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ABSTRACT
The goal of this paper is to estimate an optimal combination of biomarkers for individuals with Duchenne muscular dystrophy
(DMD), which provides the most sensitive combinations of biomarkers to assess disease progression (in this case, optimal with
respect to standardized response mean (SRM) for 4 muscle biomarkers). The biomarker data is incomplete (missing and irregular)
multivariate longitudinal data. We propose a normal model with structured covariance designed for our setting. To sample from
the posterior distribution of parameters, we develop a Markov Chain Monte Carlo (MCMC) algorithm to address the positive
definiteness constraint on the structured correlation matrix. In particular, we propose a novel approach to compute the support of
the parameters in the structured correlation matrix; we modify the approach from [1] on the set of the largest possible submatrices
of the correlation matrix, where the correlation parameter is a unique element. For each posterior sample, we compute the optimal
weights of our construct. We conduct data analysis and simulation studies to evaluate the algorithm and the frequentist properties
of the posteriors of correlations and weights. We found that the lower extremities are the most responsive muscles at the early and
late ambulatory disease stages, and the biceps brachii is the most responsive at the nonambulatory disease stage.

1 | Introduction

For Bayesian inference using multivariate normal (MVN) mod-
els with a structured correlation matrix, posterior computation
can be challenging due to positive definiteness restrictions. We
introduce an approach based on [1] to address this.

We use this model to address an important problem in Duchenne
muscular dystrophy (DMD)—finding an optimal combination
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of biomarkers. The data are annualized changes of fat fraction
(FF) of muscles (which are the biomarkers). We want to compute
an optimal combination of these biomarkers to more precisely
evaluate disease progression and potentially have more sensitive
endpoints for clinical trials. The data available to do this is mul-
tivariate longitudinal at irregular time points with substantial
missingness. We will use an MVN model with structured corre-
lation to model this data and address the missingness. Previous
unpublished work only allowed for complete data.
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We first review relevant literature on covariance/correlation
matrices. To ensure positive definiteness of the covariance
matrix, multiple works have relied on unconstrained param-
eterizations of either the covariance or correlation matrix.
Some earlier works regarding the covariance matrix include
the Cholesky decomposition [2], the matrix logarithm [3, 4],
or Givens angles [5, 6]. These techniques focus on estimation
and do not allow interpretation of new parameters in terms of
original variances and correlations. Later works try to address
this issue, and one of the most popular examples is the modi-
fied Cholesky decomposition [7]. Their utility is limited by the
ordering of variables, which is typically only natural for uni-
variate longitudinal data. Other papers that exploit the ordering
are [8–11].

There have also been works on unconstrained parameteriza-
tion methods for the correlation matrix, which are of interest in
Bayesian settings that deal with correlations and variances sepa-
rately. A correlation matrix has the additional constraint of diag-
onal elements fixed at one. Pinheiro and Bates [12] introduce the
spherical parameterization, which is conducted by first perform-
ing the Cholesky decomposition on the correlation matrix and
then expressing the elements of the Cholesky factor as angles.
More recent works expanded on this [13, 14]. Due to the Cholesky
decomposition, the angles are dependent on ordering. The angles
are defined on the support (0, 𝜋] to ensure uniqueness and iden-
tifiability. Namely, there is a monotone relationship between the
angles and the correlations—weaker correlations imply larger
angles. For longitudinal data, this implies angles are increasing
with time lag.

Zhang et al. [13] illustrate the applicability of the spherical
parameterization for unbalanced longitudinal data by proposing
a joint mean-variance-correlation generalized linear model. As
spherical parameterization is dependent on the ordering of vari-
ables, their model only permits popular correlation structures for
longitudinal data, such as compound symmetry or AR(1). This
is problematic for complex correlated data with partial ordering
information, including longitudinal data that has multiple out-
comes measured repeatedly from the same subject (i.e., multi-
variate longitudinal data). Tsay and Pourahmadi [14] address this
by showing that positive definiteness is guaranteed for structured
correlation matrices using spherical parameterization alongside
pivotal angles. By knowing the locations and estimates of piv-
otal angles, one can obtain the unique correlations and then
the implied (“nonpivotal”) angles row-by-row. Both papers use
maximum likelihood estimation, as it achieves consistency and
asymptotic normality. However, if we were to apply Bayesian
computation on the angles, we would get different posteriors
based on how the data was ordered, as typical priors on the angles
are not invariant to ordering. Ghosh et al. [15] introduce shrink-
age and selection priors for the angles, which are the inverse
cosine of semi-partial correlations, but the priors are only appli-
cable for ordered data. Similar to [13], Ghosh et al. [15] only con-
sider a limited set of correlation structures: AR(1), banded, and
block common.

Another unconstrained parameterization method for the corre-
lation matrix uses the partial autocorrelations adjusted for inter-
vening variables [16, 17]. Similar to the angles of hyperspher-
ical parameterization, partial autocorrelations impose an order

on the variables and have a one-to-one and recursive relation-
ship with the correlations. This results in similar interpretabil-
ity issues as before, but the authors do introduce priors for the
correlation matrix that are independent of the order of indices.
For application, they explore parsimonious modeling for bal-
anced longitudinal (ordered) data with a focus on lags. More
recent works take a different approach and apply the matrix
logarithm on the correlation matrix [18, 19]. The transforma-
tion is one-to-one, invariant to ordering, and offers flexibility for
parsimonious modeling and prior specification of unbalanced
data. However, the interpretability of the new parameters is not
intuitive.

