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Accretion of “young”
Phanerozoic subcontinental
lithospheric mantle triggered
by back-arc extension—the case
of the Ivrea-Verbano Zone

Abimbola C. Ogunyele¥?3, Alessio Sanfilippo®?*, Vincent J. M. Salters*, Mattia Bonazzi? &
Alberto Zanetti?

The subcontinental lithospheric mantle (SCLM) beneath Phanerozoic regions is mostly constituted by
fertile lherzolites, which sharply contrast with cratonic mantle made of highly-depleted peridotites.
The question of whether this chemical difference results from lower degrees of melting associated
with the formation of Phanerozoic SCLM or from the refertilization of ancient depleted SCLM

remains a subject of debate. Additionally, the timing and geodynamic environment of accretion

of the fertile SCLM in many Phanerozoic regions are poorly constrained. We here document new
geochemical and Nd-Hf isotopic data for orogenic Iherzolite massifs from the Ivrea-Verbano Zone
(IVZ), Southern Alps. Even though a few Proterozoic Re depletion ages are locally preserved in these
mantle bodies, our data reveal that the IVZ lherzolitic massifs were “recently” accreted to the SCLM
in the Upper Devonian (ca. 370 Ma) during Pangea amalgamation, with a petrochemical evolution
characterized by low-degree (~ 5-12%) depletion and nearly contemporaneous pervasive to focused
melt migration. The lithospheric accretion putatively took place through asthenospheric upwelling
triggered by Variscan intra-continental extension in a back-arc setting related to the subduction of the
Rheic Ocean. We thus conclude that the fertile sections of Phanerozoic SCLM can be accreted during
“recent” events of back-arc continental extension, even where Os isotopes preserve memories of
melting events in much older times.

Keywords Subcontinental Lithospheric Mantle, Paleozoic mantle accretion, Ivrea-Verbano Zone, Orogenic
lherzolites, Phanerozoic regions, Back-arc extension

The subcontinental lithospheric mantle (SCLM) beneath Phanerozoic (off-craton) terrains is made largely of
peridotites having fertile compositions, contrary to cratonic areas where the lithosphere is dominantly formed by
highly-depleted peridotites, more buoyant than the rest of the mantle and stable for billions of years'. This ancient
history of depletion is revealed by the significantly higher than DM 7*Hf/*”’Hf and **Nd/'**Nd compositions
of mantle xenoliths from basalts and kimberlites in Precambrian terrains and Archean cratons® (Fig. 1), which
are often associated with unradiogenic '*¥’Os/!%0s preserving old Re depletion ages>*. Such highly-depleted
Nd-Hf isotope compositions suggest high time-integrated Sm/Nd and Lu/Hf ratios, evidence for ancient melt-
ing events. Still, extremely variable Nd-Hf isotopes characterize these cratonic peridotites, suggesting that the
long-term preservation of depleted signatures can be overprinted by metasomatic episodes’. Highly-depleted
Nd-Hf isotopic signatures, typical of cratonic areas, are nearly absent in subcontinental Phanerozoic lherzolite
massifs which, consistently, are more fertile (i.e., lower Mg#, higher Al,O;, CaO, and Na,0) than the Archean
peridotites®. Nonetheless, these lherzolitic massifs locally show Proterozoic to Archean Re depletion ages, sug-
gesting that records of ancient melting episodes may be ubiquitously preserved in the upper mantle*®”. Hence,
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Figure 1. Present-day Nd-Hf diagram showing depletion signatures preserved in IVZ lherzolites and
pyroxenites compared to (1) Cratonic peridotites; (2) Mid-Ocean Ridge (abyssal) peridotites; (3) Alpine
ophiolites; and (4) Lherz orogenic peridotites. DM—Depleted Mantle'?, CHUR—Chondritic Uniform
Reservoir'*. Plotted literature data are from the compilation of Ref °.

whether the fertile character of the Phanerozoic mantle reflects secular decreases in the average degree of melting
associated with the formation of continental mantle®® or refertilization of ancient depleted SCLM portions'*-'? is
still strongly debated®~”. Moreover, the timing and environment of accretion of the SCLM in many Phanerozoic
regions are open questions.

