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Abstract 

Orbital effects, despite their fundamental significance and potential to engender novel physical 

phenomena and enable new applications, have long been underexplored compared to their spin 

counterparts. Recently, surging interest in the orbital degree of freedom has led to the discovery of 

a plethora of orbital-related effects, underscoring the need for a deeper understanding of their roles 

in quantum materials. Here, we report first experimental signatures of orbital magnetization in 

trigonal Tellurium, an elemental semiconductor with a unique helical crystal structure that serves 

as a natural platform for investigating orbital effects. Detailed angular dependent linear and 

nonlinear magnetotransport measurements, supported by theoretical Boltzmann transport analysis, 

reveal the coexistence of current-induced spin polarization and orbital magnetization. By 

disentangling the interplay between spin and orbital degrees of freedom, this work establishes a 

general framework for understanding orbital magnetization in chiral crystals and beyond, paving 

the way for its utilization in orbitronics and spintronics.  

 

 

 

 

 

  



Introduction 

The orbital degree of freedom, a fundamental component of electron angular momentum, has long 
been overshadowed by its spin counterpart. However, recent theoretical and experimental 
advancements have reignited interest in orbital effects, revealing their profound influence on 
material properties. Phenomena such as the orbital Hall effect1–3, intrinsic planar Hall effect4, chiral 
orbital current5, and orbital Chern states6 have demonstrated the rich physics arising from orbital 
dynamics. Moreover, Berry phase physics has established that orbital angular momentum and 
magnetization are intrinsic properties of electronic wavefunctions in solids7, providing a unified 
framework for understanding these effects. 

Despite these advancements, clear observation of orbital effects has been hindered by the inherent 
entanglement between the orbital and spin degrees of freedom in materials with spin-orbit coupling 
(SOC)2, thus largely limited to light-element materials. Moreover, it has been shown that in several 
previously studied systems where the observations were attributed solely to spins, there are in fact 
substantial contributions from orbitals8–10. While orbital angular momentum can directly impact 
material properties through interaction with magnetic fields via Zeeman-like coupling even 
without SOC4, the precise mechanisms by which orbital magnetization contribute to 
magnetotransport in the presence of SOC should be carefully elucidated. 

Symmetry and its breaking play a crucial role in condensed matter physics. Various spatial and 
time-reversal symmetries have enabled the discovery of new topological phases through protected 
features in electronic band structures11–14. Conversely, symmetry breaking often leads to novel 
emergent phenomena15–17, opening new frontiers in quantum materials research. One notable 
example is structural chirality, a distinct form of spatial inversion symmetry breaking, which has 
emerged as a focal point of studies18,19. In chiral materials, two distinct charge-spin conversion 
effects have been widely studied: the collinear Rashba-Edelstein effect in conducting chiral 
crystals20–26 and chirality-induced spin selectivity in chiral molecules27–29. In both cases, there are 
tantalizing clues that orbital polarization plays essential roles30–33. However, despite significant 
progress in understanding spin polarization in chiral materials, definitive experimental observation 
of orbital magnetization arising from structural chirality remains elusive. Prior studies in chiral 
crystals have also been limited to current and field configurations aligned with the helical axis, 
focusing primarily on spin polarization along the helical axis. 

Here, we report first experimental signatures of orbital magnetization in Tellurium (Te) from a 
comprehensive set of magnetotransport measurements on pre-patterned ‘L’-bar devices. The 
results reveal distinct features of orbital magnetization that coexist with spin polarization. Notably, 
we observed an unexpected orbital magnetization component perpendicular to the helical chains. 
Moreover, the relative contributions of the spin and orbital effects could be tuned by electrostatic 
gating, enabling precise control and detailed study of their interplay with varying chemical 
potential. Our theoretical framework elucidates a general relationship between the electronic 
structure of Te and its spin polarization and orbital magnetization. Within the Boltzmann transport 
framework, we are able to explain the experimental trends as an interplay and competition between 



the spin polarization and orbital (perpendicular to the axis of the helix) magnetization.  We argue 
that the finite magnetization perpendicular to the helical axis is a natural consequence of the helical 
structure of Te. Taking together, our experimental and theoretical findings help advance the 
fundamental understanding of orbital dynamics in chiral materials and highlight the ubiquity of 
orbital effects.  

Magnetotransport signatures of orbital magnetization 

Te crystals exhibit D3 symmetry, comprising helical chains of covalently bonded atoms, arranged 
into a hexagonal close-packed structure via inter-chain van der Waals interactions. The left-handed 
crystal structure (space group P3221) is illustrated in Fig. 1a. The ‘L’-bar device structure (Fig. 1b), 
with two arms aligned along different crystalline axes, enables thorough examination of all 
possible configurations of current and magnetic field orientations relative to the chiral crystal axis 
within a single device. Single-crystal Te flakes are synthesized through hydrothermal growth34, 
and then transferred onto Si++/SiO2 wafers. A flake is identified and patterned into an ‘L’-bar, 
followed by another lithography step to define the metal electrodes. The fundamental (ω) and 
second harmonic (2ω) voltages are measured in both longitudinal and transverse configurations. 
The sample can be rotated in situ over 360º in two orthogonal directions, allowing for 
measurements in all in-plane (red arrow) and out-of-plane (green arrow) orientations. This setup 
enables the determination of eight components of longitudinal and transverse resistances: 𝑅𝑅𝑧𝑧𝑧𝑧𝜔𝜔 , 𝑅𝑅𝑥𝑥𝑥𝑥𝜔𝜔 , 
𝑅𝑅𝑥𝑥𝑥𝑥𝜔𝜔 , 𝑅𝑅𝑧𝑧𝑧𝑧𝜔𝜔 , 𝑅𝑅𝑧𝑧𝑧𝑧2𝜔𝜔, 𝑅𝑅𝑥𝑥𝑥𝑥2𝜔𝜔, 𝑅𝑅𝑥𝑥𝑥𝑥2𝜔𝜔, and 𝑅𝑅𝑧𝑧𝑧𝑧2𝜔𝜔 -  In the following analysis, we focus on the four longitudinal 
components. In addition, using the degenerately doped Si as a backgate, the above measurements 
can be performed with the Fermi level positioned near (green contours) and away (blue contour) 
from the characteristic camelback-like features at the top of the valence band, see Fig. 1c. As will 
be demonstrated below, this tunability allows us to control the extent of competition between the 
spin and orbital components. Current induced spin polarization in Te due to the collinear REE is 
illustrated in Fig. 1d. For the orbital contribution, our model predicts orbital magnetization with 
two orthogonal components, Morb,z along and Morb,x perpendicular to the helical axis (Fig. 1e). 
Unlike an ideal solenoid, the distorted helix crystal structure of Te (with lattice constant c > a ) 
leads to a significant orbital moment in x-direction. 