A notable constrained approach for the covariance matrix is the
linear covariance model [20], where the covariance matrix is the
linear combination of known symmetric matrices and unknown
coefficients. Constraints are put on the unknown coefficients,
and the approach is applicable for any element-wise estima-
tion of the covariance matrix. On the other hand, a constrained
approach that directly models the correlation elements avoids
issues with both interpretability and the unity diagonal constraint
of the correlation matrix, both posing challenges for many uncon-
strained parameterization methods. The constrained Bayesian
approach puts the positive definiteness constraint in each sam-
pling step. Some earlier works are [1, 21, 22]. Barnard et al. [1]
note that a correlation matrix stays positive definite (PD) if one
were to replace any unique correlation element inside of it from
an interval calculated using the values of all other correlation ele-
ments. They demonstrate the effectiveness of this approach with
order-invariant priors. They use independent log-normal priors
for standard deviations and either the marginally uniform priors
for correlations or the jointly uniform prior for the correlation
matrix. Wong et al. [21] estimate the covariance matrix of normal
data by identifying zeroes in its inverse (see covariance selection
models [23]), separating the inverse into a product of inverse par-
tial variances and the matrix of partial correlations, and using
“covariance selection” priors that allow zeroes in the precision
matrix. There is a constraint on the prior for the matrix of partial
correlations. The efficiency of their method and any identifica-
tion of structure rely on the sparsity of the true precision matrix.
Pitt et al. [24] is an extension, and Carter et al. [25] is a general-
ization of [21].

Similar to [1], Liechty et al. [22] put the positive definiteness con-
straint on the prior of the correlation matrix and compute inter-
vals to sample correlation elements. They propose prior probabil-
ity models that group marginal correlations into clusters based
on similarities among correlations or variables. This results in
group-structured correlation matrices, that is, block common.
The “common correlation” prior allows shrinkage toward a diag-
onal correlation matrix. The “grouped correlation” and “grouped
variables” mixture priors have flexibility in shrinkage toward tar-
get structures by using a point mass at zero or a small-variance
distribution for a term in the mixture. Zhang et al. [26] is a
recent work in a constrained Bayesian approach for unstruc-
tured and unordered correlation matrices that are functions of
individual-level covariates, where each correlation element is
specified by a linear model. They focus on how positive definite-
ness is ensured at different values of covariates. They intersect
variations of the intervals defined in [1] to address the positive
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definiteness constraint of the correlation matrices. We also inter-
sect “Barnard” intervals, but based on submatrices in the setting
of a structured correlation matrix.

We provide a flexible approach to modeling correlation matri-
ces by generalizing the interval approach of [1] for a struc-
tured correlation matrix. In our application, it is a correlation
matrix of multiple outcomes measured at each time point in an
unbalanced longitudinal dataset with missingness. Our structure
for the application assumes exchangeable time points, but the
approach can be used to model any correlation structure without
requiring an ordering of variables.

The paper is organized as follows: In Section 2, we introduce
the DMD data and explain the clinical motivation of an opti-
mal combination of biomarkers. In Section 3, we introduce the
model and the structure of the correlation matrix. We also intro-
duce the objective function to optimally choose weights of the
construct. In Section 4, we provide details on the posterior com-
putation. In particular, details on how to compute a “tight”
PD interval of the candidate distribution of a correlation ele-
ment by applying the interval approach of [1] on the set of
the largest possible submatrices of the correlation matrix. In
the simulation study of Section 5, we compare the acceptance
and positive definiteness rates of correlations drawn from can-
didate distributions that use our generated PD intervals versus
(−1, 1) support. Section 5 also compares the computational per-
formance and frequentist operating characteristics via simula-
tions. Section 6 presents our findings on the DMD data, both
clinically and algorithmically. Section 7 provides conclusions and
extensions.

2 | Data and Motivation

The muscles of individuals with DMD are progressively replaced
by fat, but at different rates, and these rates vary by individual,
age, disease stage, and other factors. The disease stages we con-
sider are defined by functional ability. In the early ambulatory
stage, individuals can walk and get up from the floor without
assistance. In the late ambulatory stage, individuals can walk
but can no longer get up from the floor. In the nonambulatory
stage, individuals cannot walk. The muscles of interest are
two lower extremity muscles, soleus (SOL) and vastus lateralis
(VL), and two upper extremity muscles, biceps brachii (BB)
and deltoid (DEL). We use magnetic resonance spectroscopy
FF measures of the muscles [27]. The specific measurement
we use is the annualized change in FF from the current and
previous visit of a subject, where visits are somewhere between
6 to 24 months apart. It is calculated as (FF at current visit −
FF at previous visit)∕(age at current visit − age at previous visit).
For brevity, we use “muscle” to describe FF changes in a muscle
between visits. Also, we use “time point” interchangeably with
“measurement time.”

