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A B S T R A C T

Older adults exhibit larger individual differences in walking ability and cognitive function than young adults. 
Characterizing intrinsic brain connectivity differences in older adults across a wide walking performance spec
trum may provide insight into the mechanisms of functional decline in some older adults and resilience in others. 
Thus, the objectives of this study were to: (1) determine whether young adults and high- and low-functioning 
older adults show group differences in brain network segregation, and (2) determine whether network segre
gation is associated with working memory and walking function in these groups. The analysis included 21 young 
adults and 81 older adults. Older adults were further categorized according to their physical function using a 
standardized assessment; 54 older adults had low physical function while 27 were considered high functioning. 
Structural and functional resting state magnetic resonance images were collected using a Siemens Prisma 3T 
scanner. Working memory was assessed with the NIH Toolbox list sorting test. Walking speed was assessed with a 
400 m walk test at participants’ self-selected speed. We found that network segregation in mobility-related 
networks (sensorimotor, vestibular) was higher in older adults with higher physical function compared to 
older adults with lower physical function. There were no group differences in laterality effects on network 
segregation. We found multivariate associations between working memory and walking speed with network 
segregation scores. The interaction of left sensorimotor network segregation and age groups was associated with 
higher working memory function. Higher left sensorimotor, left vestibular, right anterior cingulate cortex, and 
interaction of left anterior cingulate cortex network segregation and age groups were associated with faster 
walking speed. These results are unique and significant because they demonstrate higher network segregation is 
largely related to higher physical function and not age alone.

1. Introduction

In 2015, persons aged 65 years or older represented ~ 9 % of the 
world population; by 2050 this number is expected to increase to ~17 % 
(He et al., 2016). Many adults over the age of 65 have difficulty walking, 
which can decrease their quality of life and result in a variety of com
plications such as increased risk of cardiovascular disease and decreased 

bone health (Inouye et al., 2007; Shafrin et al., 2017). However, some 
older adults (i.e., “super agers” or “master athletes”) maintain their 
function and outperform their age-matched peers (Geard et al., 2017; 
Klinedinst et al., 2023). Characterizing differences in brain function 
across a wide performance spectrum may provide insight into the 
mechanisms of walking decline in some older adults and resilience in 
others.
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Measures of how functional networks in the brain are connected at 
rest can inform us about intrinsic brain characteristics, including the 
capacity for communication within and across networks. Resting state 
functional connectivity is quantified by fluctuations in the BOLD signal 
during rest (i.e., with participants lying in the magnetic resonance (MR) 
scanner without performing a task) (Biswal et al., 1995). By using graph 
theory approaches, we can model the brain as nodes (regions of interest; 
ROIs) and edges (connections identified by correlation of fluctuations in 
the BOLD signal across different brain regions). This approach has 
allowed the identification of networks of nodes that are functionally but 
not necessarily monosynaptically connected.

Neural de-differentiation (or more diffuse brain activity) has been 
observed in task-based functional neuroimaging studies of older adults 
(e.g., greater bilateral prefrontal activation during cognitive tasks) 
(Cabeza, 2002; Park et al., 2004). In healthy young adults, there is a 
balance between within- and between-network connectivity. In typical 
aging, functional brain networks are less connected within-network, but 
more connected between networks, leading to less segregated functional 
networks (Chan et al., 2014; Deery et al., 2023). This example of 
age-related neural dedifferentiation describes decreased functional 
specificity of localized brain regions and broader connectivity 
between-networks (Koen et al., 2020; Li and Lindenberger, 1999). 
Importantly, lower sensorimotor network segregation is associated with 
lower sensorimotor function in older adults (Cassady et al., 2020, 2019). 
Reduced network segregation reflects more overlapping or interacting 
processes in the aging brain, which is potentially less efficient. A better 
understanding of associations between physical and cognitive function 
with age differences in network segregation is important, and may help 
identify therapeutic target(s) for age-related neurological impairment. 
Less segregated networks in Alzheimer’s disease and mild cognitive 
impairment are associated with poorer cognitive function and greater 
tau burden (Ewers et al., 2021; Fu et al., 2022; Iordan et al., 2022; 
Steward et al., 2023). In addition, higher network segregation is pre
dictive of greater intervention-related cognitive gains (Cohen and 
D’Esposito, 2016; Gallen et al., 2016; Gallen and D’Esposito, 2019).

In this study we specifically assessed working memory performance, 
since working memory is a key function driving various cognitive be
haviors (Dang et al., 2014; Engle et al., 1999; Kane et al., 2004). We also 
assessed walking speed; walking speed is associated with overall health, 
independence level, fall risk, cognition, and quality of life in 
community-dwelling adults (Abellan van Kan et al., 2009; Kim et al., 
2016; Middleton et al., 2015). Both working memory and walking speed 
decline in aging (albeit at different speeds and magnitudes). Dorsolat
eral prefrontal cortex is a key area involved in working memory (Barbey 
et al., 2013). In addition, anterior cingulate cortex helps allocate re
sources to relevant tasks and filtering out attention for efficient and 
focused working memory (Lenartowicz and McIntosh, 2005; Seamans 
et al., 2024). Walking performance relies on several areas of the brain 
such as sensorimotor cortex, vestibular areas, and visual and anterior 
cingulate cortex for navigation and error detection (Takakusaki, 2017; 
Wenderoth et al., 2005). In aging, walking requires more prefrontal 
resources (Chatterjee et al., 2019; Hawkins et al., 2018; Hwang et al., 
2024), suggesting compensatory roles. Importantly, these behavioral 
functions are not isolated; for example, working memory can impact 
walking behavior by affecting the ability to plan and execute movement. 
Examining the role of the resting state brain network segregation in 
integrated behavioral functions may provide valuable insights into the 
mechanisms underlying cognitive and motor decline and potentially 
inform interventions to mitigate these effects.

In addition to reduced network segregation with age, the human 
brain also undergoes lateralization changes with aging (Sugiura, 2016). 
Reduced lateralization in functional brain activation has been shown 
during cognitive task performance for older adults. This finding has led 
to the development of the hemispheric asymmetry reduction in older 
adults (HAROLD) model, which proposes that aging is associated with a 
more bilateral distribution of brain activity (Cabeza, 2002). This model 

has also been supported in studies of motor control. Young adults 
generally show higher activation in the sensorimotor cortex contralat
eral to the moving limb. In contrast, there is increased brain activation in 
the hemisphere ipsilateral to the moving limb in older adults, resulting 
in brain activation that is more bilaterally symmetrical and diffuse 
(Bernard and Seidler, 2012; Seidler et al., 2010). Independent compo
nent analysis has demonstrated that resting state functional connectivity 
in the sensorimotor networks has both left and right dominant compo
nents, but lateralization decreases with increasing age (Agcaoglu et al., 
2015). This finding suggests that the age-related changes in lateraliza
tion are not limited to cognitive processing, but rather reflect a broader 
shift towards a more bilateral distribution of brain activity. The factors 
that contribute to age-related changes in lateralization are still not fully 
understood, but it is thought that both genetic and environmental fac
tors play a role (Liu et al., 2009; Yoon et al., 2010). Age-related changes 
in resting state brain network segregation have been speculated to play a 
role in cognitive decline in older adults (Deery et al., 2023), but the role 
of hemisphere-specific network segregation on sensorimotor function 
has not been investigated. Investigating the hemispheric-specific role in 
cognitive and walking function has the potential to identify new neural 
mechanisms underlying mobility variability in older adults.

The objectives of this study were to: (1) determine whether young 
adults and older adults with high and low physical function show group 
differences in resting state brain network segregation, and (2) determine 
whether resting state brain network segregation is associated with 
working memory and walking speed in these groups. Neural de- 
differentiation is associated with age-related decline in cognition 
(Koen et al., 2020; Li and Lindenberger, 1999; Li et al., 2001). We 
recruited young adults and older adults who were categorized into high 
and low function according to their performance on a standardized 
battery of physical tasks. We hypothesized that: (1a) older adults would 
demonstrate lower sensorimotor network segregation compared to 
younger adults, and that older adults with lower physical function 
would demonstrate greater differences than older adults with higher 
physical function when compared to healthy younger adults, (1b) older 
adults with lower physical function would demonstrate less lateralized 
functional connectivity compared to older adults with higher physical 
function and younger adults, and (2) higher brain network segregation 
would be associated with faster walking speed and better working 
memory performance in older adults. Specifically, we hypothesized that 
higher brain network segregation in the motor-related networks 
(sensorimotor, vestibular, and visual) will be associated with faster 
walking speed, and that the higher dorsolateral prefrontal cortex and 
anterior cingulate cortex network segregation will be associated to 
working memory performance.