The linear-response resistivities along c- and a-axis exhibit similar magnitudes and temperature 
dependences, regardless of whether the Fermi level lies within the bandgap or inside the valence 
band. Hall measurements also reveal nearly identical carrier densities along these two axes 
(Extended Data Fig. 1 and reference therein35–37). These common properties ensure valid direct 
comparison of linear and nonlinear magnetotransport stemming from spin polarization and orbital 
magnetization along the two axes, which rely on values of 𝑅𝑅𝑧𝑧𝑧𝑧

𝜔𝜔(2𝜔𝜔) and 𝑅𝑅𝑥𝑥𝑥𝑥
𝜔𝜔(2𝜔𝜔). The linear-response 

magnetoresistance (MR) was calculated from the symmetric component of fundamental (first 
harmonic) voltage with varying magnetic field. For the nonlinear contribution, the quantity 𝛿𝛿𝑁𝑁𝑁𝑁 =
2𝑅𝑅2𝜔𝜔

𝑅𝑅𝜔𝜔
  is employed; the antisymmetric component of which with respect to the magnetic field 



excludes any contributions from trivial MR, nonlinear resistivity, and ordinary Hall effect due to 
misalignment (see Methods).  

Figure 2a shows the angular dependence of the linear MR along the helical axis (𝑅𝑅𝑧𝑧𝑧𝑧𝜔𝜔 ) under an in-
plane magnetic field ranging from 2 T to 12 T. The data was obtained from device D1 at the natural 
doping level of the as-grown sample. The zero-field 𝑅𝑅𝑧𝑧𝑧𝑧𝜔𝜔  is represented by the horizontal green 
dotted line for reference. The linear MR exhibits 180º periodicity with respect to the magnetic field, 
with negative MR observed when the field aligns with the helical axis. The resistance minima, 
marked by the vertical gray dashed lines, reveals an experimental misalignment of approximately 
5º with respect to the helical axis. However, this misalignment is systematic and independent of 
the magnetic field, thus has no impact on the subsequent discussions. We note that there is no 
discernible difference between the resistances with the magnetic field parallel (ϕ ≈ 360º) or 
antiparallel (ϕ ≈ 180º) to the current direction.  

The angular dependence of 𝛿𝛿𝑧𝑧𝑧𝑧𝑁𝑁𝑁𝑁 is shown in Fig. 2b, exhibiting a 360º-periodicity with a magnitude 
that increases monotonically but nonlinearly with the magnetic field. Notably, at low magnetic 
fields, the angular positions of the maxima (minima) deviate significantly from 360º (180º) 
expected from current-induced collinear spin polarization. As the field strength increases, the 
maxima (minima) approaches 360º (180º) and the angular shift from the 360º (180º) orientation 
diminishes toward zero. The angular shift at low fields is more apparent, as shown in Fig. 2g, 

which presents the quantity normalized by the magnetic field, 𝛿𝛿𝑧𝑧𝑧𝑧
𝑁𝑁𝑁𝑁

𝜇𝜇0𝐻𝐻
 ; an angular shift of 

approximately 45° at 2 T is evident. For the a-axis, Fig. 2c presents the angular dependence of 𝛿𝛿𝑥𝑥𝑥𝑥𝑁𝑁𝑁𝑁, 
along with its normalized data shown in Fig. 2h. Conventionally, spin orientation along a-axis is 
expected to be invariant under momentum inversion due to the preservation of mirror symmetry, 
implying zero spin polarization. However, trigonal wrapping38 in the Te band structure breaks the 
inversion symmetry along a-axis, potentially contributing to nonlinear magnetotransport. 
Interestingly, at 2 T, 𝛿𝛿𝑥𝑥𝑥𝑥𝑁𝑁𝑁𝑁  exhibits wide plateaus centered at 360º and 180º, with a normalized 
magnitude comparable to 𝛿𝛿𝑧𝑧𝑧𝑧𝑁𝑁𝑁𝑁 . As the magnetic field strength increases, additional side peaks 
emerge, and the normalized magnitude decreases significantly, making 𝛿𝛿𝑥𝑥𝑥𝑥𝑁𝑁𝑁𝑁  much smaller than 
𝛿𝛿𝑧𝑧𝑧𝑧𝑁𝑁𝑁𝑁 at high fields. Although pronounced features consistent with collinear current-induced spin 
polarization are observed in D1, the angular shift in 𝛿𝛿𝑧𝑧𝑧𝑧𝑁𝑁𝑁𝑁 at small fields and complex magnetic field 
dependence of 𝛿𝛿𝑥𝑥𝑥𝑥𝑁𝑁𝑁𝑁 cannot be explained by spin polarization alone. The comparable magnitudes 
of 𝛿𝛿𝑧𝑧𝑧𝑧𝑁𝑁𝑁𝑁 and 𝛿𝛿𝑥𝑥𝑥𝑥𝑁𝑁𝑁𝑁 at 2T strongly suggest an additional underlying contribution to 𝛿𝛿𝑁𝑁𝑁𝑁.  

Figures 2d-f present the angular dependence of 𝑅𝑅𝑧𝑧𝑧𝑧𝜔𝜔 , 𝛿𝛿𝑧𝑧𝑧𝑧𝑁𝑁𝑁𝑁, and 𝛿𝛿𝑥𝑥𝑥𝑥𝑁𝑁𝑁𝑁 measured on device D2 without 
an applied gate voltage under in-plane rotation of the magnetic field at different strengths.  These 
results exhibit contrasting behavior compared to D1. Notably, the angular position of 𝑅𝑅𝑧𝑧𝑧𝑧𝜔𝜔  minima 
shifted from ϕ ≈ 180º (or ϕ ≈ 360º) and increased approximately linearly with the magnetic field, 
as indicated by the gray dashed lines. Note that this field-enhanced angular shift is absent in Fig. 
2a. Similarly, field normalized 𝛿𝛿𝑧𝑧𝑧𝑧𝑁𝑁𝑁𝑁 and 𝛿𝛿𝑥𝑥𝑥𝑥𝑁𝑁𝑁𝑁 in Figs. 2i and 2j, respectively, also display linear field 
dependence, with their angular shifts increasing as the field strength rises (indicated by gray dashed 



lines). However, the magnitude and shifted angle of 𝛿𝛿𝑧𝑧𝑧𝑧𝑁𝑁𝑁𝑁 are significantly greater than those of 𝛿𝛿𝑥𝑥𝑥𝑥𝑁𝑁𝑁𝑁, 
consistent with the smaller angular shift in 𝑅𝑅𝑥𝑥𝑥𝑥𝜔𝜔  (Extended Data Fig. 2). Specifically, the onset of 
the 𝛿𝛿𝑧𝑧𝑧𝑧𝑁𝑁𝑁𝑁 angular shift is approximately 20º left of 180º (or 360º), whereas 𝛿𝛿𝑥𝑥𝑥𝑥𝑁𝑁𝑁𝑁 exhibits only a slight 
deviation from these angles. The observations from D2 clearly extend beyond the framework of 
collinear spin polarization, suggesting the presence of a polarization/magnetization component 
perpendicular to the helical axis that competes with the collinear spin polarization. This component 
couples to the external magnetic field linearly, becoming more pronounced as the field increases 
and leads to the enhanced angular shift away from the helical chain direction. The current 
dependences of 𝑅𝑅𝜔𝜔 and 𝛿𝛿𝑁𝑁𝑁𝑁 in D1 and D2 are shown in Extended Data Figs. 3 and 4, respectively, 
which further indicate the existence of higher-order terms (see Methods).  