The numbers of subjects (160 unique subjects) and visits vary
by ambulatory disease stage. In total, early ambulatory data has
140 subjects and 419 measurement times, late ambulatory data
has 74 subjects and 128 measurement times, and nonambula-
tory data has 51 subjects and 115 measurement times. The data
exhibits missingness, as not all muscles are measured for each

measurement time. Tables SB2, SB3, and SB4 in the Supporting
Information provides details: Table SB2 provides the missingness
by muscle, revealing significantly more missingness in the upper
extremities than the lower extremities. Table SB3 provides the
distribution of the number of missing muscle measurements at
a given measurement time. Typically two muscles are missing
at a given measurement time, particularly in earlier ambulatory
stages. Table SB4 provides the distribution of the number of sub-
ject measurement times for the unbalanced DMD data. There is
a maximum of 8, 6, and 7 subject measurement times for early,
late, and nonambulatory data, respectively.

To account for the heterogeneity in the fat replacement rate of
different muscles, we want a sensitive measure of overall mus-
cle quality across different disease stages. We will construct an
optimal combination of biomarkers that produces the most clin-
ically meaningful and sensitive combination of FF measures of
different muscles with varying weighting coefficients across a
wide spectrum of disease stages. The inclusion of nonambu-
lant subjects here is important. The majority of individuals with
DMD are nonambulatory but are excluded from most clinical tri-
als due to the inapplicability of traditional functional outcome
measures [28].

3 | Model and Objective Function

3.1 | Model

For an individual with muscular dystrophy in a certain ambula-
tory disease stage, we denote the data as 𝑦𝑖𝑗𝓁 , indicating the FF of
subject 𝑖, measurement time 𝑗, and muscle 𝓁. In total, we have 𝑁
subjects, 𝐽 measurement times, and 𝐿 muscles. Let 𝑝 = 𝐽 × 𝐿 be
the total number of outcomes for a subject. The model below is
for unbalanced longitudinal data, but for simplicity of notation,
we will use 𝐽 and 𝑝 rather than 𝐽𝑖 and 𝑝𝑖.

We model the data by an MVN distribution and assume
exchangeable time points for a subject in each ambulatory dis-
ease stage. We employ the separation strategy on the covariance
matrix [1]:

𝒀 𝑖

ind∼ MVN(𝝁,𝚺)

𝚺 = 𝑺𝑹𝑺

Due to the assumption of exchangeable time points, we put struc-
ture on the mean vector, the diagonal standard deviation matrix,
and the correlation matrix as follows:

• 𝝁𝑝×1 = (𝝁̃′
𝐿×1, . . . , 𝝁̃

′
𝐿×1)

′ is a mean vector with unique ele-
ments 𝝁̃ = (𝜇1, . . . , 𝜇𝐿)′ for each measurement time 𝑗,
where 𝜇𝓁 is the mean of muscle 𝓁, that is, E[𝑌𝑖𝑗𝓁] = 𝜇𝓁 .

• 𝑺𝑝×𝑝 = diag(𝒔′
𝐿×1, . . . , 𝒔

′
𝐿×1) is a diagonal standard deviation

matrix with unique elements 𝒔 = (𝑠1, . . . , 𝑠𝐿)′ for each mea-
surement time 𝑗, where 𝑠𝓁 is the standard deviation of mus-
cle 𝓁, that is, SD[𝑌𝑖𝑗𝓁] = 𝑠𝓁 .

• 𝑹𝑝×𝑝 is a structured correlation matrix with unique ele-
ments

𝒓 = (𝜂12, . . . , 𝜂𝐿−1,𝐿
⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟(

𝐿
2

)
, 𝜌(1), . . . , 𝜌(𝐿)
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

𝐿

, 𝛾)′ = (𝑟1, . . . , 𝑟𝑞)′, where
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– 𝜂𝓁𝓁′ is the correlation between two different muscles 𝓁
and 𝓁′ observed at the same measurement time, that is,
Corr[𝑌𝑖𝑗𝓁 , 𝑌𝑖𝑗𝓁′ ] = 𝜂𝓁𝓁′ . There are

(
𝐿

2

)
𝜂𝓁𝓁′s, and for each

𝜂𝓁𝓁′ , there are 𝐽 instances of it in the upper-triangular
portion of 𝑹, so in total there are 𝐽𝐿(𝐿 − 1) 𝜂𝓁𝓁′s in 𝑹.

– 𝜌(𝓁) is the correlation between any two different mea-
surement times for muscle 𝓁, that is, Corr[𝑌𝑖𝑗𝓁 , 𝑌𝑖𝑗′𝓁] =
𝜌(𝓁). There are 𝐿 𝜌(𝓁)s, and for each 𝜌(𝓁), there are

(
𝐽

2

)
instances of it in the upper-triangular portion of 𝑹, so in
total there are 𝐽𝐿(𝐽 − 1) 𝜌(𝓁)s in 𝑹.

– 𝛾 is the correlation between two different muscles at two
different measurement times, that is,
Corr[𝑌𝑖𝑗𝓁 , 𝑌𝑖𝑗′𝓁′ ] = 𝛾 . There are 𝐿2𝐽 2 − 2𝐽

(
𝐿

2

)
−

2𝐿
(

𝐽

2

)
− 𝐿𝐽 or 𝐽𝐿(𝐽 − 1)(𝐿 − 1) 𝛾s in 𝑹.

– The matrix has 𝑞 =
(

𝐿

2

)
+ 𝐿 + 1 = 11 unique

parameters.