2. Material and methods

2.1. Participants

This study enrolled community-dwelling volunteers with 23 young 
adults, and 87 older adults. Participants recruited for this study were 
part of a larger NIH U01 study at the University of Florida 
(U01AG061389). Briefly, all participants were required: to be able to 
walk 400 m within 15 min without sitting or assistance; be English 
speaking; to have no significant medical event within the past six 
months; to have no major neurological injuries (e.g., stroke, vestibular 
dysfunction, traumatic brain injury, dementia); and to meet MR imaging 
eligibility (Full exclusion and inclusion criteria outlined: Clark et al., 
2019). Older adults were further categorized into their physical function 
level, based on their Short Physical Performance Battery score. The 
battery included a short distance usual walk speed test, balance test and 
chair stand speed. Each test was graded according to normative values 
and tallied for a total score that ranged from 0–12 with 12 serving as the 
highest physical function (Guralnik et al., 1994). The study screened in 
those who scored > 10 for the high functioning (n = 27) group and those 
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who scored ≤ 10 for the low functioning (n = 54) group. Since these 
‘low’ and ‘high’ functioning designations were based on their physical 
function, there was no significant difference in working memory be
tween the two older adult groups (t(56) = − 1.52, p = 0.133). The sample 
size for the older adults with lower physical function was the largest 
because it was the target sample of interest; in most studies of human 
aging, the older adult cohort is relatively fit due to inclusion/exclusion 
criteria (Brach et al., 2023). Therefore, we especially wanted to study 
the variability in resting state brain mechanisms in older adults with 
lower physical function. As mentioned earlier, this is part of a larger 
study (Clark et al., 2019) which aims to investigate longitudinal changes 
in brain-behavior relationships, especially in the lower functioning older 
adults. The study design of the larger study led to an uneven group size. 
In addition, the sample size between older adults with lower function 
and higher function came out unequal because our data collection was 
disrupted due to the COVID-19 pandemic. Group characteristics for 
participants who were included in the final analysis of this study are 
presented in Table 1. Participants who identified as left-handed were 
excluded from the analyses to investigate laterality (2 younger adults, 2 
older adults with higher physical function, and 4 older adults with lower 
physical function were excluded; participants included in final analysis 
included 21 younger adults, 27 older adults with higher physical func
tion, and 54 older adults with lower physical function). Participants’ 
written informed consent was obtained prior to the study, which was 
approved by the Institutional Review Board of the University of Florida, 
Gainesville, FL, USA (Protocol# 201802227).

2.2. Brain imaging

Brain images were collected using a Siemens Prisma 3T scanner 
(Siemens Healthcare, Erlangen, Germany) with a 64-channel head coil. 
Structural T1-weighted images were collected using a magnetization- 
prepared rapid gradient echo (MPRAGE) sequence with the following 
parameters: repetition time (TR) = 2000 ms, echo time (TE) = 2.99 ms, 
flip angle = 8◦, FOV = 167 mm × 256 mm × 256 mm, voxel 
size = 0.80 mm3. Whole-brain resting state functional MR images were 
collected using a multiband, interleaved echo planar imaging (EPI- 
BOLD) sequence with the following parameters: TR = 1500 ms, TE= 30 
ms, flip angle= 70◦, FOV= 240 × 240 × 165 mm, matrix=64 × 64, voxel 
size= 2.5 mm3, 66 axial slices, slice thickness = 2.5 mm, acceleration 
factor = 3, duration = 8 min.

2.3. Neuroimaging preprocessing

Neuroimaging data analyses were performed using the Statistical 
Parametric Mapping 12 software (SPM12; www.fil.ion.ucl.ac.uk/spm) 
and the CONN toolbox version 19 (https://www.nitrc.org/proj 
ects/conn) (Whitfield-Gabrieli and Nieto-Castanon, 2012) in MATLAB 
2020b (Mathworks, Natick, MA, USA). Preprocessing steps included: 
slice-time correction, realignment and unwarping, movement 

correction, bias correction, co-registration of functional and anatomical 
images and normalization to a Montreal Neurological Institute 152 
(MNI152) template using Advanced Normalization Tools (ANTs, 
https://github.com/ANTsX/ANTs) (Avants et al., 2011), then spatial 
smoothing (Gaussian smoothing kernel 4 mm full width at half 
maximum). We used the Artifact Detection Tool (ART, www.nitrc. 
org/projects/artifact_detect/) to detect and correct for movement arti
facts. Within a run, a volume was considered an outlier and covaried out 
if the participant’s composite movement was equal to or greater than 0.5 
mm and a global mean intensity threshold at 5 standard deviations of the 
mean image intensity (Mean number of outliers per group: Young adults 
= 0.38 ± 1.36; Older adults with high physical function= 0.19 ± 0.96; 
Older adults with lower physical function = 0.52 ± 1.71; ANOVA 
showed no significant differences: F(2,99) = 0.46, p = 0.633).

Additional denoising was done with CONN; we estimated con
founding noise arising from non-neuronal sources using the anatomical 
component-based noise correction (aCompCor) tool (Behzadi et al., 
2007). This method extracts signals from eroded white matter and CSF 
masks applied to unsmoothed resting state fMRI data. These signals 
underwent principal components analysis, with the top five components 
for white matter and CSF signals reflecting noise and physiological 
artifact (e.g., pulsation, respiration). Covariates modeling physiological 
noise sources were included as nuisance regressors during the denoising 
steps. Denoising was performed by regressing out the confounding ef
fects of the following nuisance regressors: six head motion parameters 
(translations and rotations used during realignment) and their six 
first-order temporal derivatives, five principal components modeling 
physiological noise from within the white matter, five principal com
ponents modeling physiological noise from within the CSF, and single 
volume “scrubbing” regressors modeling outlier volumes that exceeded 
based on movement and global brain signal thresholds. Following 
denoising, we filtered the data using a temporal band-pass filter of 
0.008–0.090 Hz to examine the slower frequency band of interest and to 
exclude higher frequency sources of noise (Biswal et al., 1995; Dam
oiseaux, 2017).

To improve cerebellar normalization to MNI space, the cerebellum 
from each anatomical image was segmented from the brain using the 
CERES (CEREbellum Segmentation) (Romero et al., 2017) pipeline. 
They were then normalized to the spatially unbiased infra-tentorial 
template (SUIT) cerebellar template (Diedrichsen, 2006).The SUIT 
cerebellar template shows greater anatomical detail than the whole 
brain MNI152 template, allowing for more accurate cerebellar normal
ization (Diedrichsen, 2006). We applied the CERES-generated cerebellar 
masks to the co-registered functional images, allowing extraction of the 
cerebellum. The extracted fMRI cerebellums were then normalized to 
the SUIT cerebellar template using the warp fields generated for the T1 
scans.

2.4. Connectivity analysis

We used the CONN (v19b) toolbox (Whitfield-Gabrieli and 
Nieto-Castanon, 2012) for all connectivity analyses. For identification of 
our networks, we used a seed-to-voxel analysis with seed regions of 
interest (ROIs). We derived the seed ROI coordinates from previous 
findings that identified brain regions to be associated with mobility (Left 
and right sensorimotor (Zhao et al., 2019), left and right vestibular (zu 
Eulenburg et al., 2012), default mode (Schmidt et al., 2017), and visual 
(Shen et al., 2019)). The left and right dorsolateral and left and right 
anterior cingulate cortex seed ROIs were identified using custom ROIs 
for this study. The seed regions were identified using the Neurosynth 
meta-analysis with “working memory” search terms for the dorsolateral 
prefrontal cortex ROI and “anterior cingulate” for the anterior cingulate 
cortex ROI (Yarkoni et al., 2011); both seed regions were anatomically 
constrained to the gray matter of dorsolateral prefrontal cortex and 
anterior cingulate cortex, respectively. We had a priori hypotheses 
regarding the dorsolateral prefrontal cortex and the anterior cingulate 

Table 1 
Participant characteristics. HF = Older adults with high physical function. LF =
Older adults with low physical function. There was one young adult and one 
older adult in the higher function group with missing gait speed. For working 
memory, 3 young adults, 4 older adults with high physical function, and 19 older 
adults with lower physical function were excluded due to missing data. SPPB =
Short Physical Performance Battery (Max score = 12; Higher score = higher 
physical function). Working memory was assessed with the list sorting test on 
the NIH Toolbox (Max score = 26; Higher score = higher working memory).