The contrasting behaviors between D1 and D2 can be attributed to the different SOC strengths in 
the two samples due to the different locations of the Fermi level at different native doping levels 
as grown. SOC in Te exhibits significant tunability via electrostatic gating39, which is confirmed 
in our samples by a transition from weak localization (WL) to weak anti-localization (WAL) 
(Extended Data Fig. 5). A similar transition is observed as the Fermi level shifts from the valence 
band edge (in D2) to deep in the valence band (in D1) (Extended Data Fig. 6). This transition 
signifies a weaker SOC near the camelback and stronger SOC deeper in the valence band. 
Resistivity versus temperature and perpendicular field MR measurements on D1 and D2 are shown 
in Extended Data Fig. 6. The MR of D1 shows a flat response near zero field, indicating the SOC 
strength lies in the transition regime from WL to WAL, which indicates that without any applied 
gate voltage, the Fermi level of D1 lies inside the valence band. The SOC in D1 is strong enough 
to induce pronounced collinear spin polarization due to spin-momentum locking, as evidenced by 
Fig. 2b at high fields. In contrast, D2 exhibits pure WL MR, indicating weak SOC. Furthermore, 
since the Fermi level of D2 is close to the band edge, the absolute value of the momentum is 
reduced, making spin-momentum locking less effective which minimizes contributions from spin 
polarization.  

Based on these observations, we argue that the observed 𝛿𝛿𝑧𝑧𝑧𝑧𝑁𝑁𝑁𝑁  and 𝛿𝛿𝑥𝑥𝑥𝑥𝑁𝑁𝑁𝑁  in D2 are signatures of 
pronounced orbital magnetization. We emphasize that although a magnetic field along the helical 
axis may induce energy dispersion shifts40, they would not lead to a shifted angular dependence in 
either linear or nonlinear MR (Fig. 4a). 

Gate tunability 

To determine the evolution of these phenomena with the Fermi level, we employed electrostatic 
gating to modulate the electronic properties of D2, covering a wide range of chemical potential 
below the valence band maximum. Figure 3a presents the normalized 𝑅𝑅𝑧𝑧𝑧𝑧𝜔𝜔   under different gate 
voltages where a higher negative voltage corresponds to a chemical potential residing deeper inside 
the valence band. Notably, the angular shift of the resistance minima vanishes at sufficiently large 
negative gate voltages, closely aligning with the transition from WL to WAL, i.e. strengthening of 
the spin polarization contribution as the magnitude of the negative gate voltage increases 
(Extended Data Fig. 6). At Vgate = -6 V, where the hole density of D2 is tuned close to that of D1 



without gating, the angular dependence of 𝑅𝑅𝑧𝑧𝑧𝑧𝜔𝜔  closely resembles the behavior observed in Fig. 2a. 
Furthermore, measurements at this gate voltage yielded results essentially identical to those of D1, 
demonstrating a remarkable degree of consistency between samples of quite different native 
doping levels, and the high reproducibility and robustness of the observations (Extended Data Fig. 
7). Mapping of 𝛿𝛿𝑧𝑧𝑧𝑧𝑁𝑁𝑁𝑁 with the gate voltage (Fig. 3b) illustrates a clear transition between the orbital 
effects dominated and spin polarization dominated regions, marked by the vanishing angular shift 
from the 180º (antiparallel) and 360º (parallel) field orientation (indicated by the white dashed 
lines). The gate voltage mapping of 𝛿𝛿𝑥𝑥𝑥𝑥𝑁𝑁𝑁𝑁 is shown in Extended Data Fig. 8, which demonstrates 
the same transition. The enhancement of SOC deeper in the valence band induces stronger 
collinear spin polarization, while the pure orbital effect is quenched due to enhanced SOC as the 
chemical potential moves away from the band edge, resulting in the maxima (minima) of 𝛿𝛿𝑥𝑥𝑥𝑥𝑁𝑁𝑁𝑁 
appear at ϕ ≈ 360º (ϕ ≈ 180º). It is interesting to note that, near the band edge, the magnitude of 
𝛿𝛿𝑧𝑧𝑧𝑧𝑁𝑁𝑁𝑁 exceeds that inside the valence band (due to spin polarization) and continues to increase as 
the gate voltage increases (Extended Data Fig. 9). This suggests that the orbital effects lead to 
greater nonlinear MR than spin alone, further highlighting that additional spin polarization may 
have originated from the conversion of orbital angular momentum in the presence of SOC. These 
findings highlight the high tunability of the interplay between orbital and spin effects, broadening 
potential applications in orbitronics and spintronics. 

To conclude the experimental characterization of the samples, we also examined the case of an 
out-of-plane magnetic field, where nonlinear MR has been observed in both bulk and 2D Te26,41. 
Figures 3c and 3d present the angular dependence of 𝛿𝛿𝑧𝑧𝑧𝑧𝑁𝑁𝑁𝑁 measured on D2 under different gate 
voltages and out-of-plane rotation of the applied field. The 𝛿𝛿𝑁𝑁𝑁𝑁 in the presence of an out-of-plane 
magnetic field is consistently captured, with a magnitude comparable to that seen in in-plane field 
rotation. A hump at θ = 0⁰ (ϕ = 270º) and a dip at θ = 180⁰ (ϕ = 90º) are observed, consistent with 
nonzero 𝛿𝛿𝑁𝑁𝑁𝑁 at those positions due to angular shift under in-plane rotation at Vgate = 0 V. Notably, 
as the angular shift vanishes when the Fermi level is tuned to spin polarization dominant region 
(deep in the valence band), the curve reverts to a simple  sin(θ)-like behavior with respect to out-
of-plane magnetic field, aligning with previous observations in Te26,41. Taken together, our gate 
tuning measurements significantly extend the understanding of the magnetotransport properties in 
this material 

Discussions 

To help interpret the experimental results, we perform a semiclassical Boltzmann transport 
calculation to extract both the linear and nonlinear conductivities. Full details of the calculation 
are provided in the Supplemental Information and References therein42–61. Within linear response 
to magnetic field, our model takes the general form: 

𝜀𝜀(𝑞⃗𝑞) = 𝜀𝜀0(𝑞⃗𝑞) − 𝜇𝜇𝐵𝐵𝐵𝐵∥  cos(𝜙𝜙) (𝑠𝑠𝑧𝑧 + 𝑚𝑚𝑧𝑧 ) − 𝜇𝜇𝐵𝐵𝐵𝐵∥  sin(𝜙𝜙) (𝑠𝑠𝑥𝑥 + 𝑚𝑚𝑥𝑥) 

Here, 𝜀𝜀0 (𝑞⃗𝑞) denotes the band dispersion without a magnetic field, 𝜇𝜇𝐵𝐵 is the Bohr magneton, and 
the latter terms represent the Zeeman coupling to an in-plane magnetic field of magnitude B 



oriented along (sin(𝜙𝜙), 0, cos(𝜙𝜙)). Total magnetization thus includes both orbital (m) and spin (s) 
contributions which we define below. 