The structured correlation matrix for 𝐿 = 4 muscles is as follows:

𝑹 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 𝜂12 𝜂13 𝜂14 𝜌(1) 𝛾 𝛾 𝛾 𝜌(1) 𝛾 𝛾 𝛾 . . .

1 𝜂23 𝜂24 𝛾 𝜌(2) 𝛾 𝛾 𝛾 𝜌(2) 𝛾 𝛾 . . .

1 𝜂34 𝛾 𝛾 𝜌(3) 𝛾 𝛾 𝛾 𝜌(3) 𝛾 . . .

1 𝛾 𝛾 𝛾 𝜌(4) 𝛾 𝛾 𝛾 𝜌(4) . . .

1 𝜂12 𝜂13 𝜂14 𝜌(1) 𝛾 𝛾 𝛾 . . .

1 𝜂23 𝜂24 𝛾 𝜌(2) 𝛾 𝛾 . . .

1 𝜂34 𝛾 𝛾 𝜌(3) 𝛾 . . .

1 𝛾 𝛾 𝛾 𝜌(4) . . .

1 𝜂12 𝜂13 𝜂14 . . .

1 𝜂23 𝜂24 . . .

1 𝜂34 . . .

1 . . .

⋮

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Given the objective of accounting for correlation within disease
stage windows, we assume exchangeable time points for sim-
plicity. But we could easily accommodate time-series structures,
including autoregressive structures.

3.2 | Optimal Construct

For an individual with muscular dystrophy at a certain ambula-
tory disease stage, we compute an optimal convex combination
𝑦̃𝑖𝑗 =

∑𝐿

𝓁=1𝑤𝓁𝑦𝑖𝑗𝓁 = 𝒘′𝒚𝑖𝑗 , where
∑𝐿

𝓁=1𝑤𝓁 = 1, 𝑤𝓁 ≥ 0 ∀𝓁. The
weights 𝒘 are chosen to maximize the standardized response
mean (SRM) of the construct, where 𝚺𝜂 = Var[𝒀 𝑖𝑗] is the 𝐿 × 𝐿

covariance matrix containing the correlation parameters, 𝜂𝓁𝓁′s:

𝒘 = argmax
𝒘

SRM[𝑌 𝑖𝑗] = argmax
𝒘

E[𝑌 𝑖𝑗]
SD[𝑌 𝑖𝑗]

= argmax
𝒘

𝒘′𝝁̃√
𝒘′𝚺𝜂𝒘

(1)
We note that the standard deviation of the construct does not vary
across time, but the weights are optimized for each ambulatory
disease stage. These weights provide the largest mean of convex
combinations of 1-year changes in FF of muscles with respect to
variability in the changes for each disease stage.

4 | Posterior Computation

Full details of the Markov Chain Monte Carlo (MCMC) algorithm
for posterior computation are presented in Section SA.1 of the
Supporting Information. Here, we focus on our new approach for
sampling the correlations and computing the optimal biomarker
constructs.

4.1 | Sampling the Structured Correlation
Parameters

In a Metropolis-Hastings (M-H) step, when the correlation matrix
has dimension greater than 2, a correlation candidate may pro-
duce a non-PD correlation matrix if we were to sample from a
candidate distribution with a (−1, 1) support. To mitigate this,
the support of the candidate distribution should be shrunk to a
tighter interval. Barnard et al. [1] introduced an approach that
computes an interval for a unique correlation element inside of a
correlation matrix by solving a quadratic equation using determi-
nants of augmented correlation matrices (details in Section SA.4
of the Supporting Information). The correlation matrix remains
PD as long as the value of the correlation element lies within
the interval. Their approach works for any element inside of an
unstructured correlation matrix. We will refer to their approach
as the “Barnard approach” and the interval computed from the
approach as the “PD interval.”

We adapt the Barnard approach on a structured correlation
matrix 𝑹 with unique elements (𝑟1, . . . , 𝑟𝑞)′, which are fewer
than those in an unstructured correlation matrix. We first create
the set of all the largest possible submatrices of 𝑹, where each of
these submatrices contains the 𝑘th correlation 𝑟𝑘 ∈ (𝑟1, . . . , 𝑟𝑞)′
only once, and the rest of the submatrix is filled with current val-
ues of correlation elements other than the 𝑘th correlation 𝒓

(𝑡−1)
(−𝑘) .

After computing the PD interval for each submatrix, we define
the support of the candidate distribution of 𝑟(𝑡)

𝑘
as the intersection

of all the PD intervals. If there is only one largest possible sub-
matrix, then we use its PD interval as the support. We denote the
support as (𝐿(𝑡)

𝑘
, 𝑈

(𝑡)
𝑘
). Our approach improves the rate at which a

correlation candidate results in a PD 𝑹.

To find the largest possible submatrix, the elements of the corre-
lation matrix need to be reordered. In particular, we can build a
largest possible submatrix for 𝑟𝑘 with respect to any structured
correlation matrix by selecting a subset of the original outcomes
𝒚̂ ⊂ 𝒚 = (𝑦1, . . . , 𝑦𝑝)′ using Algorithm SA1 in the Supporting
Information, which is summarized below:

1. The first two outcomes in the subset should correspond to
correlation 𝑟𝑘.

2. Under the condition that 𝑟𝑘 remains as a unique ele-
ment inside the submatrix, check one-by-one whether the
remaining outcomes can be added to the subset.