Young (n = 21) Old HF (n = 27) Old LF (n = 54)

Age 23.1 ± 3.4 73.5 ± 5.0 76.0 ± 7.2
Sex (M:F) 9:12 14:13 17:37
SPPB – 11.1 ± 0.8 7.8 ± 1.2
Walking speed (m/s) 1.2 ± 0.2 1.1 ± 0.2 0.9 ± 0.2
Working memory 20.1 ± 2.7 16.7 ± 1.7 15.5 ± 3.3
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cortex in our larger study that the dorsolateral prefrontal and anterior 
cingulate regions will be associated with age-related functional decline 
(Clark et al., 2019). Therefore, we wanted to identify brain networks 
associated with each of these regions of interest and also preserve the 
typical brain networks used in other whole brain network analyses (e.g., 
Gordon et al., 2016; Power et al., 2011). To define our network nodes, 
we performed the seed-to-voxel analyses on 110 subjects from the 
Washington University 120 dataset (data were obtained from the 
OpenfMRI database, accession number: ds00243). We used an inde
pendent, open-source dataset to define our functional network nodes to 
increase generalizability for future studies, and to avoid circular 
reasoning (Kriegeskorte et al., 2009) and bias by the specific charac
teristics of the dataset used for the results of the manuscript.

First, seed-to-voxel analysis was performed with the MNI normalized 
whole brain images as the target (with the cerebellum masked). Then, a 
second seed-to-voxel analysis was performed with the SUIT normalized 
cerebellum images as the target. For each seed-to-voxel analysis per
formed, we implemented a second level analysis using the default sta
tistical thresholds for cluster-based inferences (Worsley et al., 1996). 
The resulting T map images with a-values over 12, and local maxima 
separated by 8 mm were identified. A 4 mm radius sphere was created 
around each cluster. We combined the cerebellar coordinates with the 
whole brain coordinates for each respective seed. In total, we identified 
279 nodes in 10 networks for analysis in this study: (1) Left sensorimotor 
network (26 nodes), (2) right sensorimotor network (22 nodes), (3) left 
vestibular network (26 nodes), (4) right vestibular network (26 nodes), 
(5) left dorsolateral prefrontal cortex network (21 nodes), (6) right 
dorsolateral prefrontal cortex network (22 nodes), (7) left anterior 
cingulate cortex network (27 nodes), (8) right anterior cingulate cortex 
network (30 nodes), (9) default mode network (48 nodes), and (10) 
visual network (31 nodes), (Fig. 1A; MNI coordinates for the ROIs are in 
Supplementary Table 1).

We applied a node-to-node first-level functional connectivity anal
ysis to the current dataset using the 10 networks described above. 
Resting state time series within each node were extracted from the un
smoothed functional images and the mean time series was computed for 
each node (averaged across voxels). Then, we computed a correlation 
analysis for all nodes, producing a 279 × 279 cross-correlation matrix 
for each participant. The correlation coefficients (i.e., graph edges) were 
converted into z-values using Fisher’s r-to-z transformation. Negative- 
weighted edges were set to zero in each participant’s correlation ma
trix to avoid potential misinterpretation of negative edge weights (Chan 
et al., 2014).

We quantified network segregation for each network as the differ
ence of the mean within-network connectivity and the mean between- 
network connectivity divided by the mean within-network connectiv
ity (Eq. (1), Fig. 1B). 

Network segregation =
Zw − Zb

Zw
(Eq. 1) 

Within-network connectivity (Zw) is the mean of Fisher z-trans
formed correlations between nodes within each network and between- 
network connectivity (Zb) is the mean of Fisher z-transformed correla
tions between nodes of one network to all nodes in all other networks 
(Chan et al., 2014).

2.5. Walking function

To measure walking speed (m/s), we conducted a 400 mwalk test 
where participants were asked to walk around a pair of traffic cones set 
20 meters apart. We instructed participants to complete 10 laps (each 
lap being 40 meters long) by walking at their preferred pace. Partici
pants were allowed to stop for up to 1 min if they were feeling fatigued.

Fig. 1. Network segregation analysis. A. Network connectivity nodes included 
in the study. In total, 279 nodes in 10 networks were identified for analysis. 
BrainNet Viewer (https://www.nitrc.org/projects/bnv/; Xie et al., 2013) was 
used to illustrate the nodes. B. For each network, mean within-network con
nectivity was calculated as the mean z-values between the nodes within the 
network (i.e., Left sensorimotor within-network connectivity = mean z-value of 
all nodes in the network to all other nodes in the left sensorimotor network). 
Between-network connectivity was calculated as the mean of z-values between 
each node in the network and all the nodes in other networks (i.e., Left 
sensorimotor between-network connectivity = mean z-value between all nodes 
in left sensorimotor network and all other nodes in the brain). Network 
segregation score for each network was quantified as the difference of the mean 
within-network connectivity and the mean between-network connectivity 
divided by the mean within-network connectivity.
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2.6. Cognitive function

We used a subset of tests from the NIH toolbox cognitive battery to 
assess cognitive function as part of the larger study. The list sorting test 
assessed working memory capacity and recall, presenting the partici
pants with a series of visual and auditory stimuli using an iPad (Apple 
Inc., Cupertino, CA) (Tulsky et al., 2014). Participants were asked to 
recall and sequence these stimuli in a specific order. Each visual stimulus 
was displayed on the iPad screen for two seconds followed by an audible 
stimulus of the word (e.g., an image of a horse was shown on the screen 
while a computerized voice read the word “horse”). We instructed 
participants to remember each stimulus, arrange them mentally by size, 
and then verbally list them in that order. We used the raw score for the 
working memory test, which ranges from 0 to 26. These scores were 
chosen over age-corrected standard scores to assess the participant’s 
absolute performance in each test, as opposed to their performance 
relative to the NIH Toolbox normative sample. This approach to inter
preting computed and raw scores aligns with the NIH Toolbox Scoring 
and Interpretation guide’s recommendations.

2.7. Statistical analysis

Group differences in segregation scores, between-network, and 
within-network connectivity were assessed through one-way ANCOVA, 
with biological sex as a covariate. Post-hoc pairwise comparisons were 
conducted with Bonferroni-Holm corrections.

The relationship between functional measures and network segre
gation scores was assessed with a canonical correlation analysis. Ca
nonical correlation analysis is a multivariate analytical approach that 
measures the relationship between two datasets. We identified a 
“Function variable dataset” with walking speed, working memory, age/ 
physical function group, and biological sex, and a “Network segregation 
dataset” with network segregation scores from the 10 identified net
works. Canonical correlation analysis was conducted twice: first with 
the age groups (Older adult = − 1 | Younger adult = 1), and second with 
the physical function groups, with the younger adults omitted from the 
analysis (Lower function = − 1 | Higher function = 1). We chose to do 
canonical correlation analysis twice with a maximum of two groups in 
our categorical variable to maintain simplicity and transparency in the 
inference. All variables were standardized before canonical correlation 
analysis to make the canonical coefficients comparable across the vari
ables. Canonical correlations range from 0 to 1, 0 being no relationship 
and 1 being a perfect relationship between the two datasets.

As a post-hoc analysis, we tested two multiple linear regression 
models with age groups: 1. Walking speed and 2. Working memory, both 
with biological sex covaried out. Similarly, for functional groups we 
tested multiple linear regression models with older adults only. Due to 
missing data, one young adult and one older adult with higher physical 
function were excluded from the linear regression with walking speed, 
and 3 young adults, 4 older adults with high physical function, and 19 
older adults with lower physical function were excluded from the re
gressions with working memory scores. Univariate linear regressions 
between the dependent variable and segregation scores and age groups 
for each network determined the variables and network-age group in
teractions that were considered in the step-wise multiple regression 
model. The univariate regression-based predictor selection mimics 
methods like sure independent screening (SIS) (Fan and Lv, 2008). 
Instead of using the magnitude of estimated coefficients, we consider 
p-values, which account for the standard error. Stepwise forward se
lection introduces bias due to the need for a pre-specified order of in
clusion, while backward selection is problematic because of the limited 
sample size of our study. Therefore, we use backward selection only 
after screening a subset of variables with component-wise regressions.

