϕ − ¹) + ℓϕ)

]
= exp [º̇ℓ¹]

ˆ 2Ã

0

dϕ̃ exp
[
º̇
(
pr cos

(
ϕ̃
)
+ ℓϕ̃

)]
. (S27)

We use the following Jacobi–Anger expansion [S7] to perform the above angular integration:

exp [º̇a cos x] =

∞∑

n=−∞
º̇nJn (a) exp [º̇nx] , (S28)

where Jn is the nth Bessel function of the first kind. The result of the angular integral is given by:

ˆ 2Ã

0

dϕ̃ exp
[
º̇
(
pr cos

(
ϕ̃
)
+ ℓϕ̃

)]
= 2Ãº̇−ℓ (−1)ℓ Jℓ (pr) . (S29)

Ignoring the phase factors, we have:

È̃ℓ (r, ¹) = exp [º̇ℓ¹]

(
2
√
Ã

Ã

)1/2
1

2Ã

ˆ ∞

0

dp
√

p exp

[
−

(p − p0)2

2Ã2

]
Jℓ (pr) . (S30)

To perform this integral, we again introduce the dimensionless variables x and u0 (u0 ≡ p0/Ã and x ≡ (p − p0)/Ã) that we

used before:
ˆ ∞

0

dp
√

p exp

[
−

(p − p0)2

2Ã2

]
Jℓ (pr) = Ã3/2

ˆ ∞

−u0

dx
√

u0 + x exp

[
− x2

2

]
Jℓ ((u0 + x)Ãr) . (S31)

For large x, Jℓ (x) has the following asymptotic form:

Jℓ (x) ≈
√

2

Ãx
cos

[
x − ℓÃ

2
− Ã

4

]
. (S32)

This approximation is justified as long as p0r k 1. Using the asymptotic expansion, we have:

ˆ ∞

−u0

dx
√

u0 + x exp

[
− x2

2

]
Jℓ ((u0 + x)Ãr) ≈

√
2

ÃÃr
cos

[
u0Ãr − ℓÃ

2
− Ã

4

]
ˆ ∞

−∞
dx exp

[
− x2

2

]
cos [xÃr] . (S33)

Using

ˆ ∞

−∞
dx cos [ax] e−

x2

2 =

√
2Ã exp

[
−a2

2

]
, (S34)

we arrive at the final expression:

È̃ℓ (r, ¹) =

(
p0Ã√
Ã

)1/2

Jℓ (p0r) exp

[
−Ã

2r2

2

]
exp [º̇ℓ¹] , (S35)

or equivalently

È̃ℓ (r, ¹) =

(
2Ã

Ã
√
Ã

)1/2 cos
[
p0r − ℓÃ

2
− Ã

4

]

√
r

exp

[
−Ã

2r2

2

]
exp [º̇ℓ¹] . (S36)

The width of the wavefunction in real space can be calculated as

〈
r̂2

〉
ℓ
≃ 1

Ã2


1

2
+
ℓ2

u2
0

− 1

4u2
0

 . (S37)

We can use this result, together with the Lindemann criterion, to estimate the critical density associated with the WC phase. In

the limit of large U k 1, where the mass in the radial direction approaches m ≃ 1/2 and dielectric screening is unimportant,

this calculation yields

nc ≈ 2.1 × 10−4. (S38)

This value of n is indicated by a vertical dashed red line in Fig. 2 of the main text.
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Schrödinger Equation for the Harmonic Oscillator with Mexican hat dispersion and Berry curvature

In this subsection, we derive the eigenenergies of an electron with a Mexican hat dispersion that is subject to a harmonic

confining potential in the presence of Berry curvature. Following the previous section, in the momentum space, ˆ⃗r2 should be

replaced by (º̇∇⃗q⃗ + A(q⃗)2. Exploiting the rotational symmetry of the system, in the Coulomb gauge, the Berry connection can

be written as

A⃗ =
Φ (p)