To compute the tightest (intersected) PD interval, we use all com-
binations of the largest possible submatrix for 𝑟𝑘. We can apply
Algorithm SA1 in the Supporting Information on all permuta-
tions of the ordering of outcomes. This can be computationally
expensive and can result in duplicate PD intervals.

4 of 10 Statistics in Medicine, 2025
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To save computational time for our structure specified in
Section 3.1, we devised individualized algorithms for 𝑟1, . . . , 𝑟𝑞 ,
efficiently generating all combinations of the largest possible sub-
matrix for each 𝑟𝑘 (Section SA.5 of the Supporting Information).
An alternative to further reduce computational cost is to compute
the PD interval of only one submatrix for each 𝑟𝑘, particularly
when the submatrix has a dimension close to that of the correla-
tion matrix. We explore this option in Section 5.

For the candidate distribution, we recommend two choices. First,
a uniform distribution on the derived PD interval, (𝐿(𝑡)

𝑘
, 𝑈

(𝑡)
𝑘
),

𝑟
(𝑡)
𝑘

∼ Unif(𝐿(𝑡)
𝑘
, 𝑈

(𝑡)
𝑘
) (2)

Second, a beta distribution, shifted and scaled to the PD inter-
val, (𝐿(𝑡)

𝑘
, 𝑈

(𝑡)
𝑘
), whose mode is fixed at the value of the previous

iteration, 𝑟(𝑡−1)
𝑘

,

𝑟
(𝑡)
𝑘

∼ R-Beta(𝛼(𝑡)
𝑘
, 𝛽

(𝑡)
𝑘
, 𝐿

(𝑡)
𝑘
, 𝑈

(𝑡)
𝑘
), where

𝛼
(𝑡)
𝑘

=
(𝜅𝑘 − 1)𝐿(𝑡)

𝑘
+ (2 − 𝜅𝑘)𝑟

(𝑡−1)
𝑘

− 𝑈
(𝑡)
𝑘

𝐿
(𝑡)
𝑘
− 𝑈

(𝑡)
𝑘

𝛽
(𝑡)
𝑘

=
(𝜅𝑘 − 1)𝑈 (𝑡)

𝑘
+ (2 − 𝜅𝑘)𝑟

(𝑡−1)
𝑘

− 𝐿
(𝑡)
𝑘

𝑈
(𝑡)
𝑘

− 𝐿
(𝑡)
𝑘

= 𝜅𝑘 − 𝛼
(𝑡)
𝑘

(3)

and with concentration (and tuning) parameter 𝜅𝑘 > 2. We will
refer to this distribution as the reparameterized-beta distribution.

If the reparameterized-beta distribution is used, we can tighten
the interval we draw 𝑟

(𝑡)
𝑘

from by setting 𝜅𝑘 to a higher value,
which makes the candidate distribution be more centered around
the previous value 𝑟

(𝑡−1)
𝑘

. Doing this will increase the percentage
of times that 𝑹 is PD throughout the M-H for 𝑟𝑘, since we would
be reducing the possible candidates that would be far away from
𝑟
(𝑡−1)
𝑘

in which it is ensured to produce a PD 𝑹. In turn, the accep-
tance rate for 𝑟𝑘 will also increase, since the prior forces the M-H
algorithm to automatically reject an 𝑟

(𝑡)
𝑘

that would produce a
non-PD 𝑹. Candidate distributions like the reparameterized-beta
distribution allow the researcher to achieve the standard 25%
M-H acceptance rate for 𝑟𝑘 by adjusting 𝜅𝑘 [29]. However, there
will be more potential autocorrelation in a chain given the cen-
tering on the previous iteration value. Candidate distributions
like the uniform distribution allow for a more even exploration
of correlation candidates on (𝐿(𝑡)

𝑘
, 𝑈

(𝑡)
𝑘
) that would not be directly

influenced by 𝑟
(𝑡−1)
𝑘

.

4.2 | Computing the Posterior Distribution
of the Weights

The SRM of 𝑌 𝑖𝑗 is a function of parameters 𝝁̃ and 𝚺𝜂 in
Equation (1). Therefore, we compute the posterior sample of the
weights by maximizing the SRM for each posterior draw of the
model parameters defined in Section 3.1. A standard approach
to compute a posterior point estimate for weights on a simplex
is to take the element-wise posterior mean. However, the poste-
rior distributions of the weights were occasionally skewed and/or
bimodal with peaks at zero. To address this, we defined our poste-
rior point estimate as the set of weights that maximizes the SRM
when plugging in the posterior medians of the model parameters

from Section 3.1. This summary satisfies the simplex constraint
and avoids both disproportionate influence from sharp modal
peaks and the loss of substantial posterior mass (e.g., maximum
a posteriori estimates).

5 | Simulations

We conduct simulations to assess frequentist operating char-
acteristics of the optimal weights and SRM. In particular, we
evaluate the coverages of 95% credible intervals, biases, and
mean squared errors (MSEs) of the weights and SRM using
simulated data.

We also do simulations to examine the acceptance and posi-
tive definiteness rates of correlations drawn using our proposed
algorithm.