We here show that coupled Nd-Hf isotopes on residual to melt-reacted peridotites and associated pyroxenites
from the Ivrea-Verbano Zone (IVZ) lherzolitic mantle massifs place fundamental constraints on the depletion
signatures, timing, mechanism and geodynamic environment of accretion of Phanerozoic SCLM. Despite a few
Re depletion ages extending up to 1.6 Ga’, we show that the IVZ fertile mantle lithosphere was accreted in the
Paleozoic at ca. 370 Ma, during a process of intra-continental extension in a back-arc setting where low-degree
(~5-12%) melting, pervasive metasomatism and pyroxenites segregation occurred almost synchronously. Rather
than being a piece of cratonic mantle reworked during more recent tectonic cycles, we here document that the
fertile SCLM beneath many Phanerozoic regions can be produced in “recent” times.

Subcontinental Lithospheric Mantle in the Ivrea-Verbano Zone

The Ivrea-Verbano Zone (IVZ) is the westernmost sector of the Southern Alps and represents a continuously
exposed section of lower to intermediate crust'. The IVZ consists of (i) a Variscan poly-metamorphic amphi-
bolite- to granulite-facies volcano-sedimentary sequence representing the crystalline basement of the Adri-
atic Plate'®; (ii) the Mafic Complex, an igneous complex formed by mantle-derived melts of upper carbonifer-
ous-lower permian age (314-282 Ma)'”!%; and (iii) several lens-like peridotite bodies, which mostly have a
mantle origin and differ in composition, degree of depletion and metasomatic overprint!®-2,

Samples were selected from the largest spinel-facies lherzolite bodies, i.e., the Balmuccia, Baldissero and Pre-
mosello massifs, located in the central and southern sectors of IVZ (see Supplementary Fig. S1 in Supplementary
Information). The Balmuccia and Baldissero massifs comprise mainly fresh spinel Iherzolites (with ~ 10-15 vol.
% clinopyroxene) and subordinate harzburgites and replacive dunites which, in Balmuccia, are cut by several
generations of websterites, Cr-diopside and Al-augite pyroxenites?**-2¢ (Supplementary Figs. $2-S3). The poorly-
known Premosello massif consists of clinopyroxene-poor (~ 5 vol. % cpx) spinel lherzolite and minor replacive
dunites also cut by Cr-diopside and Al-diopside pyroxenites?” (Supplementary Fig. $4). Previous geochemical
data indicate that most IVZ lherzolites underwent variable extent of melt extraction and melt migration”%.
Available Re depletion ages (Typ) are predominantly Paleozoic with peak ages around 350-500 Ma, although a
few Proterozoic depletion ages (up to 1.6 Ga) are locally preserved”*. Consistently, Sm~Nd pseudo-isochron
obtained from clinopyroxene separates of Baldissero peridotite furnished 378 + 48 Ma®. Considering samples
from both Baldissero and Balmuccia, Sm-Nd isotopes on clinopyroxene separates yield a pseudo-isochron at
390 Ma®.
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The timing and mechanisms of emplacement of the IVZ mantle peridotites at lower crustal levels is still a
matter of debate. Field and structural relationships suggest that some of the mantle peridotite bodies (e.g., the
Balmuccia peridotite) were emplaced at crustal levels at the end of the Variscan orogeny®. Alternative hypotheses
involve emplacement at crustal levels at the onset of the Mesozoic extensional regime, or tectonic addition to
accretionary wedges of Paleozoic subduction zones?. Independent of the timing of crustal exhumation, recent
gravimetric and seismic data converge to indicate that high-density rocks occur very close to the surface near the
Insubric Line***!, thus supporting the possibility that some of the mantle peridotite bodies (e.g., the Balmuccia
peridotite) may be a direct expression of the underlying SCLM.