All statistical significance was established with an alpha level = 0.05. 
We used RStudio (R version 4.3.0) for analysis. For canonical correlation 
analysis results, we applied the “CCA” package (González et al., 2008) 

which includes a regularization approach to handle missing data.

3. Results

3.1. Segregation scores

There were significant group effects for the sensorimotor network (F 
(2, 98) = 6.54, p = 0.002), vestibular network (F(2, 98)= 19.78, p <
0.001), dorsolateral prefrontal cortex network (F(2,98)=3.45, p =
0.036), and anterior cingulate cortex network (F(2,98)=3.87, p = 0.024) 
(Fig. 2, Table 2).

Sensorimotor network segregation was lower in older adults with 
lower physical function compared to younger adults and older adults 
with higher physical function, but sensorimotor network segregation 
was not significantly different between young adults and older adults 
with higher physical function. The left sensorimotor network was less 
segregated compared to the right (F(1, 98) = 55.67, p < 0.001); there 
were no Group x Laterality interaction effects (F(2,98) = 0.84, p =
0.437). Vestibular network segregation was higher in young adults 
compared to both older adult groups with higher and lower physical 
function. Older adults with higher physical function had higher vestib
ular network segregation compared to older adults with lower physical 
function. Left vestibular network was less segregated compared to the 
right (F(1,98) = 141.86, p < 0.001), but there were no Group x Laterality 
interaction effects (F(2,98) = 0.60, p = 0.553).

Dorsolateral prefrontal cortex network segregation was higher in 
young adults compared to both older adult groups with higher and lower 
physical function, but not different between older adult sub-groups. In 
contrast to the sensorimotor and vestibular networks, dorsolateral pre
frontal cortex network was more segregated in the left compared to the 
right (F(1,98) = 15.79, p < 0.001). Anterior cingulate cortex network 
segregation was higher in young adults compared to older adults with 
lower physical function, but not significantly different compared to 
older adults with higher physical function and between older adult sub- 
groups. Anterior cingulate cortex network was less segregated in the left 
compared to the right (F(1,98) = 31.28, p < 0.001). Group x Laterality 
interaction effects were not statistically significant for these two net
works (Dorsolateral prefrontal cortex: F(2,98) = 0.69, p = 0.504; 
Anterior cingulate cortex: F(2,98) = 0.02, p = 0.983)

We included the visual network in the analyses because of its role 
during walking navigation, and we included the default mode network 
as a ‘control’ network (we did not expect that default mode network 
segregation would be associated with working memory performance or 
walking speed). Since these two networks have medial seed regions, 
they do not contain laterality outcomes; thus, we present them sepa
rately in Fig. 3. The visual network was more segregated in younger 
adults compared to older adults with high physical function, but not 
significantly different compared to older adults with low physical 
function and between older adult sub-groups (Group effect: F(2,98)=
3.39, p = 0.038). Default mode network connectivity was not signifi
cantly different between groups (F(2,98)=1.03, p = 0.361).

3.2. Within- and between-network connectivity

To parse out the root of segregation score differences, we also 
examined group and laterality differences in within-network connec
tivity and between-network connectivity, both of which make up the 
network segregation scores (Figs. 3C-F and 4, Tables 3 and 4). In general, 
within-network connectivity was higher in younger adults compared to 
older adults. Sensorimotor within-network connectivity was lower in 
older adults with lower physical function compared to younger adults 
and older adults with higher physical function, but was not significantly 
different between younger adults and older adults with higher physical 
function (Group effect: F(2,98) = 10.24, p < 0.001). Left and right 
sensorimotor within-network connectivity was not significantly 
different (F(1,98) = 2.50, p = 0.117). Vestibular and anterior cingulate 
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cortex within-network connectivity was significantly different between 
all groups (Vestibular: F(2,98) = 22.01, p < 0.001; Anterior cingulate 
cortex: F(2, 98) = 19.72, p < 0.001); within-network connectivity was 
higher in younger adults compared to both older adult groups, and 
within-network connectivity was higher in older adults with higher 
physical function compared to older adults with lower physical function. 
For both the vestibular and anterior cingulate cortex networks, within- 
network connectivity was higher on the right side compared to the left 
side (Laterality effect, Vestibular: F(1,98)=57.70, p < 0.001; Laterality 
effect, Anterior cingulate cortex: F(1,98) = 37.99, p < 0.001). Dorso
lateral prefrontal cortex within-network connectivity was higher in 
young adults compared to both older adult groups, but dorsolateral 
prefrontal cortex network within-network connectivity was not signifi
cantly different between older adults with higher and lower physical 

function (Group effect: F(2, 98) = 17.26, p < 0.001). Dorsolateral pre
frontal cortex within-network connectivity was higher on the left side 
compared to the right side (F(1,98) = 28.47, p < 0.001).

Group x Laterality interaction effect on within-network connectivity 
was significant for the vestibular network, but not for sensorimotor, 
dorsolateral prefrontal cortex, and anterior cingulate cortex networks 
(Interaction effect, Vestibular: F(2,98) = 9.39, p < 0.001; Interaction 
effect, Sensorimotor: F(2,98) = 0.22, p = 0.807; Interaction effect, 
Dorsolateral prefrontal cortex: F(2,98) = 0.31, p = 0.733; Interaction 
effect, Anterior cingulate cortex: F(2,98) = 1.00, p = 0.373). Post-hoc 
tests on within-group differences in left and right vestibular within- 
network connectivity showed that all groups had lower connectivity in 
the left network compared to the right (Supplementary Table 2; all p <
0.050); Left and right within-network connectivity differences were 
largest in the younger adult group for the vestibular network (Young 
adults group estimate = − 0.050; Older adults with higher physical 
function group estimate = − 0.014; Older adults with lower physical 
function group estimate= − 0.017).

Default mode within-network connectivity was different between all 
groups (F(2, 98) = 11.34, p < 0.001; Fig. 3C-D); younger adults had 
higher within-network connectivity compared to both older adult 
groups, and older adults with higher physical function had higher 
within-network connectivity compared to older adults with lower 
physical function. Visual within-network connectivity was higher in 
younger adults compared to both older adults groups, but group dif
ferences between older adults with higher and lower physical function 
was not statistically significant (Group effect: F(2,98) = 11.27, p <
0.001).

In general, between-network connectivity was higher in younger 
adults compared to older adults. Sensorimotor, vestibular, dorsolateral 
prefrontal cortex, and anterior cingulate cortex between-network con
nectivity were lower in older adults with lower physical function 
compared to young adults, but between-network connectivity was not 
significantly different between younger adults and older adults with 
higher physical function, and between older adult sub-groups (Group 
effect, Sensorimotor: F(2,98) = 7.40, p = 0.001; Group effect, Vestib
ular: F(2,98) = 8.30, p < 0.001; Group effect, Dorsolateral prefrontal 
cortex: F(2,98) = 6.15, p = 0.003; Group effect, Anterior cingulate 
cortex: F(2,98) = 6.37, p = 0.002). Between-network segregation was 

Fig. 2. Network segregation score for left and right sensorimotor (A), vestibular (B), dorsolateral prefrontal cortex, (C) and anterior cingulate cortex (D) networks. 
Brackets indicate statistically significant comparisons (p < 0.05) between groups from post-hoc tests. Color scheme for network nodes follow Fig. 1. DLPFC =
Dorsolateral Prefrontal Cortex. ACC = Anterior Cingulate Cortex. HF = High physical function. LF = Low physical function. * = p-value 0.010 ≤ p < 0.050. ** = p- 
value 0.001 ≤ p < 0.009. ***= p < 0.001.

Table 2 
Statistical output for post-hoc pairwise group comparisons in network segrega
tion scores. P-values are adjusted for multiple comparisons using the Holm- 
Bonferroni method. Y = Young adults. OA HF = Older adults with high phys
ical function. OA LF = Older adults with low physical function. DLPFC =
Dorsolateral Prefrontal Cortex. ACC = Anterior Cingulate Cortex. DMN =
Default Mode Network.