2Ãp
ϕ̂, (S39)

where

Φ (p) =

ˆ p

0

dp′ 2Ãp′Ω
(
p′

)
, (S40)

is the amount of Berry flux through a disk in momentum space of radius p. Modifying the SE to incorporate the effect of

Berry curvature amount to rewriting the azimuthal part of the gradient operator in the following way

º̇

p

∂

∂ϕp

−→ º̇

p

∂

∂ϕp

+
Φ (p)

2Ãp
. (S41)

The effective one-dimensional harmonic oscillator SE in this situation can be shown to be (following the same procedure as

in Sec )

−
d2

du2
+

1

u2

−
1

4
+

(
−ℓ + Φ

(uÃ)

2Ã

)2
 + (u − u0)2

 g = ϵg. (S42)

Let us again expand around u0, changing the variable, x ≡ u − u0

−

d2g

dx2
+

1

u2
0


1

4
−

(
−ℓ + Φ

(p0)

2Ã

)2
 g

 + x2g = ϵg. (S43)

With the following definition

ϵ̃ℓ = ϵ +
1

4u2
0

−

(
−ℓ + Φ(p0)

2Ã

)2

u2
0

, (S44)

we get the following familiar differential equation

−d2g

dx2
+ x2g = ϵ̃ℓg. (S45)

We once again encounter the 1D simple harmonic oscillator SE, wherein eigenvalues are given by

ϵ̃n,l = (2n + 1) . (S46)

The critical field associated with the transition to finite angular momentum can be found by the condition:

Φ(p0) =

ˆ p0(Uc)

0

dp′2Ãp′Ω
(
p′

)
= Ã. (S47)

(In the hypothetical case where the Berry curvature is constant as a function of p, this condition simplifies to Ω (p0) p2
0
= 1.)

Evaluating this condition numerically gives

Uc ≈ 1.07. (S48)

This value of U is indicated by a horizontal dashed red line in Fig. 2 of the main text.
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S5. ORBITAL MAGNETIZATION AN ELECTRON WAVEPACKET INSIDE A WIGNER CRYSTAL

Here we discuss the orbital magnetization of the WC state, focusing on the Mexican hat dispersion. We show how the

sign of the magnetization is inverted with increasing p0. Orbital magnetization is the negative of the partial derivative of free

energy with respect to an applied magnetic field (which is a linear response to an external magnetic field).

M̂z = −
∂F

∂B

∣∣∣∣∣
B=0

. (S49)

At zero temperature and using minimal substitution, we can calculate the free energy as

F = H
(
p⃗ + eA⃗

)
,

≃ H
(
p⃗
)
+

e

2

(
A⃗ · ∇⃗p⃗H +

(
∇⃗p⃗H

)
· A⃗

)
.

(S50)

where ∇⃗p⃗H = v⃗p is the velocity operator and −e is the charge of the particle. For a constant magnetic field B⃗ = Bẑ, and

choosing A⃗ = − 1
2
(⃗r × B⃗) we can derive

F ≃ H
(
p⃗
)
+

eB⃗·
2

((
1

2

(
r⃗ × v⃗p

))
−

(
1

2

(
v⃗p × r⃗

)))
. (S51)

Using the fact that (⃗r × v⃗p)z = −(⃗vp × r⃗)z, the magnetization operator can be found to be

M̂z =
e

2

(
v⃗p × r⃗

)
ẑ. (S52)

For rotationally symmetric system v p⃗ = vp p̂, where vp =
∂E
∂p

and in the presence of Berry curvature, m can be written

M̂z =
e

2

(
vp

p

(
º̇
∂

∂ϕ
+
Φ (p)

2Ã

))
. (S53)

When È( p⃗) = f (p)eº̇ℓϕ, we get

〈
M̂z

〉
=

e

2

1

(2Ã)2

ˆ 2Ã

0

dϕ

ˆ ∞

0

dp vp

(
−ℓ + Φ

(p)