New sample collection and analytical results

In this contribution, fresh and representative samples of spinel lherzolites were collected from the Balmuccia,
Baldissero and Premosello massifs for mineral chemistry and Nd-Hf isotope systematics. Samples of the first
generation of Cr-diopside pyroxenites cross-cutting the Balmuccia peridotite were also collected and investigated.
Where possible, the lherzolite samples were collected far away (at least 50 cm) from other typologies of
pyroxenites and gabbroic intrusives, although the pyroxenite trails along the tectonitic fabric in Premosello
peridotite hampered the collection of samples far from Cr-diopside veins. Balmuccia and Baldissero peridotites
show protogranular to weakly foliated textures (Supplementary Figs. S2-S3), whereas Premosello peridotite has a
porphyroclastic texture defined by large, kinked crystals of olivine, orthopyroxene and clinopyroxene embedded
within relatively finer grained crystals of similar minerals and spinel (Supplementary Fig. $4). Accessory amounts
of Ti-rich amphibole and sulphides occur in all the three peridotite bodies.

Mineral compositions distinguish the three peridotite bodies, with olivine, clinopyroxene (cpx) and orthopy-
roxene (opx) from the Premosello peridotite having the most refractory characters and highest Mg# (see Sup-
plementary Table S1). Low Al,O; and Na,O in cpx and high Cr# in spinel also characterize the Premosello
peridotite compared to those from Balmuccia and Baldissero (Fig. 2a). In term of trace elements (Supplementary
Table S2), cpx from Premosello peridotite show the lowest M-HREE and Hf contents, with REE patterns char-
acterized by gradual decrease in chondrite-normalized concentrations from Lu to Sm, and nearly flat patterns
from Nd to La [(Ce/Yb)yx=0.03-0.12]. On the other hand, Balmuccia and Baldissero peridotites cpx REE patterns
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Figure 2. Plots of (a) Na,O (wt.%) versus Al,O; (wt.%) in clinopyroxenes, and (b-d) CI-chondrite normalized
REE-Hf patterns of clinopyroxenes from the studied IVZ peridotite and pyroxenite samples. pd—peridotite,
SSZ—suprasubduction zone. CI-chondrite composition from Ref *2.
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are more variable, ranging from samples having gradual decrease from Lu to La and marked LREE depletion
[(Ce/Yb)x=0.02] to samples only slightly LREE-depleted [(Ce/Yb)y=0.4]. Cpx from the Balmuccia pyroxenites
show REE patterns similar to cpx of the least depleted host peridotite, having slight depletions in LREE [(Ce/
Yb)y=0.4-0.7] and distinct negative Hf anomaly. Notably, the pyroxenite cpx has enrichments in MREE with
respect to HREE [(Sm/Yb)=0.9-1.4], a feature not seen in the peridotites (Fig. 2b-d).

The present-day Nd-Hf isotopic compositions of cpx further confirm the difference between the three
peridotite bodies (Supplementary Table S3). Balmuccia and Baldissero peridotites cpx display large variations
in *Nd/'**Nd and '7*Hf/'”’Hf and plot along the mantle Nd-Hf isotope array (Fig. 1). On close inspection,
the strongly LREE-depleted Balmuccia and Baldissero peridotites cpx show radiogenic '**Nd/"*Nd composi-
tions, whereas the Balmuccia sample having high LREE has '**Nd/'**Nd lower than Depleted Mantle (DM)
composition’®. Premosello peridotite cpx, instead, exhibits wider range in Nd-Hf isotope ratios, with Nd ranging
from DM-like values towards highly radiogenic "*Nd/'*'Nd (up to 0.514181), and coupled with highly radio-
genic Hf isotope compositions (**Hf/"””Hf from 0.284139 to 0.284859) (Fig. 1). The three Premosello peridotite
samples plot well above the mantle Nd-Hf isotope array, having Hf isotopes more radiogenic than most of the
orogenic peridotites, and approaching the compositions of some abyssal peridotites®**. Clinopyroxenes from
the Balmuccia pyroxenites show Nd-Hf isotope ratios of 0.512982-0.513038 and 0.283284-0.283381, similar
to the Balmuccia peridotite with high LREE contents and isotopically less depleted compared to the other peri-
dotites (Fig. 1).