Network Contrast Estimate SE t-ratio p-value

Sensorimotor Y - OA HF 0.025 0.042 0.579 0.564
Y - OA LF 0.118 0.038 3.144 0.007
OA LF - OA- HF 0.094 0.035 2.686 0.017

Vestibular Y - OA HF 0.118 0.030 3.912 < 0.001
Y - OA LF 0.168 0.027 6.289 < 0.001
OA LF - OA- HF 0.050 0.025 2.020 0.046

DLPFC Y - OA HF 0.118 0.048 2.439 0.049
Y - OA LF 0.098 0.043 2.285 0.049
OA LF - OA- HF − 0.020 0.040 − 0.506 0.614

ACC Y - OA HF 0.081 0.044 1.845 0.136
Y - OA LF 0.109 0.039 2.779 0.020
OA LF - OA- HF 0.027 0.036 0.751 0.454

DMN Y - OA HF 0.027 0.051 0.526 0.811
Y - OA LF 0.062 0.045 1.369 0.523
OA LF - OA- HF 0.035 0.042 0.836 0.811

Visual Y - OA HF 0.103 0.042 2.449 0.048
Y - OA LF 0.083 0.037 2.227 0.057
OA LF - OA- HF − 0.020 0.035 − 0.580 0.563
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higher in the left compared to the right for sensorimotor, vestibular, 
dorsolateral prefrontal cortex, and anterior cingulate cortex networks 
(Sensorimotor: F(1,98) = 268.77, p < 0.001; Vestibular = F(1,98) =
275.88, p < 0.001; Dorsolateral prefrontal cortex: F(1,98) = 74.48, p <
0.001; Anterior cingulate cortex: F(1,98) = 14.59, p < 0.001). Group x 
Laterality interaction effect on between-network connectivity was sig
nificant for the sensorimotor, vestibular, and dorsolateral prefrontal 
cortex networks, but not for the anterior cingulate cortex network 
(Interaction effect, Sensorimotor: F(2,98) = 5.40, p = 0.006; Interaction 
effect, Vestibular: F(2,98) = 6.61, p = 0.002; Interaction effect, Dorso
lateral prefrontal cortex: F(2,98) = 4.25, p = 0.017; Interaction effect, 
Anterior cingulate cortex: F(2,98) = 1.00, p = 0.373). Post-hoc tests on 

between-network connectivity showed that all groups had higher 
between-network connectivity in the left network compared to the right 
(Supplementary Table 3; all p’s ≦ 0.001); Left and right between- 
network connectivity differences were largest in the younger adult 
group (Sensorimotor: Young adults group estimate = 0.026; Older adults 
with higher physical function group estimate = 0.024; Older adults with 
lower physical function group estimate = 0.016; Vestibular: Younger 
adults group estimate = 0.017; Older adults with higher physical func
tion group estimate = 0.016; Older adults with lower physical function 
estimate = 0.010; Dorsolateral prefrontal cortex: Younger adults group 
estimate = 0.002; Older adults with higher physical function group es
timate = 0.002; Older adults with lower physical function group esti
mate = 0.001).

Default mode and visual between-network connectivity was lower in 
older adults with lower physical function compared to younger adults, 
but not significantly different between younger adults and older adults 
with higher physical function, and between older adult sub-groups 
(Default mode: F(2,98)= 7.87, p = 0.001; Visual: F(2,98) = 6.50, p =
0.002; Fig. 3E-F).

3.3. Association with walking speed and working memory performance: 
age groups

Canonical correlation analysis with age groups showed that only the 
first canonical correlation was statistically significant (r = 0.627, p <
0.001) as shown in Table 5. Fig. 5 presents the standardized canonical 
coefficients for the first dimension. In the Function variable dataset the 
canonical correlation was most strongly influenced by age groups (Coef. 
= − 0.761), walking speed (Coef. = − 0.567), and working memory 
(Coef. = 0.193). For network segregation, the canonical correlation was 
most strongly influenced by right vestibular (Coef. = − 0.434), left 
sensorimotor (Coef. = − 0.384), left vestibular (Coef. = − 0.277), default 
mode network (Coef. = 0.270), and right dorsolateral prefrontal cortex 
(Coef. = − 0.199). This observation demonstrates that younger adults 
with faster gait speed had higher network segregation in right vestib
ular, left sensorimotor, left vestibular, and right dorsolateral prefrontal 
cortex networks, and lower network segregation in the default mode 
network.

We tested two multiple linear regression models with age groups: (1) 
Walking speed and (2) working memory, both with biological sex co
varied out. For walking speed, univariate linear regressions determined 
the left and right sensorimotor, left and right vestibular, left and right 
dorsolateral prefrontal cortex, left and right anterior cingulate cortex, 
default mode, and visual network segregation, and left anterior cingu
late cortex network segregation x Age group interaction to be considered 
in the step-wise multiple regression model (Supplementary figure 1). 
Multiple linear regression with walking speed was statistically signifi
cant (F(6,93) = 8.71, p < 0.001, r2 = 360). Left sensorimotor (p = 0.003) 
and left anterior cingulate cortex network segregation (p = 0.030), and 
interaction of left anterior cingulate cortex network segregation x Age 
group (p = 0.002) were significant predictors. Age group (p = 0.286), 
left vestibular (p = 0.148), and right anterior cingulate cortex network 
segregation (p = 0.114) were not significant predictors, but contributed 
to the model (Table 6).

For working memory, univariate linear regressions determined left 
and right sensorimotor, left and right vestibular, left and right dorso
lateral prefrontal cortex, left and right anterior cingulate cortex, and 
right anterior cingulate cortex x age group interaction to be considered 
in the step-wise multiple regression model (Supplementary figure 2). 
Multiple linear regression with working memory was statistically sig
nificant (F(3,72) = 11.70, p < 0.001, r2 = 0.328); however only left 
sensorimotor network segregation (p = 0.428), age group (p = 0.272) 
and the interaction of left sensorimotor network segregation x age group 
(p = 0.045) were contributors to the model (i.e., the model was a uni
variate model) (Table 7).

Fig. 3. Network segregation (A-B), within-network connectivity (C-D) and 
between-network connectivity (E-F) for default mode (A, C, E), visual (B, D, F) 
networks. Brackets indicate statistically significant comparisons (p < 0.05) 
between groups from post-hoc tests. Color scheme for network nodes follow 
Fig. 1. DLPFC = Dorsolateral Prefrontal Cortex. ACC = Anterior Cingulate 
Cortex. HF = High physical function. LF = Low physical function. * = p-value 
0.010 ≤ p < 0.050. ** = p-value 0.001 ≤ p < 0.009. ***= p < 0.001.
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3.4. Association with walking speed and working memory: physical 
function groups

Canonical correlation analysis with physical function groups showed 
that the first dimension was significant (r = 0.627, p = 0.002). Dimen
sion reduction showed that the second, third and fourth dimensions did 
not significantly explain shared variance (Table 8). Fig. 6 presents the 
standardized canonical coefficients for the first dimension. For the first 
canonical dimension, canonical correlation was most strongly influ
enced by walking speed (Coef. = − 0.698), working memory perfor
mance (Coef. = 0.451), and physical function groups (Coef. = − 0.396) 
from the function dataset. From the network segregation dataset, left 
sensorimotor (Coef. = − 0.619), default mode (Coef. = − 0.413), left 
dorsolateral prefrontal cortex (Coef. = 0.381), visual networks (Coef. =
0.347) most strongly influenced the canonical correlation. This obser
vation demonstrates that older adults in the lower physical function 
group with slower walking speed and higher working memory had lower 
network segregation in the left sensorimotor and default mode networks 
and higher segregation in the left dorsolateral prefrontal cortex and 
visual networks.

For walking speed with older adults only, univariate linear 

regressions determined the left and right sensorimotor, left and right 
vestibular, left and right dorsolateral prefrontal cortex, left and right 
anterior cingulate cortex, default mode, and visual network segregation 
to be considered in the step-wise multiple regression model (Supple
mentary figure 3). Post-hoc multiple linear regression analysis with 
walking function was statistically significant (F(5,74) = 9.56, p < 0.001, 
r2 = 0.392). Right sensorimotor (p = 0.009), left anterior cingulate 
cortex (p = 0.012), and right anterior cingulate cortex network segre
gation (p = 0.036), and functional group (p < 0.001) were significant 
predictors. Right vestibular network segregation (p = 0.108) was not a 
significant predictor but it contributed to the model. The correlation 
coefficient estimate for the left anterior cingulate cortex was negative, 
while all other correlation coefficients were positive (Table 9). For 
working memory, none of the network segregation scores were signifi
cantly associated in the univariate analysis, so no multiple linear 
regression model was tested (Supplementary figure 4).