To generate the simulated data for each ambulatory disease
stage, we use the posterior medians of the model parameters
for the DMD data (Table SB18 in the Supporting Information)
as the truth. We generate 500 simulated datasets for 𝑁 = 100
subjects and 𝐽 = 4 time points. We consider four true distribu-
tions: normal (Section 3.1), 𝑡10 [30], 𝑡3, and skew-normal with
shape (skewness) parameter of 0.1 [31]. We also generate simu-
lated data with missingness using the normal model. We emulate
the column-wise missingness and row-wise missingness patterns
of the DMD data (Tables SB2 and SB3 in the Supporting Infor-
mation) by using (0.05, 0.05, 0.75, 0.75)′ and (0.1, 0.6, 0.1, 0.2)′,
respectively.

For each simulated dataset, we run 50000 iterations with
1000 burn-in. Unless otherwise noted, posterior results assume
that correlations were sampled using an M-H algorithm with
candidate distribution, reparameterized-beta on the PD inter-
val defined in Equation (3). We will refer to this distri-
bution as R-Beta(𝐿,𝑈 ). We will refer to Equation (2) as
Unif(𝐿,𝑈 ).

5.1 | Coverages, Biases, and MSEs of Weights
and SRM

Coverages of 95% credible intervals of weights and SRM are given
in Table 1. The coverages for normal (with missingness) are close
to those for normal. For 𝑡10, the coverages of weights are close
to those for normal, but there is some undercoverage with SRM.
For 𝑡3, there is considerable undercoverage with the weights due
to the distribution’s heavy tails, but there is overcoverage for
true weights equal to zero. For skew-normal, there is mostly
undercoverage with the weights and severe undercoverage
with SRM.

Biases of weights and SRM are given in Table 2. The magni-
tudes of the biases are relatively small with respect to the weights
∈ (0, 1) and SRM ∈ (0.8, 1.4). Biases of weights slightly increase
from normal to 𝑡10, moderately increase from 𝑡10 to 𝑡3, and con-
siderably increase from 𝑡3 to skew-normal. Biases of SRM slightly
increases from normal to 𝑡10, then considerably increases from 𝑡10
to 𝑡3 and from 𝑡3 to skew-normal.
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TABLE 1 | Coverages of 95% credible intervals of weights and SRM.

Coverage 𝒘1 𝒘2 𝒘3 𝒘4 SRM

Normal – no miss – early ambulatory 95.2% 96.2% 95.6% 100% 94.8%
Normal – no miss – late ambulatory 95.6% 95.4% 95.4% 95.0% 94.8%
Normal – no miss – nonambulatory 95.6% 96.8% 96.0% 99.6% 95.0%
𝑡10 – no miss – early ambulatory 91.6% 93.4% 94.2% 100% 92.6%
𝑡10 – no miss – late ambulatory 93.8% 93.4% 93.0% 95.2% 90.6%
𝑡10 – no miss – nonambulatory 94.0% 94.2% 93.8% 99.4% 91.6%
𝑡3 – no miss – early ambulatory 77.2% 76.2% 78.2% 99.2% 56.6%
𝑡3 – no miss – late ambulatory 74.6% 72.8% 78.6% 78.6% 55.0%
𝑡3 – no miss – nonambulatory 75.8% 76.8% 75.0% 96.2% 50.8%
Skew-normal – no miss – early ambulatory 88.6% 73.8% 93.4% 99.8% 19.0%
Skew-normal – no miss – late ambulatory 89.2% 94.8% 95.0% 90.6% 20.0%
Skew-normal – no miss – nonambulatory 96.0% 93.8% 82.2% 97.2% 39.2%
Normal – yes miss – early ambulatory 95.8% 95.8% 95.2% 100% 95.2%
Normal – yes miss – late ambulatory 94.0% 94.8% 93.8% 94.6% 94.2%
Normal – yes miss – nonambulatory 95.2% 96.4% 94.8% 99.0% 94.2%

TABLE 2 | Biases of weights and SRM.

Bias 𝒘1 𝒘2 𝒘3 𝒘4 SRM

Normal – no miss – early ambulatory 0.00 0.00 −0.00 0.00 0.01
Normal – no miss – late ambulatory −0.00 −0.00 −0.00 0.01 0.00
Normal – no miss – nonambulatory −0.00 −0.00 −0.00 0.01 −0.00
𝑡10 – no miss – early ambulatory 0.01 −0.01 −0.00 0.00 0.01
𝑡10 – no miss – late ambulatory 0.00 −0.00 −0.01 0.01 0.00
𝑡10 – no miss – nonambulatory −0.00 0.00 −0.01 0.01 −0.01
𝑡3 – no miss – early ambulatory −0.01 0.01 −0.00 0.01 0.08
𝑡3 – no miss – late ambulatory −0.00 −0.00 −0.01 0.02 0.08
𝑡3 – no miss – nonambulatory −0.02 0.01 −0.01 0.02 0.09
Skew-normal – no miss – early ambulatory 0.06 −0.08 0.02 0.00 0.25
Skew-normal – no miss – late ambulatory −0.03 −0.01 0.00 0.04 0.21
Skew-normal – no miss – nonambulatory −0.00 0.02 −0.04 0.02 0.15
Normal – yes miss – early ambulatory −0.00 0.00 −0.01 0.01 0.01
Normal – yes miss – late ambulatory −0.01 −0.00 −0.01 0.03 0.01
Normal – yes miss – nonambulatory −0.01 0.00 −0.02 0.03 0.00

Root MSEs of weights and SRM are given in Table SB5 in the
Supporting Information. Root MSEs of weights generally have
moderate values for normal, 𝑡10, and skew-normal. MSEs of
weights for 𝑡3 and MSEs of SRM for 𝑡3 and skew-normal are large.
Some of the smallest MSEs are for true weights equal to zero. It
is expected that biases and MSEs for simulated data with miss-
ingness are slightly larger than those for simulated data without
missingness. For SRM, there is a noticeable decrease in cover-
age and increase in bias and MSE from 𝑡10 to 𝑡3 and from 𝑡3
to skew-normal. The poorer frequentist operating characteristics
are expected for a mis-specified observed data model.