Taken as a whole, the samples from the three mantle massifs preserve well-defined correlations between
present-day Nd-Hf isotope ratios and parent-daughter ratios, which are aligned along errorchrons different
from those of the Alpine ophiolites (see discussion in Refs **-**). Considering the 20 errors in '*’Sm/**Nd and
176Lu/177Hf particularly large for some of the Premosello peridotites, the regression of all our samples return
errorchrons of 370 Ma, with an uncertainty of + 20 Ma. These values are exceptionally consistent for both
Sm-Nd and Lu-Hf systematics (Fig. 3). This age is also consistent with Sm-Nd pseudo-isochrons (378 + 48 Ma,
390 Ma)?*? and peak Paleozoic Re depletion ages (350-500 Ma)”*® previously reported for the Balmuccia and
Baldissero lherzolites, and will be later discussed as the timing of the isotopic resetting for both Nd-Hf isotope
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0.5150 0.290
, (b) .
0.5145 | i .,
= i ~ 0288 ¢ Y
o - a r ,/
% 0.5140 + e [ e
Z [ < 0.286 +
3 0.5135 | = I
) r =
- - 0.284 +
0.5130 + L
0.5125 0.282
0.0 0.4 0.8 1.2 0.0 .
147Sm/144Nd (Cpx) 178 u/177Hf (Cpx)
Ivrea-Verbano Zone Alpine-Appenine ophiolites
O Premosello peridotite ¢ Lanzo N, Lanzo C, Ext. Liguria & Platta (1)
© Balmuccia peridotite @ Int. Liguria, Civrari & Tuscany (2)
<& Balmuccia pyroxenite O Lanzo S, Erro Tobbia & Corsica (3)
@ Baldissero peridotite @ Lanzo N & Lanzo S (4)

Figure 3. (a) Sm/Nd and (b) Lu/Hf errorchrons of IVZ lherzolites and pyroxenites (370 +20 Ma) compared
to errorchrons of Alpine-Apennine ophiolites from (1) Lanzo North, Lanzo Central, External Liguria and
Platta®>=%; (2) Internal Liguria, Civrari and Tuscany®-*}; (3) Lanzo South, Erro-Tobbio and Corsica******; and
(4) Lanzo North and Lanzo South®#, *Nd/"*Nd and "7*H{/'Hf error bars are smaller than symbols.
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Figure 4. (a) Chondrite-normalized REE-Hf patterns of clinopyroxenes (cpx) from the most refractory IVZ
lherzolites compared to cpx from DM residues after variable degrees of fractional melting; (b) Nd-Hf isotopic
evolution of DM residues (bulk rock) after 5, 10 and 11% of partial melting at 370 Ma (values plotted are
present day isotope ratios estimated as initial isotope ratios at 370 Ma plus radiogenic ingrowth after 370 Ma).
Melting in the garnet + spinel facies and spinel only facies conditions are denoted by unbroken and broken black
lines, respectively. The present day isotopic evolution paths of DM residues (F=5, 11%) after interaction with
MORB-type melt at 370 Ma are indicated by blue lines; (c-d) REE-HIf patterns of cpx from DM residues (F=5,
11%) after variable degrees of interaction with MORB-type melt (between 1 and 100% re-equilibration, in 10%
increments) compared to cpx from refertilized peridotites of this study. Details of the modeling can be found in
the methods section and Supplementary Tables S4-S5.