In Figs. 4a-f, we present results for three different model scenarios that help us substantiate 
proposed experimental interpretation of competing spin and orbital polarizations. First, in Figs. 4a, 
d, we demonstrate that spin texture alone, i.e. the collinear spin model, is insufficient to account 
for the experimentally observed trends – the resistance curves’ maxima/minima are rigidly locked 
along the colinear and anti-colinear directions.  Second, we conduct a symmetry analysis of orbital 
magnetization and find that only an orbital magnetization component that is odd in 𝑞𝑞𝑧𝑧 can explain 
the experimentally observed shift in the minima of the resistance (Figs. 4b and 4e). Here, we use 
a parameter 𝛼𝛼 as a tuning parameter, such that 𝛼𝛼 = 0  corresponds to a situation in which orbital 
magnetization is absent and 𝛼𝛼 = 1   corresponds to purely orbital magnetization with no spin 
magnetization. Physically, if one views the helical chains as one-dimensional spirals, it is natural 
to expect components of orbital magnetization along all three spatial directions (Fig. 1e). This 
conclusion is further supported by a toy model of a helical chain with three atoms per unit cell, 
which validates the symmetry-based argument (Figs. 4c and 4f). In the supplementary materials 
we review existing models of the band structure of Te and find that they either yield no orbital 
magnetization or the magnetization lacks the 𝑞𝑞𝑧𝑧 dependence on the crystal momentum and yield 
just the collinear result.  

Taken together with experimental results, the theoretical calculations of Fig. 4 consistently support 
the interpretation of coexisting current-induced spin polarization and orbital magnetization, with 
orbital contribution being most pronounced near the valence band edge where SOC is weak. In 
chiral materials such as Te, orbital magnetization differs from spin polarization by having two 
orthogonal components, 𝑴𝑴𝑜𝑜𝑜𝑜𝑜𝑜,𝑧𝑧 along helical axis and 𝑴𝑴𝑜𝑜𝑜𝑜𝑜𝑜,𝑥𝑥 perpendicular to it, as illustrated in 
Fig. 1e and naturally arising in a simple helical tight-binding model.  Deeper in the valence band, 
where spin effects dominate, current-induced spin polarization ∆𝑺𝑺 (Fig. 1d) overwhelms 𝑴𝑴𝑜𝑜𝑜𝑜𝑜𝑜. In 
this regime, the magnetic field both (1) couples to ∆𝑺𝑺 to induce 𝛿𝛿𝑁𝑁𝑁𝑁, and (2) amplifying ∆𝑺𝑺 by 
creating an imbalance in spin occupation states. The angular shift at low magnetic fields (Fig. 2b) 
reflects the mixing of ∆𝑺𝑺 and 𝑴𝑴𝑜𝑜𝑜𝑜𝑜𝑜,𝑥𝑥; as the magnetic field increases, 𝑴𝑴𝑜𝑜𝑜𝑜𝑜𝑜,𝑥𝑥 becomes negligible 
comparing to ∆𝑺𝑺, resulting in collinear maxima and minima. Near the band edge, where orbital 
magnetization dominates, the ratio between its components along and perpendicular to the helical 
axis evolves with increasing magnetic field (Fig. 2e) while remaining constant for different current 
bias (Extended Data Fig. 4b). 

Conclusion 

A comprehensive set of linear- and nonlinear response magnetotransport measurements covering 
all relative orientations of applied magnetic field and bias current with respect to the helical 
crystalline axis was conducted on trigonal Te, a chiral material with a distinct helical crystal 
structure. The results revealed experimental evidence naturally interpreted as signatures of orbital 
magnetization, specifically, the coexistence of current-induced spin polarization and two 



orthogonal components of orbital magnetization. By disentangling their contributions to 
magnetotransport via electrostatic gating, we identify distinct linear- and nonlinear-response 
behaviors that align with theoretical predictions. These findings provide deeper insight into the 
interplay between spin and orbital degrees of freedom in chiral materials. Our results establish Te 
as an excellent platform for studying the interplay of orbital magnetization with rich spin structures.  

 

Acknowledgements 

We acknowledge fruitful discussions with O. Vafek, D. Chichinadze, J. Padayasi, and Z. Lu. We 
thank L. Golub, D. Pesin, and M. Sakano for valuable discussions over email. P.X. is supported by 
NSF grant no. DMR-1905843 and DMR-2325147. S.J. acknowledges support from Florida State 
University through the Quantum Postdoctoral Fellowship and the National High Magnetic Field 
Laboratory. C.L. was supported by start-up funds from Florida State University and the National 
High Magnetic Field Laboratory. The National High Magnetic Field Laboratory is supported by 
the National Science Foundation through NSF/DMR-2128556 and the State of Florida. 

 

Author contributions  

P.X. supervised the project. Z.H. and D.G. performed the magnetotransport measurement. C.N. 
and P.T. grew Te single crystals. Z.H., G.S., H.L., and J.G. fabricated the devices. S.J. and C.L. 
performed the calculations. All authors discussed the results and wrote the paper. 

 

Competing interests  

The authors declare no competing interests. 

 

Data availability 

The data that support this study are reported in the manuscript and Supplementary Information. 
Source data and other data are available from the corresponding authors on request. 

 

  



Reference: 

1. Choi, Y. G. et al. Observation of the orbital Hall effect in a light metal Ti. Nature 619, 52–
56 (2023). 

2. Go, D., Jo, D., Kim, C. & Lee, H. W. Intrinsic Spin and Orbital Hall Effects from Orbital 
Texture. Phys Rev Lett 121, (2018). 

3. Wang, P. et al. Inverse orbital Hall effect and orbitronic terahertz emission observed in the 
materials with weak spin-orbit coupling. NPJ Quantum Mater 8, (2023). 

4. Wang, H. et al. Orbital Origin of the Intrinsic Planar Hall Effect. Phys Rev Lett 132, 
(2024). 

5. Zhang, Y. et al. Control of chiral orbital currents in a colossal magnetoresistance material. 
Nature 611, 467–472 (2022). 

6. Polshyn, H. et al. Electrical switching of magnetic order in an orbital Chern insulator. 
Nature 588, 66–70 (2020). 

7. Xiao, D., Chang, M. C. & Niu, Q. Berry phase effects on electronic properties. Rev Mod 
Phys 82, 1959–2007 (2010). 

8. El Hamdi, A. et al. Observation of the orbital inverse Rashba–Edelstein effect. Nat Phys 
19, 1855–1860 (2023). 

9. Hayashi, H., Go, D., Haku, S., Mokrousov, Y. & Ando, K. Observation of orbital pumping. 
Nat Electron 7, 646–652 (2024). 