2Ã

)
| f (p)|2 . (S54)

Plugging the wavefunction from Eq. S25, and expanding Φ(p) ≃ Φ(p0) + 2Ã(p − p0)p0Ω(p0), one arrives at

〈
M̂z

〉
=

e

2m

(
1
√
ÃÃ

)
ˆ ∞

0

dp

(
p − p0

p

)
exp

[
−

(p − p0)2

Ã2

] (
−ℓ + Φ

(p0)

2Ã
+ (p − p0) p0Ω (p0)

)
. (S55)

Thus we finally arrive at

〈
M̂z

〉
=

e

2m


Ã2

2p2
0


(
ℓ − Φ

(p0)

2Ã
+ Ω (p0) p2

0

)
. (S56)

Even in the absence of Berry curvature, the aforementioned findings indicate an intriguing transition as the radius of the

Mexican hat, denoted as u0, is varied. In the case of small u0, the sign of the magnetization aligns with the physical notion

of a negatively charged particle circulating counterclockwise around a loop. However, as u0 increases, the magnitude of the

magnetization diminishes and undergoes a sign reversal beyond a critical value. This phenomenon is depicted in Figure S1.

S6. CONFINEMENT STRENGTH AND COMMENT ON THE DIELECTRIC FUNCTION

The value of k (confinement strength) is determined by the interactions between electrons in the Wigner lattice and is,

therefore, a function of the electron density, defined as follows. If one takes the origin r⃗ = 0 to be a site of the Wigner lattice,

then the potential u(⃗r) experienced by the electron near the origin is u(⃗r) =
∑

i,0 V(|⃗r − R⃗i|), where i indexes the sites of the

Wigner lattice, V(r) is the Coulomb interaction, R⃗i denotes a lattice vector of the Wigner lattice, and r⃗ is the position of the
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FIG. S1. Average magnetization ïM̂zð of the first excited state (ℓ = 1) of an electron with Mexican hat dispersion as a function of the

dimensionless Mexican hat radius u0. Blue dots show results from a numeric calculation. The limit u0 = 0 corresponds to the usual

parabolic dispersion and gives the usual value ïM̂zð = µB, resembling the case of a conventional 2D HO. As the radius increases, the

magnetization decreases in magnitude and undergoes a sign change around u0 ≃ 1. At larger values of u0, ïM̂zð converges towards the

analytical prediction of Eq. S56 (represented by a dashed red line).

electron near the origin. Here we have assumed that |⃗r| is much smaller than the Wigner lattice constant so that other electrons

in the Wigner lattice can be treated as having a fixed position. The value of k can then be found by Taylor expanding u(⃗r) to

the second order in r, which gives [S8]

k =
1

2

∑

i,0


V ′′

(∣∣∣∣R⃗i

∣∣∣∣
)
+

V ′
(∣∣∣∣R⃗i

∣∣∣∣
)

∣∣∣∣R⃗i

∣∣∣∣


. (S57)

In general, V(r) should be taken as the screened Coulomb interaction, which we discuss below.

When the interlayer potential U is small, the gap between conduction and valence bands is also small, so the electron-

electron interaction is significantly modified by screening by virtual interband excitations. This effect is captured by the static

polarization function Π(q), such that the Fourier-transformed Coulomb interaction is [S9]

V(q) =
V0(q)

1 − Π(q)V0(q)
, (S58)

where V0(q) = 2Ãe2/(ϵrq) is the unscreened Coulomb interaction. For gapped BBG, Π(q) has the following asymptotic

behaviors [S10]:

Π (q) =



−q/4, q k 1

− ln(4)/Ã, 1 k q k
√

U

−4q2/3ÃU, q j
√

U

. (S59)

As we show below, the WC state melts at densities n j U, so that the relevant momentum scale q ∼ n1/2 corresponds to the

final regime in Eq. S59. Thus, we can use the screened interaction:

V (q) =
2Ãe2

ϵr(q + q2/q0)
, (S60)

where q0 = 3U/(8e2).