Discussion

Isotopic response to Paleozoic mantle melting and chemical re-enrichment

Field, textural and geochemical evidence suggest that the IVZ lherzolites have a complex history of partial melting
and melt migration. They show elemental compositions similar to abyssal peridotites (Fig. 2a), and range from
residual to melt-reacted. Specifically, cpx from three Balmuccia and Baldissero peridotite samples exhibit strong
LREE-depleted patterns consistent with a residual character, and their REE patterns can be reproduced by ~ 5%
fractional melting of a DM-like source (Fig. 4a). The other two samples, instead, have LREE too high requiring
enrichment by melt addition. In Premosello samples, cpx have low M-HREE and Y reproducible by ~ 10-12%
depletion of a DM source. However, all Premosello cpx have LREE too high for only fractional melting to be
responsible, and require reaction with melts (Fig. 4a).

Based on the exceptional preservation of Nd and Hf errorchrons giving similar ages, we infer that the resetting
of Nd-Hf isotope systematics for all samples occurred at an age of circa 370 Ma (Fig. 3). The two errorchrons
do not provide precise age measurements but give temporal constraints to the event of isotopic resetting, which
in the case of the IVZ peridotites likely occurred in the middle Paleozoic, specifically in the Upper Devonian.
Coherently, Re-Os isotopes of the IVZ peridotites also suggest a major resetting event in the Paleozoic”.

As suggested by the local preservation of a few Proterozoic Re depletion ages’, one hypothesis is that the
present-day decoupled, highly radiogenic Nd-Hf isotope compositions of Premosello peridotites were generated
by metasomatism at ca. 370 Ma, but the original peridotites were already depleted during an older Proterozoic
melting event. Hence, the metasomatism affecting the IVZ peridotites could have been the result of a much
younger (c.f., Paleozoic) secondary event in a Proterozoic SCLM (e.g., Refs 7*). If this was the case, however,
the samples might not have preserved similar errorchrons in both Nd and Hf systematics, as the highly radio-
genic Hf isotopic signature of Premosello cpx would have already existed prior to 370 Ma. There is also the high
possibility that ancient mantle metasomatism would have affected ancient isotopically depleted peridotites,
mitigating their isotopic and trace element depletion®’. Moreover, when the Nd-Hf isotopes of all lherzolite
cpx samples from the three studied massifs are corrected to 370 Ma, highly radiogenic signatures ascribable to
any significant melting event in the Proterozoic was not found. Rather, Premosello peridotites exhibit initial
Nd-Hf isotopes (eNd;, = +4.3 to + 6.4, eHf ;= + 2.3 to +7.1) similar to Balmuccia and Baldissero peridotites
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(eNd(;) = +2.9 to+5.8, eHf;)= +5.5 to + 16.4) suggesting that prior to ca. 370 Ma, the three peridotite bodies
had similar isotopic and geochemical compositions. The few unradiogenic '¥Os/'#8Os isotopes which yielded
Proterozoic Re depletion ages in the IVZ lherzolites” may therefore be interpreted as the composition of ancient
mantle lithosphere relics delaminated and entrapped in an upwelling asthenosphere. Hence, rather than portions
of an ancient depleted (cratonic) SCLM refertilized in more ‘recent’ times, we prefer the possibility that the three
peridotite bodies were in the asthenospheric mantle (see also Ref *°) and evolved with a similar geochemical
composition until ca. 370 Ma.