10. Lee, D. et al. Orbital torque in magnetic bilayers. Nat Commun 12, (2021). 

11. Hasan, M. Z. & Kane, C. L. Colloquium: Topological insulators. Rev Mod Phys 82, 3045–
3067 (2010). 

12. Qi, X. L. & Zhang, S. C. Topological insulators and superconductors. Rev Mod Phys 83, 
(2011). 

13. Armitage, N. P., Mele, E. J. & Vishwanath, A. Weyl and Dirac semimetals in three-
dimensional solids. Rev Mod Phys 90, (2018). 

14. Yan, B. & Felser, C. The Annual Review of Condensed Matter Physics is Downloaded 
from www.annualreviews.org. Annu. Rev. Condens. Matter Phys 8, 9 (2025). 

15. McGreevy, J. Generalized Symmetries in Condensed Matter. Annu Rev Condens Matter 
Phys 14, 57–82 (2023). 

16. Fischer, M. H., Sigrist, M., Agterberg, D. F. & Yanase, Y. Superconductivity and Local 
Inversion-Symmetry Breaking. Annu Rev Condens Matter Phys 14, 153–172 (2023). 



17. Du, L. et al. Engineering symmetry breaking in 2D layered materials. Nature Reviews 
Physics vol. 3 193–206 Preprint at https://doi.org/10.1038/s42254-020-00276-0 (2021). 

18. Sanchez, D. S. et al. Topological chiral crystals with helicoid-arc quantum states. Nature 
567, 500–505 (2019). 

19. Chang, G. et al. Topological quantum properties of chiral crystals. Nat Mater 17, 978–985 
(2018). 

20. Tenzin, K. et al. Collinear Rashba-Edelstein effect in nonmagnetic chiral materials. Phys 
Rev B 108, (2023). 

21. Sakano, M. et al. Radial Spin Texture in Elemental Tellurium with Chiral Crystal 
Structure. Phys Rev Lett 124, (2020). 

22. Gatti, G. et al. Radial Spin Texture of the Weyl Fermions in Chiral Tellurium. Phys Rev 
Lett 125, (2020). 

23. Roy, A. et al. Long-range current-induced spin accumulation in chiral crystals. NPJ 
Comput Mater 8, (2022). 

24. Hirayama, M., Okugawa, R., Ishibashi, S., Murakami, S. & Miyake, T. Weyl Node and 
Spin Texture in Trigonal Tellurium and Selenium. Phys Rev Lett 114, (2015). 

25. Calavalle, F. et al. Gate-tuneable and chirality-dependent charge-to-spin conversion in 
tellurium nanowires. Nat Mater 21, 526–532 (2022). 

26. Niu, C. et al. Tunable Chirality-Dependent Nonlinear Electrical Responses in 2D 
Tellurium. Nano Lett 23, 8445–8453 (2023). 

27. Göhler, B. et al. Spin Selectivity in Electron Transmission Through Self-Assembled 
Monolayers of Double-Stranded DNA. Science (1979) 331, 894–897 (2011). 

28. Waldeck, D. H., Naaman, R. & Paltiel, Y. The spin selectivity effect in chiral materials. 
APL Mater 9, 040902 (2021). 

29. Liu, T. et al. Linear and nonlinear two-terminal spin-valve effect from chirality-induced 
spin selectivity. ACS Nano 14, 15983–15991 (2020). 

30. Yoda, T., Yokoyama, T. & Murakami, S. Current-induced orbital and spin magnetizations 
in crystals with helical structure. Sci Rep 5, (2015). 

31. Yoda, T., Yokoyama, T. & Murakami, S. Orbital Edelstein Effect as a Condensed-Matter 
Analog of Solenoids. Nano Lett 18, 916–920 (2018). 

32. Liu, Y., Xiao, J., Koo, J. & Yan, B. Chirality-driven topological electronic structure of 
DNA-like materials. Nat Mater 20, 638–644 (2021). 



33. Adhikari, Y. et al. Interplay of structural chirality, electron spin and topological orbital in 
chiral molecular spin valves. Nat Commun 14, (2023). 

34. Wang, Y. et al. Field-effect transistors made from solution-grown two-dimensional 
tellurene. Nat Electron 1, 228–236 (2018). 

35. Qiu, G. et al. Quantum Hall effect of Weyl fermions in n-type semiconducting tellurene. 
Nat Nanotechnol 15, 585–591 (2020). 

36. Suárez-Rodríguez, M. et al. Odd Nonlinear Conductivity under Spatial Inversion in Chiral 
Tellurium. Phys Rev Lett 132, (2024). 

37. Chichinadze, D. V. et al. Observation of giant nonlinear Hall conductivity in Bernal 
bilayer graphene. (2024). 

38. Braun, E. & Neuringer, L. J. Trigonal Warping of the Energy Surfaces in Tellurium. Phys 
Rev B 2, 1553–1555 (1970). 

39. Niu, C. et al. Gate-tunable strong spin-orbit interaction in two-dimensional tellurium 
probed by weak antilocalization. Phys Rev B 101, (2020). 

40. Sudo, K. et al. Valley polarization dependence of nonreciprocal transport in a chiral 
semiconductor. Phys Rev B 108, (2023). 

41. Rikken, G. L. J. A. & Avarvari, N. Strong electrical magnetochiral anisotropy in tellurium. 
Phys Rev B 99, (2019). 

42. Grosso, G. & Parravicini, G. P. Solid State Physics. (Academic Press, 2013). 

43. Betbeder-Matibet, O. & Hulin, M. A. Semi-Empirical Model for the Valence Band 
Structure of Tellurium. physica status solidi (b) 36, 573–586 (1969). 

44. Doi, T., Nakao, K. & Kamimura, H. The Valence Band Structure of Tellurium. I. The k·p 
Perturbation Method. J Physical Soc Japan 28, 36–43 (1970). 

45. Kenji, N., Takao, D. & Hiroshi, K. The Valence Band Structure of Tellurium. III. The 
Landau Levels. J Physical Soc Japan 30, 1400–1413 (1971). 

46. Braun, E., Neuringer, L. J. & Landwehr, G. Valence Band Structure of Tellurium from 
Shubnikov-de Haas Experiments. physica status solidi (b) 53, 635–650 (1972). 

47. E. Ivchenko and G. Pikus. Natural optical activity of semiconductors (te). Sov. Phys. Solid 
State 16, 1261 (1975). 

48. Stolze, H., Lutz, M. & Grosse, P. The Optical Activity of Tellurium. physica status solidi 
(b) 82, 457–466 (1977). 



49. L. Dubinskaya and I. Farbstein. Natural optical activity and features of the structure of the 
electronic energy spectrum of tellurium. Soviet Physics - Solid State 20, 437 (1978). 

50. Furukawa, T., Shimokawa, Y., Kobayashi, K. & Itou, T. Observation of current-induced 
bulk magnetization in elemental tellurium. Nat Commun 8, 954 (2017). 

51. Şahin, C., Rou, J., Ma, J. & Pesin, D. A. Pancharatnam-Berry phase and kinetic 
magnetoelectric effect in trigonal tellurium. Phys Rev B 97, 205206 (2018). 