4. Discussion

We found that network segregation in sensorimotor, vestibular, 
dorsolateral prefrontal cortex, anterior cingulate cortex, and visual 

Fig. 4. Within-network connectivity (A-D) and between-network connectivity (E-H) for sensorimotor (A, E), vestibular (B, F), dorsolateral prefrontal cortex (C, G), 
and anterior cingulate cortex (D, H) networks. Brackets indicate statistically significant comparisons (p < 0.05) between groups from post-hoc tests. DLPFC =
Dorsolateral Prefrontal Cortex. ACC = Anterior Cingulate Cortex. HF = High physical function. LF = Low physical function. * = p-value 0.010 ≤ p < 0.050. ** = p- 
value 0.001 ≤ p < 0.009.
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networks were higher in younger adults than older adults, but only 
sensorimotor, and vestibular network segregation was different between 
older adults with high and low physical function (Aim 1a). We observed 
laterality differences in segregation scores for some networks, but no 
group by laterality interactions (Aim 1b). We observed multivariate 
associations between working memory and walking speed with network 

segregation scores (Aim 2). For young and old age groups, canonical 
correlation analysis demonstrated that right vestibular, left sensori
motor, left vestibular, default mode network, and right dorsolateral 
prefrontal network segregation largely influenced the variability in 
walking speed observed. Working memory was associated with inter
action of left sensorimotor cortex network segregation and age groups. 
For older adults with high and low physical function, canonical corre
lation analysis demonstrated that higher walking speed were largely 
influenced by higher segregation in the left sensorimotor and default 
mode networks, and lower segregation in the left dorsolateral prefrontal 
cortex, and visual networks.

4.1. Network segregation in mobility-related networks is different between 
older adults with high and low physical function

We observed that older adults with higher physical function had 
significantly higher segregation in the sensorimotor and vestibular 
networks than their peers with lower physical function (as determined 
with the short physical performance battery score). Importantly, while 
aging studies have consistently demonstrated that older adults have 
decreased network segregation compared to younger adults (Cassady 
et al., 2019; Chan et al., 2014; Damoiseaux, 2017; King et al., 2018), we 
observed that sensorimotor, anterior cingulate, and default mode 
network segregation was not significantly different between younger 
adults and older adults with high physical function (and dorsolateral 
prefrontal cortex with borderline significance between younger adults 
and older adults with higher physical function: p = 0.049, Table 2). Our 
results demonstrated that older adults with higher physical function had 
fewer differences with younger adults compared to older adults with 
lower physical function and that mobility-related networks (sensori
motor and vestibular) were more segregated in higher functioning older 
adults compared to the lower functioning older adults. Older adults with 
higher physical function may have more resilience to decrease in 
network segregation due results from previous studies suggesting that 
they have better cardiovascular function and cerebrovascular health 
(Smith et al., 2021). Or, similar network segregation in older adults to 
younger adults may help intrinsic brain activity (e.g., by more efficient 
communication of the brain, leading to better functioning 
motor-cognitive integration) leading to higher physical function. 
Whether the network segregation differences between the younger 
adults and older adult sub-groups reflect cause or effect of physical 
function differences is unknown and outside the scope of this study. 
However, network segregation appears to be a key correlate of physical 
function in older adults.

In line with our hypothesis and previous studies (Cassady et al., 
2020, 2019), sensorimotor network segregation was higher in younger 
adults compared to older adults. When we examined several different 
networks, networks that are important for mobility function such as 
sensorimotor, vestibular, and visual networks demonstrated group dif
ferences in network segregation. However, networks that are typically 
involved in more cognitive functions- the dorsolateral prefrontal cortex, 
anterior cingulate cortex- also demonstrated differences between 
groups, albeit to a lesser extent. Our results suggest that mobility-related 
networks (i.e., sensorimotor and vestibular networks which showed 
strong differences between younger adults and older adults with lower 
physical function) may be more susceptible to age-related changes in 
network segregation compared to cognitive function networks. This is in 
line with behavioral studies that showed that mobility declines precede 
cognitive decline in older adults and neurodegenerative disease such as 
Alzheimer’s and mild cognitive impairment (Buracchio et al., 2010; 
Merchant et al., 2021; Skillbäck et al., 2022). Moreover, recent studies 
on age differences in brain structure reveal the largest age effects in the 
pre- and post-central gyri, the thalamus, striatum, and cerebellum 
(Hupfeld et al., 2022; Taubert et al., 2020). These findings support our 
results of age-related declines in resting state network segregation, 
especially in the mobility-related networks.

Table 3 
Statistical output for post-hoc pairwise group comparisons in within-network 
connectivity scores. P-values are adjusted for multiple comparisons using the 
Holm-Bonferroni method. Y = Young adults. OA HF = Older adults with high 
physical function. OA-LF = Older adults with low physical function. DLPFC =
Dorsolateral Prefrontal Cortex. ACC = Anterior Cingulate Cortex. DMN =
Default Mode Network.

Network Contrast Estimate SE t-ratio p-value

Sensorimotor Y - OA HF 0.033 0.036 0.932 0.354
Y - OA LF 0.128 0.032 4.036 < 0.001
OA LF - OA- HF 0.095 0.030 3.218 0.004

Vestibular Y - OA HF 0.080 0.020 4.039 < 0.001
Y - OA LF 0.116 0.018 6.632 < 0.001
OA LF - OA- HF 0.036 0.016 2.236 0.028

DLPFC Y - OA HF 0.064 0.014 4.632 < 0.001
Y - OA LF 0.070 0.012 5.718 < 0.001
OA LF - OA- HF 0.006 0.011 0.527 0.600

ACC Y - OA HF 0.021 0.007 3.108 0.005
Y - OA LF 0.037 0.006 6.200 < 0.001
OA LF - OA- HF 0.016 0.006 2.903 0.005

DMN Y - OA HF 0.035 0.014 2.406 0.036
Y - OA LF 0.060 0.013 4.711 < 0.001
OA LF - OA- HF 0.026 0.012 2.152 0.036

Visual Y - OA HF 0.094 0.023 4.131 < 0.001
Y - OA LF 0.089 0.020 4.412 < 0.001
OA LF - OA- HF − 0.005 0.019 − 0.272 0.786

Table 4 
Statistical output for post-hoc pairwise group comparisons in between-network 
connectivity scores. P-values are adjusted for multiple comparisons using the 
Holm-Bonferroni method. Y = Young adults. OA-HF = Older adults with high 
physical function. OA-LF = Older adults with low physical function. DLPFC =
Dorsolateral Prefrontal Cortex. ACC = Anterior Cingulate Cortex. DMN =
Default Mode Network.

Network Contrast Estimate SE t-ratio p-value

Sensorimotor Y - OA HF 0.012 0.008 1.488 0.140
Y - OA LF 0.026 0.007 3.697 0.001
OA LF - OA- HF 0.014 0.006 2.175 0.064

Vestibular Y - OA HF 0.013 0.008 1.649 0.102
Y - OA LF 0.026 0.007 3.936 0.001
OA LF - OA- HF 0.014 0.006 2.237 0.055

DLPFC Y - OA HF 0.008 0.006 1.440 0.153
Y - OA LF 0.017 0.005 3.393 0.003
OA LF - OA- HF 0.009 0.005 1.907 0.119

ACC Y - OA HF 0.008 0.005 1.485 0.141
Y - OA LF 0.015 0.004 3.461 0.002
OA LF - OA- HF 0.008 0.004 1.924 0.114

DMN Y - OA HF 0.011 0.006 1.996 0.097
Y - OA LF 0.020 0.005 3.922 0.001
OA LF - OA- HF 0.008 0.005 1.800 0.097

Visual Y - OA HF 0.010 0.006 1.588 0.132
Y - OA LF 0.019 0.006 3.518 0.002
OA LF - OA- HF 0.010 0.005 1.861 0.132

Table 5 
Statistical output for canonical correlation analysis with age groups. Dimension 
reduction results from Wilks lambda are presented.