5.2 | Acceptance and Positive Definiteness
Rates of Drawn Correlations

This study is conducted with the normal distribution sce-
nario and no missingness. It is meant to evaluate the pro-
posed approach for sampling correlation parameters of the struc-
tured correlation matrix specified in Section 3.1. We compare
the M-H acceptance and positive definiteness rates of correla-
tions drawn from R-Beta(𝐿,𝑈 ), R-Beta(𝐿1, 𝑈1), R-Beta(−1, 1),
Unif(𝐿,𝑈 ), Unif(𝐿1, 𝑈1), and Unif(−1, 1), where (𝐿1, 𝑈1) is the
PD interval for one randomly selected submatrix. Note that
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(𝐿,𝑈 ) = (𝐿1, 𝑈1) for 𝜌(𝓁), 𝓁 = 1, . . . , 𝐿 since there is only one
variation of the largest possible submatrix for 𝜌(𝓁) (explanation
in Section SA.5 of the Supporting Information). We average the
M-H acceptance rates across the 500 datasets.

The M-H acceptance rates of correlations drawn from different
candidate distributions are given in Tables SB6, SB7, and SB8 in
the Supporting Information. For the correlations drawn from a
reparameterized-beta distribution, acceptance rates are between
25% to 26% after adjusting the tuning parameters. For correla-
tions drawn from Unif(𝐿,𝑈 ), the acceptance rates are between
5.4% and 8.0% for the 𝜂s, between 4.5% and 7.6% for the 𝜌s,
and less than or equal to 2.3% for 𝛾 . For correlations drawn
from Unif(𝐿1, 𝑈1), the acceptance rates are between 5.2% and
7.9% for the 𝜂s and 2.0% for 𝛾 . For the correlations drawn from
Unif(−1, 1), the acceptance rates are between 4.0% and 6.4% for
the 𝜂s, between 3.6% and 5.8% for the 𝜌s, and less than or equal
to 1.9% for 𝛾 . These results are as expected.

Next, we consider the percentage of times a correlation candidate
resulted in a PD correlation matrix. We average the positive def-
initeness rates across the 500 datasets. The positive definiteness
rates of correlations drawn from different candidate distributions
are given in Tables SB9, SB10, and SB11 in the Supporting Infor-
mation. In terms of positive definiteness rates, correlations drawn
from R-Beta(𝐿,𝑈 ) are the highest and Unif(−1, 1) the lowest as
expected. When 𝜂s are drawn from a reparameterized-beta dis-
tribution or when 𝜌s are drawn from Unif(𝐿,𝑈 ), their positive
definiteness rates are consistent across the ambulatory disease
stages.

It is apparent from Tables SB9, SB10, and SB11 that tuning
the reparameterized-beta distribution to achieve 25% accep-
tance rates in the M-H has a noticeable impact on the posi-
tive definiteness rates of the correlations. This is evident by the
smaller differences in the positive definiteness rates between
R-Beta(𝐿,𝑈 ) and R-Beta(−1, 1), compared to the corresponding
differences between Unif(𝐿,𝑈 ) and Unif(−1, 1). Using one ran-
domly selected submatrix to compute the PD interval (𝐿1, 𝑈1) is
computationally efficient and yields competitive but smaller pos-
itive definiteness rates than the intersected PD interval (𝐿,𝑈 ).
Unlike the uniform distribution, the reparameterized-beta dis-
tribution is centered on the previous iteration value of a cor-
relation element, a value shaped by the prior to guarantee a
PD correlation matrix. Therefore, tightening the support of the
reparameterized-beta distribution typically increases autocorre-
lation between samples across iterations.

We note that a resulting structured correlation matrix from a cor-
relation candidate is more likely to be PD if the correlation has
a lower count of instances in the matrix. For example, in our
structured correlation matrix 𝑹, there are 2𝐽 instances of an 𝜂𝓁𝓁′ ,
𝐽 (𝐽 − 1) instances of a 𝜌(𝓁), and 𝐽𝐿(𝐽 − 1)(𝐿 − 1) instances of 𝛾 .
So if we were to draw correlations from Unif(−1, 1), that is, with-
out influence from PD intervals or tuning parameters, we expect
𝛾 to have the lowest rate of producing a PD 𝑹, and for 𝐽 > 3,
we expect 𝜂s to have higher rates than 𝜌s. This intuition holds
in Tables SB9, SB10, and SB11 when correlations are drawn from
a uniform distribution. In the case of the reparameterized-beta
distribution, the positive definiteness rates of some 𝜌s are slightly
smaller than that of 𝛾 due to tuning parameters.