52. Golub, L. E., Ivchenko, E. L. & Spivak, B. Electrical magnetochiral current in tellurium. 
Phys Rev B 108, 245202 (2023). 

53. Chang, M.-C. & Niu, Q. Berry phase, hyperorbits, and the Hofstadter spectrum: 
Semiclassical dynamics in magnetic Bloch bands. Phys Rev B 53, 7010–7023 (1996). 

54. Raoux, A., Piéchon, F., Fuchs, J.-N. & Montambaux, G. Orbital magnetism in coupled-
bands models. Phys Rev B 91, 85120 (2015). 

55. Drigo, E. & Resta, R. Chern number and orbital magnetization in ribbons, polymers, and 
single-layer materials. Phys Rev B 101, 165120 (2020). 

56. Hara, D., Bahramy, M. S. & Murakami, S. Current-induced orbital magnetization in 
systems without inversion symmetry. Phys Rev B 102, 184404 (2020). 

57. Kim, K.-W., Jeong, H., Kim, J. & Jin, H. Vertical transverse transport induced by hidden 
in-plane Berry curvature in two dimensions. Phys Rev B 104, L081114- (2021). 

58. Lee, S., Shin, J., Jeong, H. & Jin, H. Quantum geometric tensor from real-space twists of 
chiral chains. Phys Rev B 110, 195139 (2024). 

59. Gao, Y. Semiclassical dynamics and nonlinear charge current. Front Phys (Beijing) 14, 
33404 (2019). 

60. Liu, X., Souza, I. & Tsirkin, S. S. Electrical magnetochiral anisotropy in trigonal tellurium 
from first principles. (2023). 

61. Okumura, S., Tanaka, R. & Hirobe, D. Chiral orbital texture in nonlinear electrical 
conduction. Phys Rev B 110, L020407- (2024). 

  

  



 

Fig. 1 | Chiral crystal trigonal Te. a, crystal structure of left-handed Te. b, schematic of the ‘L’-
bar device structure, with the two long bars aligned along the crystalline axes labeled as c (helical 
axis) and a. The sample can be rotated over 360° in two directions, as illustrated. c, calculated 
energy dispersion of the valence band of Te based on our theoretical model.  d, illustration of radial 
spin texture and current-induced spin polarization (ΔS) in Te. The change in resistance (ΔR) 
switches sign with variations in handedness (γL = -γR), current direction, or magnetic field 
orientation. e, illustration of current-induced orbital magnetization, where both components along 
(Morb,z) and perpendicular (Morb,x) to the helical axis and proportional to kz are demonstrated. 

 

  



 

Fig. 2 | Linear and nonlinear magnetotransport of Te. a-c, angular dependence of 𝑅𝑅𝑧𝑧𝑧𝑧𝜔𝜔  (a), 𝛿𝛿𝑧𝑧𝑧𝑧𝑁𝑁𝑁𝑁 
(b), and 𝛿𝛿𝑥𝑥𝑥𝑥𝑁𝑁𝑁𝑁 (c) under in-plane rotation of the applied magnetic field ranging from 2 T to 12 T in 
increments of 2 T, measured in D1 without an applied gate voltage. The current bias is 20 μA. The 
inset in (b) is an optical image of the device (scale bar: 30 μm). d-f angular dependence of 𝑅𝑅𝑧𝑧𝑧𝑧𝜔𝜔  (d), 
𝛿𝛿𝑧𝑧𝑧𝑧𝑁𝑁𝑁𝑁 (e), and 𝛿𝛿𝑥𝑥𝑥𝑥𝑁𝑁𝑁𝑁 (f) of D2 under similar measurement conditions while the magnetic fields ranging 
from 1 T to 16 T in increments of 1 T. 𝑅𝑅𝜔𝜔 and 𝛿𝛿𝑁𝑁𝑁𝑁 shows contrasting behavior between D1 and 
D2, where the observations in D2 are beyond the framework of collinear spin polarization. g-j 
magnetic field normalized data of (b), (c), (c) and (f). 

 

 

  



 
Fig. 3 | Transition from orbital effect dominant to spin polarization dominant 
magnetotransport. a, angular dependence of 𝑅𝑅𝑧𝑧𝑧𝑧𝜔𝜔  under different gate voltages. The angular shift 
of the minima vanishes at sufficiently low Vgate. b, gate voltage mapping of 𝛿𝛿𝑧𝑧𝑧𝑧𝑁𝑁𝑁𝑁 for Ic = 20 μA and 
μ0H = 12 T, clearly showing the transition from the proposed orbital magnetization effect dominant 
region to a spin polarization dominant region, indicated by white dashed lines. c, θ-dependence of 
𝛿𝛿𝑧𝑧𝑧𝑧𝑁𝑁𝑁𝑁 under out-of-plane field rotation at Vgate = 0 V, the magnetic field is incremented by 2 T. d, θ-
dependence of 𝛿𝛿𝑧𝑧𝑧𝑧𝑁𝑁𝑁𝑁 under different gate voltages, demonstrating the crossover between orbital and 
spin contributions. The hump at θ = 0⁰ and the dip at θ = 180⁰ disappear in the spin polarization-
dominant region, where the angular shift also vanishes at that applied magnetic field and current. 

 

 

  



 
Fig. 4 | Theoretical plots of linear and non-linear transport: These figures show linear and 
non-linear resistivity as a function of the direction of the in-plane magnetic field, calculated 
using the Boltzmann semiclassical transport formalism (see Supplementary Information for the 
details of the calculation). a&d we consider an energy dispersion that includes only the Zeeman 
coupling to the spin texture. Here, varying the magnetic field strength does not shift the minima 
of the oscillations corresponding to the collinear and anti-collinear directions. b&e, we introduce 
an orbital magnetization along the x-direction, assumed to be odd in kz (the figure also includes a 
component odd in kx, which does not reproduce the observed trend), inspired by the solenoidal 
model. This leads to a clear shift in the position of the minima. c&f. A minimal chiral chain 
model for helical Te qualitatively captures the same behavior. In these four figures, α is a tuning 
parameter that controls the relative contribution of spin texture and orbital magnetization to the 
Zeeman energy: α = 0 corresponds to the case with no orbital magnetization (same as the first 
set), while α = 1 corresponds to a scenario with no spin polarization. 

  



Methods 
Sample and device fabrication 

Single crystal Te were grown using a hydrothermal synthesis method. In a typical procedure, 0.09 
g of Na2TeO3 (Sigma-Aldrich) and 0.50 g of PVP (Sigma-Aldrich) were fully dissolved in 33 mL 
of deionized water (18.2 MΩ∙cm). Then, 3.33 mL of aqueous ammonia solution (28%, w/w%) 
(Sigma-Aldrich) and 1.67 mL of hydrazine hydrate (80%, w/w%) (Sigma-Aldrich) were added. 
After thorough mixing, the solution was placed into a 50 ml Teflon container, sealed in a stainless-
steel autoclave, and heated at 180 °C for 30 hours in a furnace. The autoclave was then allowed to 
cool naturally to room temperature. 