In line with the preceding statement and supported by isotopic and trace elements modeling (Fig. 4b-d),
we hypothesize that at ca. 370 Ma, an intrinsically homogenous asthenospheric mantle section suffered vari-
able degrees of partial melting (i.e., up to 12% in Premosello, ~ 5% in Balmuccia and Baldissero) plus different
extents of nearly contemporaneous refertilization which partly obscured the depletion signatures. The original
Sm/Nd and Lu/Hf ratios were modified by melting and melt-rock reaction, thereafter the different peridotite
bodies evolved by Nd-Hf radiogenic ingrowths along an isotopic evolution dictated by their Sm/Nd and Lu/Hf
ratios, in turn defined by both melting and melt-rock reaction processes (Fig. 4b). Hence, the two errorchrons
pointing to ca. 370 Ma may represent the age of depletion for both the residual and refertilized peridotites, also
coinciding with the timing of the metasomatic event for the refertilized rocks. Notably, the ca. 370 Ma Nd-Hf
errorchrons are preserved when the compositions of the pyroxenites are also considered (Fig. 3a,b). Previous
studies?*?® interpreted this first generation of pyroxenites as segregations of mantle melts with MORB affinity,
which also caused refertilization of the host lherzolites. This is in agreement with the MORB-like REE signature
of the cpx in our pyroxenite samples, along with their DM-like isotopic compositions. Although the Nd-Hf
isotopic compositions of the pyroxenites and the host peridotites might have been rather similar at ca. 370 Ma,
migration of such melts modified the parent/daughter ratios causing deviation in isotopic evolutions of the
residual vs. the melt-reacted peridotites. This effect is well depicted by the Balmuccia peridotite sample having
REE and present-day Nd-Hf isotopes nearly coinciding with the pyroxenites (Figs. 1,2b). This sample interacted
extensively with the pyroxenite-forming melt, following a similar isotopic evolution.

Geodynamic implication and global significance

We here report unequivocal Sm-Nd and Lu-Hf isotopic evidence that combined with previously reported Sm-Nd
pseudo-isochrons?®? and peak Paleozoic Re depletion ages”** constrain the accretion of the lherzolitic SCLM
beneath the IVZ to the Upper Devonian. At that time, the Adriatic Plate was part of the Galatian terrane (Fig. 5a),
a continental ribbon detached from Gondwana and accreted to the margin of Laurussia shortly before the Late
Carboniferous Variscan collision?”*8. At ca. 370 Ma, the northern and western borders of the Galatian terrane
were characterized by a long-lasting extension in a back-arc region caused by the subduction of the Rheic Ocean,
whereas the southern and eastern ones were passive margins of the PaleoTethys. The lithospheric thinning led
to the development of large basins associated with intrabasinal magmatism, starting from 370 Ma and well
documented in both Southern Alps and Austroalpine units***°. In this framework, we propose that the IVZ
lherzolitic massifs were accreted to the SCLM through asthenospheric upwelling triggered by Variscan intra-
continental extension in a back-arc setting related to the subduction of the Rheic Ocean (Fig. 5b). This model
of lithospheric accretion in a back-arc environment well explains (i) the low degrees of partial melting inferred
for the IVZ peridotites, and the nearly contemporaneous migration of melts refertilizing the peridotites and
crystallizing pyroxenites at deep lithospheric levels, (ii) the emplacement of young, fertile lithospheric mantle
below older and thinned continental crust, as in the Variscan realm including the IVZ, and (iii) the exhumation
of mantle peridotites to crustal levels during compressive regimes affecting thinned back-arc continental litho-
sphere. Hence, rather than the product of recent processes of rejuvenation of old cratonic roots, we here suggest
a model of formation of Phanerozoic SCLM in “recent” continental back-arc settings, where a combination of
low-degree melting and nearly contemporaneous melt migration produce fertile mantle lithologies. Young mantle
lithosphere thus exists off-craton, even if old Re depletion ages preserve memories of ancient melting events
captured during lithospheric accretion.
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Figure 5. (a) Global reconstruction of the Devonian showing the location of Adria within the Galatian terrane
(modified after Ref *®); (b) Schematic model of accretion of the IVZ SCLM by asthenospheric upwelling in the
Devonian (adapted from Ref #).
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Methods