Dimension Corr. Wilks F df1 df2 p

1–4 0.627 0.408 2.24 40 335.54 < 0.001
2–4 0.425 0.672 1.41 27 260.57 0.093
3–4 0.376 0.821 1.17 16 180.00 0.297
4–4 0.211 0.955 0.61 7 91.00 0.749
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We expected within-network connectivity to be higher and between- 
network connectivity to be lower in older adults compared to younger 
adults. However, in general, younger adults had higher connectivity in 
both within-network and between-network connectivity. This suggests 
that the lower network segregation scores in older adults are driven 
more by within- than between-network connectivity differences. Inter
estingly, between-network connectivity was not significantly different 

Fig. 5. Canonical correlation analysis for age groups. A. Canonical correlation analysis (CCA) was conducted to assess the relationship between the ‘function dataset’, 
which included walking speed, cognitive function, age group, and biological sex, and the ‘network segregation dataset’, which included network segregation scores 
from the 10 identified networks. First dimension showed significant association of variance between the two datasets. B. Standardized correlation coefficient for the 
first dimension. White bars = Coefficients for the Function dataset; Black bars = Coefficients for the Network segregation dataset. C. Canonical variates for the first 
dimension. Canonical variates are values of the canonical variables which is computed by multiplying the normalized variables by the canonical coefficients. L = Left; 
R = Right; SM = Sensorimotor; OP2 = Vestibular; DLPFC = Dorsolateral prefrontal cortex; ACC = Anterior cingulate cortex; DMN = Default mode network.

Table 6 
Statistical output for step-wise multiple regression with walking speed 
(controlled for biological sex) in young and older adults (F(6, 93) = 8.71, p <
0.001, r2 = 0.36). Analysis included 20 young adults and 80 older adults (1 
young adult and 1 older adult with higher physical function excluded due to 
missing walking speed data). Y = Young adults. ACC = Anterior Cingulate 
Cortex.

Estimate Standardized SE t- 
value

p-value

Intercept − 0.28 – 0.06 − 4.89 <

0.001
Left Sensorimotor 0.40 0.34 0.11 3.75 <

0.001
Left Vestibular 0.20 0.14 0.14 1.46 0.148
Left ACC − 0.29 − 0.27 0.13 − 2.21 0.030
Right ACC 0.20 0.19 0.12 1.59 0.114
Age group (Y) − 0.08 − 0.17 0.07 − 1.08 0.283
Left ACC x Age group 

(Y)
0.78 0.50 0.24 3.19 0.002

Table 7 
Statistical output for step-wise multiple regression with working memory 
(controlled for biological sex) in young and older adults (F(3, 72) = 11.70, p <
0.001, r2 = 0.33). Analysis included 18 young adults and 58 older adults (3 
young adults and 23 older adults excluded due to missing working memory 
scores). Y = Young adults.

Estimate Standardized SE t- 
value

p- 
value

Intercept − 0.17 – 1.05 − 0.17 0.869
Left Sensorimotor − 1.69 − 0.08 2.12 − 0.80 0.428
Age group (Y) − 5.00 − 0.66 4.52 − 1.11 0.272
Left Sensorimotor x Age 

group (Y)
16.46 1.24 8.06 2.04 0.045
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in any of the networks between young adults and older adults with 
higher physical function. This may suggest that between-network con
nectivity is less susceptible to age-related brain connectivity differences.

4.2. Laterality in network segregation is similar between younger and 
older adults

We showed group x laterality interactions in both the within- 
network connectivity and between network connectivity, but not in 
network segregation. Left and right connectivity differences were largest 
in the younger adults (as shown by the post-hoc estimates) for vestibular 
network within-network connectivity, and sensorimotor, vestibular, and 
dorsolateral prefrontal cortex between-network connectivity. The right 
vestibular network (which is the dominant side network) had stronger 
within-network connectivity compared to the left side. This is in line 
with expectation and previous work in task-based functional MRI 
showing reduced lateralization in older adults. Reduced lateralization of 
the cortex has been shown in seminal work in cognitive processing, 
resulting in the hemispheric asymmetry reduction in older adults 
(HAROLD) conceptual model (Cabeza, 2002; Cabeza et al., 2002). The 
lack of significant group x laterality interactions in the segregation 
scores may suggest that the between-network connectivity may be 
compensating for the changes in within-network connectivity.

It may also be that decreased lateralization with increased age is 
primarily evident in task-based functional MRI data rather than resting 
state network segregation scores. The differences in age-related later
ality outcomes between task-based and resting state functional MRI 
highlight the complexity of brain laterality. Task-based fMRI demon
strates strong lateralization effects due to specific cognitive demands 
brain during different tasks (Cabeza, 2002; Cabeza et al., 2002). In 
contrast, resting state fMRI characterizes the brain’s intrinsic activity 
without any external stimuli, leading to diffuse communication patterns 
in the brain. Furthermore, networks are defined by nodes that are 
functionally connected and often span both hemispheres, leading to 
increased complexity in interpreting ‘laterality’ of functional networks. 
Our study showing lack of interaction effects in age groups and later
alization suggests that the variability in laterality observed in resting 
state data may differ significantly from task-induced activation patterns.

4.3. Resting state network segregation may have differential roles in 
function

In general, for both of our canonical correlation models, majority of 
the network segregation was positively associated with walking speed. 
This is in support of previous brain-behavior relationships that showed 
sensorimotor network segregation positively correlated with general 
sensorimotor function in both younger and older adults (Cassady et al., 
2020, 2019), and higher network segregation is predictive of greater 
intervention-related cognitive gains (Cohen and D’Esposito, 2016; 
Gallen et al., 2016; Gallen and D’Esposito, 2019).

However, our canonical correlation analysis demonstrated that not 
all resting state networks are positively correlated to walking speed and 
working memory. We expected network segregation to be positively 
correlated to behavioral function as studies have consistently demon
strated lower network segregation in older adults compared to younger 

Table 8 
Statistical output for canonical correlation analysis with physical function 
groups (older adult participants only). Dimension reduction results from Wilks 
lambda are presented.

Dimension Corr. Wilks F df1 df2 p

1–4 0.627 0.374 1.90 40 255.91 0.002
2–4 0.472 0.615 1.34 27 199.24 0.135
3–4 0.425 0.792 1.07 16 138.00 0.391
4–4 0.185 0.966 0.35 7 70.00 0.926

Fig. 6. Canonical correlation analysis for physical function groups. Canonical 
correlation analysis (CCA) was conducted to assess the relationship between the 
‘function dataset’, which included walking speed, cognitive function, physical 
function group, and biological sex, and the ‘network segregation dataset’, 
which included network segregation scores from the 10 identified networks. 
First dimension showed significant association of variance between the two 
datasets. A. Standardized correlation coefficient for the first and second di
mensions. White bars = Coefficients for the Function dataset; Black bars =
Coefficients for the Network segregation dataset. B. Canonical variates for the 
first dimension. Canonical variates are values of the canonical variables which 
is computed by multiplying the normalized variables by the canonical co
efficients. L = Left; R = Right; SM = Sensorimotor; OP2 = Vestibular; DLPFC =
Dorsolateral prefrontal cortex; ACC = Anterior cingulate cortex; DMN = Default 
mode network.
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adults, suggestive of decreased efficiency of functional networks (Deery 
et al., 2023). Studies of cognitive aging have supported the scaffolding 
theory of aging and cognition (STAC), which suggests that the brain 
adapts and reorganizes to recruit additional neural resources to preserve 
cognitive function, which is a result of functional and structural chal
lenges that occur with aging (Park and Reuter-Lorenz, 2009; Reuter-
Lorenz and Park, 2014). The networks with the opposite canonical 
correlation coefficients compared to working memory and walking 
speed in our model support that STAC may also apply to our 
multi-function model including walking and cognition.

In our multiple regression model with walking speed, there was a 
significant age group x left anterior cingulate cortex network segrega
tion interaction, in which the correlation coefficient was positive in 
younger adults, while the correlation coefficient was negative in older 
adults (Also shown in Supplementary figure 1 G). This is in contrast to 
our initial hypothesis and provides novel insight that not all lower 
segregation is related to decreased function. Specifically, the left ante
rior cingulate cortex network segregation may be playing a compensa
tory role in older adults with regards to walking function. The left 
anterior cingulate cortex plays crucial roles in cognition, emotional 
processing, and error monitoring (Gwin et al., 2011; Peterson and Ferris, 
2019; Sipp et al., 2013). The negative correlation of left anterior 
cingulate cortex may demonstrate that older adults recruit additional 
neural resources for the left anterior cingulate cortex network for diffuse 
connectivity to compensate for the lower network segregation in left 
sensorimotor, left vestibular, and right anterior cingulate cortex net
works underlying slower walking function.