The synthesized Te flakes were transferred onto Si/SiO2 wafer with degenerately doped Si and 90 
nm thick SiO2 using the Langmuir-Schaefer technique. The ‘L’-bar device pattern was defined by 
photolithography, with a spin-coated layer of photoresist (AZ5214E) and etched using reactive ion 
etching (50 mTorr Ar, 50 W RF power, 2 mins). Electrodes were patterned in a second 
photolithography step, followed by the deposition of 80 nm Au using a thermal evaporator. 

Linear and nonlinear electrical measurements.  

‘L’-bar devices were wired to a customized sample stage made of G-10 using Pt wires and silver 
paint. The stage was then installed in a Physical Property Measurement System (PPMS, Quantum 
Design) for transport measurements at temperatures down to 2 K. The sample probe is equipped 
with a high-precision and low friction rotator which is driven by a DC servomotor, with the angle 
calculated from the motor steps and calibrated using a Hall sensor (THS118, Toshiba) for each 
measurement. The a.c. current was injected using Stanford Research CS580 voltage-controlled 
current source, synchronized with Stanford Research S860 lock-in amplifiers. The lock-in 
amplifiers were used to measure the fundamental and the second-harmonic voltages. Electrostatic 
gating is sourced by the Keithley 2450 source-measure unit. 

Linear and nonlinear magnetotransport via a.c. measurements 

Linear and non-linear transport coefficients are extracted using an a.c. current. Specifically, an a.c 
bias current, I = I0sinωt at frequency f = ω/2π = 17.17 Hz, is applied to the devices (see Extended 
Data Fig. 1a). The resulting longitudinal voltage can be expressed as 

𝑉𝑉 = 𝐼𝐼𝐼𝐼 = 𝑅𝑅(0)𝐼𝐼 + 𝑅𝑅(1)𝐼𝐼2 + ⋯ 

= 𝑅𝑅(0)𝐼𝐼0𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + 𝑅𝑅(1)𝐼𝐼02𝑠𝑠𝑠𝑠𝑠𝑠2𝜔𝜔𝜔𝜔 
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where R(n) represents the nth-order nonlinear resistance term with respect to current, higher-order 
terms are neglected.  The fundamental (ω) and second harmonic (2ω) voltages components are 



captured by two synchronized lock-in amplifiers at phase 0° and -90°, respectively. Linear and 
nonlinear magnetotransport are defined as  

𝑅𝑅𝜔𝜔 = 𝑉𝑉𝜔𝜔

𝐼𝐼0
= 𝑅𝑅(0), 𝛿𝛿𝑁𝑁𝑁𝑁 = 2𝑅𝑅2𝜔𝜔

𝑅𝑅𝜔𝜔
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Since linear resistance R(0) (e.g. intrinsic and trivial MR) is even with respect to the magnetic field, 
we extract its magnetic field symmetric component (𝑅𝑅𝜔𝜔 ) to exclude the regular Hall effect 
contribution (due to misalignment of the sample orientation to the plane). In contrast, 𝛿𝛿𝑁𝑁𝑁𝑁 arises 
from spin polarization and orbital magnetization, both of which couple to the magnetic field via 
Zeeman coupling and are odd under field reversal. Therefore, we take the magnetic field 
antisymmetrized 𝛿𝛿𝑁𝑁𝑁𝑁 to isolate other effects.  

Resistivity and carrier density along different crystalline axes 

The resistivity of Te along c-axis (𝜌𝜌𝑧𝑧𝑧𝑧𝜔𝜔 , solid line) and a-axis (𝜌𝜌𝑥𝑥𝑥𝑥𝜔𝜔 , dashed line) measured on device 
D3 at different gate voltages is shown in Extended Data Fig. 1b. When no gate voltage is applied 
or at Vgate = -5 V, the Fermi level lies within the bandgap. At Vgate = -10 V, it shifts into the 
camelback region, and at Vgate = -20 V, it enters the deep valence band. The resistivities exhibit 
similar magnitudes (within a factor of 1.5) and follow similar temperature dependencies, 
regardless of whether the Fermi level lies within the bandgap or inside the valence band. This 
observed similarity in resistivity along different crystalline axes aligns with previous results 
obtained from Hall bar devices35, but contrasts with recent resistivity tensor analyses based on 
‘sunflower’-shaped devices, which reported significant anisotropy36. This discrepancy 
underscores the critical role of sample geometry in resistivity measurements, as variations in the 
electric potential distribution between ‘sunflower’ and Hall bar (L’-bar) configurations lead to 
differing results37 and we leave a closer examination of this effect for future work. 

Extended Data Figs. 1c and 1d display Hall measurements performed on device D2 at gate voltages 
ranging from -10 V to 0 V, along the c-axis and a-axis, respectively. The insets illustrate the sheet 
hole density for both axes, which exhibit similar magnitudes (in the order of 1012 cm-2) and gate 
dependencies. The comparable fundamental characteristics along the helical axis and a-axis justify 
a direct comparison of 𝑅𝑅𝜔𝜔 and 𝛿𝛿𝑁𝑁𝑁𝑁 between these two orientations. 

Nonlinear current dependence 

Based on the above discussion, 𝑅𝑅𝜔𝜔 is expected to remain constant with current, while 𝛿𝛿𝑁𝑁𝑁𝑁 should 
vary linearly. However, observed current dependence measured on D1 (Extended Data Fig. 3) and 
D2 (Extended Data Fig. 4) otherwise, suggesting the presence of higher-order terms. These 
contributions can also be captured using the same measurement scheme. If the3rd- and 4th- order 
terms of R(n) are nonzero, Eq. E1 can be rewritten as: 
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It is clear from above that, R(2) contributes to Vω, and R(3) enters V2ω. Consequently, the 
expressions for linear and nonlinear magnetotransport become 
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Tunable SOC probed by WL(WAL) measurement 

The spin-orbit interaction in Te exhibits high gate tunability39, as demonstrated by WL and WAL 
measurements. As SOC introduces an additional phase shift, which can flip the interference from 
constructive to destructive, leading to a WL to WAL transition. In a typical Hall bar device, a 
transition from WL to WAL is observed as the Fermi level shifts from the valence band edge to 
deeper within the valence band (Extended Data Fig. 5). This transition indicates weak SOC near 
the band edge and stronger SOC in the deeper valence band. 

  



 

Extended Data Fig. 1 | a, illustration of the measurement setup and an optical image of the device. 
(scale bar: 30 μm). b, resistivity along c-axis (solid lines) and a-axis (dashed lines) at different 
gate voltages measured on D3, the inset depicts a simplified band structure and indications of 
Fermi level. c, d, Hall resistance measured on D2 at different gate voltages along c-axis (c) and a-
axis (d), with insets showing the corresponding sheet hole densities. 

  



 

Extended Data Fig. 2 | 𝑅𝑅𝑥𝑥𝑥𝑥𝜔𝜔  of D2 measured under in-plane rotation at different magnetic fields, 
compared to Fig. 2d in the main text. 𝑅𝑅𝑥𝑥𝑥𝑥𝜔𝜔  exhibits a smaller angular shift (gray dashed lines). 