Mineral major and trace element chemistry

The major element compositions of mineral phases (olivine, orthopyroxene, clinopyroxene and spinel) in selected
samples of IVZ lherzolites and pyroxenites were measured by electron probe microanalysis using a JEOL JXA-
8230 Superprobe equipped with five WDS spectrometers operating in wavelength dispersive mode, housed at
the Joint Laboratory of the Department of Earth Sciences, University of Florence and the CNR-IGG Florence.
Operating conditions were 15 kV accelerating voltage, 20 nA beam current, 3 um spot size, and a counting time of
15 s on the peaks and 7 s on the backgrounds. Natural minerals (olivine for Mg; albite for Si and Na; ilmenite for
Fe and Ti; bustamite for Mn; sanidine for K; plagioclase for Al; diopside for Ca; metallic nickel for Ni; chromite
for Cr) were used as standards. The results were corrected for matrix effects using the conventional ZAF method
provided by the JEOL software package. Results are considered to be accurate and precise within +2-5%, as
estimated by analysis of natural mineral standards performed during each analytical session. The result of the
major element composition of the mineral phases is reported in Supplementary Table S1. The trace element
contents of clinopyroxenes were measured on thin sections and mineral separates using an Agilent 8900 QQQ-
ICP-MS coupled to a 266 nm Nd:YAG laser ablation system at the CNR-IGG Pavia. The ICP-MS was tuned using
NIST SRM 610 synthetic glass to optimize the signal intensity and stability and remove molecular interferences by
monitoring **Mg, '**In, 2**U and the #**Th/***ThO ratio. Data reduction was done with the GLITTER software’'.
The laser was operated at a repetition rate of 10 Hz, fluence of 10 J/cm? and 50-60 um spot size. NIST SRM
610 was used as an external standard, whereas **Ca was used as internal standard for the clinopyroxene. USGS
reference sample BCR2g was repeatedly analyzed together with the unknowns to assess precision and accuracy
at+5% and + 10%, respectively. The trace element dataset of the clinopyroxenes is reported in Supplementary
Table S2.

Nd and Hf isotopic measurements

Nd and Hf isotope measurements on clinopyroxene separates from the samples were performed at the National
High Magnetic Field Laboratory, Florida State University. For each sample, ~100-120 mg of clinopyroxene
separates were leached, dissolved, processed through ion exchange columns and measured for Nd-Hf isotopes.
The separates were leached in 5 ml 2.5N HCl and <30% H,O, for 60 min at room temperature to remove any
alteration products. The leached separates were rinsed several times with quartz sub-boiling distilled water.
Subsequent dissolution and column chemistry was performed after procedures described by refs >%°. Nd and
Hf isotopes were measured using a ThermoFisher Neptune Multi-Collector ICP-MS system. Measurements of
the La Jolla standard yielded **Nd/**Nd ratio of 0.511790 +0.000012 (20, n=17). The **Nd/'**Nd ratios were
corrected for mass bias using a '*Nd/!**Nd ratio of 0.7219 and are reported relative to the La Jolla standard of
0.511850. Blanks for Nd were less than 10 pg. Measured value of the JMC-475 standard is '7°Hf/"’"Hf = 0.28215
0+0.000008 (20, n=20). The 7*Hf/'"7Hf ratios were corrected for mass bias using a '7’Hf/'"’Hf ratio of 0.7325
and reported relative to JMC-475 value of '7Hf/*””Hf = 0.282150. Blanks for Hf were less than 40 pg. '’Sm/"*Nd
and 7°Lu/'7"Hf ratios were calculated from the Sm, Nd, Lu and Hf concentrations measured on clinopyroxenes
by LA-ICP-MS. The Nd-Hf isotopes dataset of the clinopyroxenes is reported in Supplementary Table S3.