We expected networks with seed regions of primarily cognitive roles 
(i.e., dorsolateral prefrontal cortex and anterior cingulate cortex) to be 
associated with working memory. However, our results indicate that the 
interaction between sensorimotor network segregation and age groups is 
associated to working memory in young and older adults with varying 
physical function. In older adults, higher left sensorimotor network 
segregation was associated with lower working memory, while in 
younger adults, higher left sensorimotor network segregation was 
associated with higher working memory. This may suggest that in 
younger adults, higher left sensorimotor network segregation indicates a 
‘healthier’ brain with higher working memory. However, in older adults, 
higher left sensorimotor network was associated to lower working 
memory, which may suggest that the left sensorimotor network segre
gation is compensating for other functions in the brain such as functional 
activation in the dorsolateral prefrontal cortex.

Within our older adult group, we found an unexpected dissociation 
between walking speed and working memory, as identified in our sec
ond canonical correlation model. Specifically, individuals who had 
slower walking speed had higher working memory, and these in
dividuals exhibited lower network segregation in the left sensorimotor 
and default mode networks, and higher segregation in the left dorso
lateral prefrontal, visual, and left anterior cingulate cortex networks. 
These findings challenge prior findings demonstrating that walking 

speed and cognitive function are closely linked (Lim et al., 2024; 
Verghese et al., 2002, 2007), and suggest a more complex interplay 
between motor and cognitive networks. The default mode network is 
important for internally directed cognitive processes, and has been 
implicated in age-related cognitive decline (Buckner et al., 2008). Prior 
research suggests that network segregation is crucial for efficient 
cognitive and motor function, but excessive segregation may hinder 
flexible network interactions necessary for task integration (Cohen and 
D’Esposito, 2016). Our findings of lower segregation in the default mode 
network could indicate greater connectivity between task-specific net
works, which may facilitate cognitive resilience in individuals with 
higher working memory despite slower gait. In contrast, lower segre
gation in the left sensorimotor network and increased segregation in the 
visual, left anterior cingulate cortex, and left dorsolateral prefrontal 
cortex networks highlights the distinct functional processing in these 
networks. Left sensorimotor cortex is important for movement function, 
which may explain the lower segregation in the slower walking older 
adults. Higher segregation in the visual network is suggested to help in 
reducing the interference of different types of visual information, lead
ing to more accurate perception and interpretation (Varangis et al., 
2019; Wang et al., 2021). Anterior cingulate and prefrontal areas are key 
networks for executive function and cognitive control (Barbey et al., 
2013; Bush et al., 2000; Friedman and Robbins, 2022), and higher 
segregation in these networks may facilitate better working memory. 
The dorsolateral prefrontal cortex in particular, is implicated in working 
memory and goal-directed behavior (Barbey et al., 2013; Friedman and 
Robbins, 2022), and its higher segregation might reflect a preserved or 
even enhanced ability to maintain focused cognitive engagement despite 
age-related motor declines. These findings underscore the importance of 
considering both cognitive and motor network dynamics when studying 
aging-related changes in brain function. While walking speed and 
working memory are often expected to decline together (Lim et al., 
2024; Verghese et al., 2002, 2007), our results suggest that compensa
tory neural mechanisms may allow certain individuals to maintain 
cognitive function even in the presence of slowed mobility.

Our results demonstrating association with network segregation and 
behavior may suggest potential interventions to modulate resting state 
network segregation to increase functional performance in walking or 
working memory. Recently, transcranial direct stimulation has been 
shown to increase resting state network segregation (Iordan et al., 
2022). Clinical trials to modulate resting state network segregation have 
mainly been with cognitively impaired populations (i.e., Alzheimer’s 
disease and related dementias and mild cognitive impairment) as this 
population has reduced network segregation (Ewers et al., 2021; Fu 
et al., 2022; Iordan et al., 2022; Steward et al., 2023). These outcomes 
are often short-lived (Aksu et al., 2024) and results on the efficacy of 
transcranial direct current stimulation are mixed in the literature (Duffy 
et al., 2024). However, our results demonstrating association with 
walking speed and resting state network segregation serves as an initial 
step to suggest that network segregation may serve as a potential ther
apeutic target to maintain or increase walking speed in typical older 
adults. The potential causal role of network segregation for use in 
therapeutic interventions remains speculative within our current 
cross-sectional study. Nevertheless, future longitudinal studies looking 
at network segregation and behavior associations in aging remains 
crucial for further understanding the potential implication of network 
segregation for therapeutic outcomes to maintaining and enhancing 
physical function in older adults.

4.4. Limitations

As mentioned in the methods section, this study was part of a larger 
NIH U01 study at the University of Florida (U01AG061389) (Clark et al., 
2019). Due to how the larger study was designed, the brain scans and 
behavioral tests took place on different days (Average number of days 
between brain scans and behavioral tests: 81.5 ± 94.8 days). In addition, 

Table 9 
Statistical output for step-wise multiple regression with walking speed 
(controlled for biological sex) in older adults with high and low physical func
tion (younger adults were excluded from this analysis) (F(5, 74) = 9.56, p <
0.001, r2 = 0.39). Analysis included 26 older adults with high physical function 
and 54 older adults with low physical function (1 older adult with higher 
physical function excluded due to missing walking speed data). HF = Older 
adults with high physical function. ACC = Anterior Cingulate Cortex.

Estimate Standardized SE t-value p-value

Intercept − 0.32 – 0.07 − 4.74 < 0.001
Right Sensorimotor 0.25 0.26 0.09 2.67 0.009
Right Vestibular 0.21 0.16 0.13 1.63 0.108
Left ACC − 0.32 − 0.31 0.12 − 2.58 0.012
Right ACC 0.26 0.26 0.12 2.14 0.036
Functional group (HF) 0.14 0.38 0.03 3.98 < 0.001
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data collection for the study was interrupted due to the COVID-19 
pandemic. This may be a limitation in our current study because there 
is a variability in the time between the brain scan collection date and the 
behavioral tests collection date. However, it should be noted that resting 
state brain network segregation is generally stable overtime / reliable as 
long as sufficient, clean data is used (Pierce et al., 2024), even despite 
aging declines (Rosenberg et al., 2020). In addition, as outlined in our 
protocol paper (Clark et al., 2019), we had strict exclusion/inclusion 
criteria, and all participants were required to be free from any major 
neurological injuries. Therefore, we expect little to no variability in 
resting state brain network segregation due to the time between the 
brain scan collection date and the behavioral tests.

Another limitation of the study is that the older adult cohort who 
participated in this study represents a relatively high functioning pop
ulation. Even those in the low functioning group- who scored 10 or less 
on the short performance battery score- were required to be able to walk 
400 m without sitting or assistance of a person or a walking device as 
part of the inclusion criteria. Typical walking speeds for community- 
dwelling older adults range from 0.9–1.30 m/s (Bohannon et al., 
1996; Krishnamurthy and Verghese, 2006), and range from 0.23–0.50 
m/s in older adults in hospital or rehabilitation settings (Friedman et al., 
1988; Purser et al., 2005). The overall higher physical function of our 
older adults may limit the generalizability of our findings to a broader 
population. However, our mean gait speed is in the range of older adults 
living in a community setting, and the group differences between high 
and low functioning groups that we observed in this study emphasize the 
potential implications of physical health on resting state brain connec
tivity (even within community-dwelling adults). A challenge of inter
preting studies in aging is the wide variability in function of older adults. 
To facilitate interpretation of results, we included a table on participant 
characteristics. Our study offers a valuable initial insight into network 
segregation in aging. Future research with more diverse samples, 
including older adults with lower physical function, remains crucial to 
fully understand the scope and implications of our findings. Readers 
should take caution in generalizing our findings to a broader population 
for these reasons.

4.5. Conclusion

Resting state brain network segregation is emerging as a metric that 
is sensitive to age, mobility, and cognitive function, and is predictive of 
cognitive gains from various interventions (Cohen and D’Esposito, 2016; 
Gallen et al., 2016; Gallen and D’Esposito, 2019). A greater under
standing of this metric and its behavioral correlates may help identify 
biomarkers related to function. In this study, we demonstrated age and 
physical function group differences in network segregation and later
ality in network segregation, and we identified a multivariate 
brain-behavior model that showed differential roles of network segre
gation specific to function. This multivariate model is novel and sig
nificant because we show that predominantly higher network 
segregation is associated with higher walking speed and working 
memory. These findings highlight the importance of resting state brain 
network segregation to walking and working memory function in older 
and younger adults.
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