 

  



 

Extended Data Fig. 3 | a, b, e, f,  𝑅𝑅𝑧𝑧𝑧𝑧𝜔𝜔  (a), 𝛿𝛿𝑧𝑧𝑧𝑧𝑁𝑁𝑁𝑁 (b), 𝑅𝑅𝑧𝑧𝑧𝑧𝜔𝜔  (e), and 𝛿𝛿𝑧𝑧𝑧𝑧𝑁𝑁𝑁𝑁 (f) measured under in-plane 
rotation at different current from 4 μA to 20 μA, with an increment of 4 μA. c, d, g, h 𝑅𝑅𝑧𝑧𝑧𝑧𝜔𝜔  (c), 𝛿𝛿𝑧𝑧𝑧𝑧𝑁𝑁𝑁𝑁 
(d), 𝑅𝑅𝑧𝑧𝑧𝑧𝜔𝜔   (g), and 𝛿𝛿𝑧𝑧𝑧𝑧𝑁𝑁𝑁𝑁  (h) versus current under 12 T for a fixed angle. The observed nonlinear 
current dependence can be attributed to high-order terms in Eq. (E4). 

  



 

Extended Data Fig. 4 | a, b, e, f,  𝑅𝑅𝑧𝑧𝑧𝑧𝜔𝜔  (a), 𝛿𝛿𝑧𝑧𝑧𝑧𝑁𝑁𝑁𝑁 (b), 𝑅𝑅𝑧𝑧𝑧𝑧𝜔𝜔  (e), and 𝛿𝛿𝑧𝑧𝑧𝑧𝑁𝑁𝑁𝑁 (f) measured under in-plane 
rotation at different current from 2 μA to 20 μA, with an increment of 2 μA. c, d, g, h 𝑅𝑅𝑧𝑧𝑧𝑧𝜔𝜔  (c), 𝛿𝛿𝑧𝑧𝑧𝑧𝑁𝑁𝑁𝑁 
(d), 𝑅𝑅𝑧𝑧𝑧𝑧𝜔𝜔  (g), and 𝛿𝛿𝑧𝑧𝑧𝑧𝑁𝑁𝑁𝑁 (h) versus current under 16 T for different fixed angles. 

 

  



 

Extended Data Fig. 5 | MR measured on a typical Hall bar Te device (top right), showing a 
transition from WL to WAL as gate voltage decreases. The inset provides a zoomed-in view, where 
a clear WAL feature emerges at Vgate = -50 V. The bottom right panel illustrates a simplified band 
structure diagram, depicting the Fermi level positions at different gate voltages. 

  



 

Extended Data Fig. 6 | a, c Resistivity versus temperature measurements on D1 (a) at Vgate = 0 V 
and D2 (b) at Vgate = 0 V and -6 V, confirming that the Fermi level remains within the valence band 
across all discussed ranges. Hall measurements indicate a similar carrier density between D1 (Vgate 
= 0 V) and D2 (Vgate = -6 V). b, d Linear longitudinal MR, calculated as 

 ∆𝑅𝑅𝑧𝑧𝑧𝑧
𝜔𝜔

𝑅𝑅𝑧𝑧𝑧𝑧𝜔𝜔 (0) = 𝑅𝑅𝑧𝑧𝑧𝑧𝜔𝜔 (𝜇𝜇0𝐻𝐻)−𝑅𝑅𝑧𝑧𝑧𝑧𝜔𝜔 (0)
𝑅𝑅𝑧𝑧𝑧𝑧𝜔𝜔 (0) × 100, measured on D1(b) and D2 (d) under out-of-plane field. The inset 

in (b) provides a zoomed-in view, highlighting the MR lies in the transition region from WL to 
WAL, indicating strong SOC in D1. In contrast, MR measurements on D2 reveal a strong WL 
signature, especially at Vgate = 0 V, indicating weak SOC. This supports that the behavior observed 
in Fig. 2d-f originates from orbital effects rather than spin polarization. 

 

 

 



 

Extended Data Fig. 7 | a-c angular dependence of 𝑅𝑅𝑧𝑧𝑧𝑧𝜔𝜔  (a), 𝛿𝛿𝑧𝑧𝑧𝑧𝑁𝑁𝑁𝑁 (b), and 𝛿𝛿𝑥𝑥𝑥𝑥𝑁𝑁𝑁𝑁 (c) of D2 at Vgate = -6 
V, measured under magnetic fields ranging from 2 T to 16 T in increments of 2 T. At Vgate = -6 V, 
the carrier density of D2 is comparable to that of D1 at Vgate = 0 V, resulting in 𝑅𝑅𝜔𝜔  and 𝛿𝛿𝑁𝑁𝑁𝑁 
exhibiting similar field and angular dependence to those of D1 (Fig. 2a-c), where μ0H ≤ 12 T. 
Notably, at higher field (16 T) in (b), 𝛿𝛿𝑧𝑧𝑧𝑧𝑁𝑁𝑁𝑁 exhibit  two peaks, supporting the coexistence of spin 
polarization and orbital magnetization. Meanwhile, 𝛿𝛿𝑥𝑥𝑥𝑥𝑁𝑁𝑁𝑁  exhibits complex field and angular 
dependencies, resembling Fig. 2c rather than Fig. 2f, highlighting the contrasting behaviors 
between different regimes. d, e normalized data of (b) and (c), respectively. 

  



 

Extended Data Fig. 8 | a, angular dependence of 𝑅𝑅𝑥𝑥𝑥𝑥𝜔𝜔  under different gate voltages. Unlike 𝑅𝑅𝑧𝑧𝑧𝑧𝜔𝜔 , the 
angular shift in 𝑅𝑅𝑥𝑥𝑥𝑥𝜔𝜔  approximately remain fixed at ~10° within this gate voltage range. b, gate 
voltage mapping of 𝛿𝛿𝑥𝑥𝑥𝑥𝑁𝑁𝑁𝑁 for Ia = 20 uA and μ0H = 12 T, illustrating the transition of 𝛿𝛿𝑥𝑥𝑥𝑥𝑁𝑁𝑁𝑁 from weak 
SOC to strong SOC regions, consistently capturing the previously observed features. 

  



 

Extended Data Fig. 9 | a, b angular dependence of 𝑅𝑅𝑧𝑧𝑧𝑧𝜔𝜔  (a) and 𝛿𝛿𝑧𝑧𝑧𝑧𝑁𝑁𝑁𝑁 (b) under extended gate voltage 
range (-2 V to 5 V) measured on D2. The angular shift of 𝑅𝑅𝑧𝑧𝑧𝑧𝜔𝜔  and 𝛿𝛿𝑧𝑧𝑧𝑧𝑁𝑁𝑁𝑁 remains fixed, while the 
amplitude of 𝛿𝛿𝑧𝑧𝑧𝑧𝑁𝑁𝑁𝑁 continues to increase as SOC weakens, highlighting the significance of orbital 
effects. 
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