Partial melting modeling

Modeling of the degree of partial melting underwent by the IVZ lherzolites was performed following the dynamic
melting model described in detail by Ref 3. The dynamic melting model calculates the trace element and isotopic
compositions of mantle residues using the average Depleted Mantle (DM) estimates'? as the initial source
composition. The choice of the DM end-member as the initial source composition is based on (i) the presumption
that the composition of the Upper Mantle (UM) at 370 Ma (according to errorchron ages provided in this study,
see Results section) could not have been Primitive, as the UM is expected to have previously experienced about
2-3% partial melting to produce the continental crust (CC) and a complementary DM reservoir (Refs 1>°); (ii)
the similarity of the initial eNd and eHf of the studied IVZ lherzolites to those of the average DM (eNd; = +7.9,
eHf ;) = +16.0)"%; and (iii) the average lherzolitic modal composition of the DM*.

In the modeling, residual porosity was fixed at 1% and percentage of melting per km at 0.15%. Partition
coeflicients are from Ref 1°. Garnet melting is assumed to begin at 100 km (degree of melting, F=0-3.5%) followed
by further melting in the spinel stability field. Spinel melting starts at 75 km. Melting reactions are recalculated at
60, 48, 33, and 24 km following the phase relations from Ref *°. The present-day isotopic compositions of ancient
residues are calculated as initial isotope ratios plus radiogenic ingrowth after 370 Ma. Initial isotope ratios at the
time of melting were calculated using a two-stage DM mantle evolution starting from primitive mantle at 3.5 Ga
and present-day DM isotope ratios of '7*Hf/'”"Hf =0.28330 and **Nd/'**Nd=0.51311 from Ref '°. Results and
starting compositions of the partial melting modeling are reported in Supplementary Table S4.

Melt-rock reaction modeling

Melt-rock reaction modeling of the IVZ lherzolites was performed following Ref **. We opted for an assimilation-
fractional crystallization (AFC) model based on Egs. 6a and 15a from Ref *’. The model reproduces the reaction
between a melt and a peridotite. The interaction forms a re-enriched peridotite gradually acquiring a lherzolitic
composition by preferential dissolution of olivine and crystallization of clinopyroxene (partition coefficients as
in the melting model). This approach follows natural examples of melt-rock reaction in SCLM (e.g., Refs 123444).
The incoming melt is assumed to crystallize in the matrix and its incompatible element content is redistributed
in chemical equilibrium between melt and solid. The trace element composition of the solid is calculated from
the liquid following the equation Cs =DCp, where D is the bulk partition coefficient for a given element. The trace
element composition of the reacted peridotite is calculated at 1% increments, which indicate the mass fraction of
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peridotite equilibrated with the melt undergoing AFC (scaled from 0 to 100%). Degree of interaction corresponds
to ‘F> We performed several scenarios, using N-MORB and E-MORB starting melts compositions®. The use
of N- or E-MORB trace element compositions causes subtle differences in the melt-rock reaction trends. Since
the Nd-Hf isotopic composition of clinopyroxene from the slightly LREE-depleted peridotite from Balmuccia
is similar to the composition of E-MORB, we preferably used an E-MORB-like starting melt composition
and mantle residues after 5 and 11 degrees of partial melting (under garnet + spinel conditions) to reproduce
the isotopic and trace elements compositions of the refertilized peridotites from Balmuccia and Baldissero
(Supplementary Table S5a) and Premosello (Supplementary Table S5b), respectively. The use of mantle residues
melted under garnet + spinel facies conditions for the melt-rock reaction is mainly due to the plotting of the
studied Balmuccia and Baldissero peridotite cpx samples around the garnet + spinel melting evolution line (as
shown in Fig. 4b) and the MREE/HREE ratios of these cpx being steeper than those produced by spinel only
fractional melting suggesting deeper melt depletion for the IVZ lherzolites (as also earlier documented by Ref
%%). Present-day isotopic compositions are calculated adding the initial isotope ratios, calculated from Eq. (15a)
from Ref ¥, to the radiogenic Nd and Hf ingrowth after 370 Ma.

Data availability
All analytical data and additional figures reported in this paper can be found in the accompanying Supplementary
Information files (Tables S1-S5 and Figs. S1-5S4).
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