Notice that at sufficiently large q (low electron density), the Coulomb potential V(q) ≃ 3U/(8ϵrq
2) corresponds to a log-

arithmic dependence of V(r) on the spatial distance r. This modified Coulomb interaction significantly modifies the critical

density associated with WC melting [S8] whenever n k U2. In the limit U j 1 and U j q j
√

U, the relevant electron
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dispersion is quartic, given by ε(p) ≈ U/2+ p4/U [S10]. Using the screened interaction for V(q), and calculating the confining

potential strength via Eq. S57, one can show that k = 3ÃUn/8 [S8]. The Lindemann criterion for melting then gives a critical

density

nc = C2 × U, (S61)

where C2 ≈ 173. Thus, unlike in the conventional WC problem, in BBG, the critical density vanishes in the limit U → 0. That

is, interlayer dielectric response precludes the formation of a WC state unless a displacement field is applied that provides an

energy gap for virtual electron-hole pairs. Equation S61 is plotted as a dashed red line in Fig. 2 of the main text.

S7. SEMICLASSICAL ESTIMATE OF THE BERRY PHASE FOR THREE-ELECTRON RING EXCHANGE

In the main text we mention that clockwise and counterclockwise ring exchange processes have a relative phase 2ϕ arising

from the Berry curvature. Here we estimate the value of ϕ for three-electron ring exchange. For simplicity we consider the

usual parabolic dispersion relation, E(k) = ℏ2k2/2m.

At large rs, the dominant contribution to the amplitude of the exchange process is associated with the semiclassical path

of least action for the exchange process. If we parameterize this path by a parameter s, then the (imaginary) momentum k(s)

along the path is given by

ℏ
2k(s)2

2m
= E − V(s), (S62)

where E is the electron energy and V(s) is the potential energy along the path. The maximum potential energy of the electron

along the tunneling trajectory corresponds to a saddle point in the potential energy landscape created by the Coulomb interac-

tion with other electrons in the Wigner lattice. This maximum, relative to the starting energy E of the electron, is generically

of order e2/R, where R ∼ n−1/2 is the Wigner lattice constant. So the maximum value of the imaginary momentum is

|kmax| ∼
√

me2n1/2

ℏ2
. (S63)

In (imaginary) reciprocal space, the tunneling path for a given electron corresponds to clockwise or counterclockwise excur-

sion from k⃗ = 0 to a point at distance kmax from the origin and back again, as depicted in Fig. 3b of the main text. The Berry

phase ϕ associated with this trajectory is given by the flux of Berry curvature through all three such trajectories. If we consider

the Berry curvature Ω to have a constant value over a region of size kmax near the origin, then ϕ ∼ Ω · |kmax|2, or

ϕ ∼ Ωe2n1/2

ℏ2
∼ Ω

a2
B

1

rs

, (S64)

where aB = ℏ
2/(me2) is the effective Bohr radius. As an example, monolayer graphene with sublattice symmetry breaking

(e.g., a mass term) has [S11] Ω/a2
B
= ³2, where ³ = e2/(ℏv) is the effective fine structure constant of graphene (with v the

graphene velocity), which is generally an order-1 number.

We note that there is, in general, also a Berry phase modification of the two-electron exchange amplitude. At large rs,

exchange of two electrons is associated with two least-action exchange trajectories: one clockwise and one counterclockwise.

In the presence of Berry curvature these two paths acquire a relative Berry phase 2ϕ2. The corresponding term in the spin

Hamiltonian then becomes

Hspin = J2

∑

ïi, jð

(
Pi j + P ji

)
⇒ J2

∑

ïi, jð

(
eiϕ2Pi j + e−iϕ2P ji

)
. (S65)

Since for a two-electron exchange Pi j = P ji, the Berry phase ϕ2 has only the effect of renormalizing the value of J2:

J2 ⇒ J2 cos(ϕ2). (S66)
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