Some further intuition concerning the positive definiteness rates
of correlations drawn from candidate distributions supported on
the PD interval is that the dimension of the largest possible sub-
matrix for 𝜌(𝓁) is 1 greater than that for 𝜂𝓁𝓁′ , but the submatrix
for 𝜌(𝓁) has no other variations, whereas the submatrix for 𝜂𝓁𝓁′

has 𝐽 variations and thus 𝐽 PD intervals to intersect for the sup-
port of the 𝜂𝓁𝓁′ candidate. And while the dimension of the largest
possible submatrix for 𝛾 is only 3, there are 2

(
𝐿

2

)
PD intervals to

intersect for the support of the 𝛾 candidate.

6 | Analysis of DMD Biomarkers

We use our model to make inference on optimal combination of
biomarkers in the DMD data with respect to SRM. Recall from
Section 2, we have four muscles of interest, and we measure their
annualized FF change between visits. We focus on two lower
extremity muscles, SOL and VL, and two upper extremity mus-
cles, BB and DEL. The data is stratified into three ambulatory
disease stages.

6.1 | Computations

We run 4 MCMC chains, each with 75000 iterations and 1000
burn-in. The M-H acceptances rates of correlations drawn from
different candidate distributions are given in Tables SB12, SB13,
and SB14 in the Supporting Information. Across ambulatory dis-
ease stages, there is more variation among the acceptance rates
of correlations here than those from the simulations (Section 5.2).
This is most likely because the simulated data is balanced without
missingness and has a relatively small number of time points 𝐽 =
4. The DMD data is unbalanced with missingness and has vary-
ing distributions of the number of subject measurement times for
different ambulatory disease stages (Tables SB2, SB3, and SB4 in
the Supporting Information).

Next, the positive definiteness rates of correlations drawn from
different candidate distributions are given in Tables SB15, SB16,
and SB17 in the Supporting Information. As explained in
Section 5.2, when drawing from Unif(−1, 1), we expect 𝛾 to have
the lowest rate of producing a PD 𝑹, and for 𝐽 > 3, we expect
𝜂s to have higher rates than 𝜌s. These expectations are largely
supported by the results in Tables SB15, SB16, and SB17, includ-
ing for correlations drawn from R-Beta(𝐿,𝑈 ) or Unif(𝐿,𝑈 ). The
only exceptions occur in the late ambulatory data, where not
all positive definiteness rates of 𝜂s exceed those of 𝜌s under
Unif(−1, 1) (and R-Beta(𝐿,𝑈 ) to a much lesser extent). Differ-
ences in positive definiteness rates between 𝜂s and 𝜌s may be
less pronounced in the late ambulatory group because 54.1%
of subjects had only one total measurement time, compared to
25.7% for early ambulatory and 39.2% for nonambulatory subjects
(Table SB4).

The positive definiteness rates are lower here than those from the
simulations (Section 5.2). While the simulated data has a rela-
tively small number of time points𝐽 = 4, the maximum of subject
measurement times for the DMD data is 𝐽 = 8, 6, 7 (early, late,
non, respectively). The DMD data is also incomplete as opposed
to the simulated data (Tables SB2, SB3, and SB4).
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6.2 | Posteriors of Model Parameters

Posterior distributions of model parameters 𝝁̃, 𝒔, and 𝒓 are sum-
marized using 95% credible intervals and posterior medians.
These are given in Tables SB19, SB20, SB21, SB22, SB23, SB24,
SB25, SB26, and SB27 in the Supporting Information.

The means of lower extremities increase from early to late ambu-
latory and then decrease from late to nonambulatory, whereas
the means of upper extremities increase from early to nonam-
bulatory. Note however that DEL shows little to no change from
late to nonambulatory. The means of upper extremities become
greater than the means of lower extremities by the nonambula-
tory disease stage. These patterns suggest that DMD affects the
lower extremities of individuals more (larger average annualized
changes of FF) for early and late ambulatory disease stages. By the
time they cannot walk, DMD affects the upper extremities more,
particularly BB.

The standard deviations increase from early to nonambulatory,
that is, there is more variability in the annualized changes of FF
in the muscles for later ambulatory disease stages. From early to
nonambulatory, VL has the highest standard deviation, and SOL
has the lowest standard deviation.

Most of the correlations are positive, and they decrease as
the individuals’ ability to walk deteriorates. This is particularly
apparent when comparing just the early and nonambulatory dis-
ease stages. Generally, there are less relations between two mus-
cles or two measurement times at later ambulatory disease stages
in terms of annualized changes of FF in the muscles. Note that
𝜌(1), 𝜌(2), 𝜌(3), 𝛾 have near 0 correlations at later ambulatory dis-
ease stages, but 𝜌(4) keeps a high correlation relative to other tem-
poral correlations at later ambulatory disease stages. Between dif-
ferent measurement times, the annualized changes of FF become
more similar for a lower extremity by the late ambulatory disease
stage and for BB by the nonambulatory disease stage. A possible
explanation is that by the late ambulatory disease stage, DMD has
progressed in the lower extremities to the point that there is a sim-
ilar amount of FF replacement between different measurement
times, and likewise for BB by the nonambulatory disease stage.
This is consistent with DMD targeting the lower extremities first.

6.3 | Posteriors of Weights and SRM

Table 3 provides the point estimate of the weights, which is
the set of weights that optimize the SRM, by plugging in the
posterior medians of the model parameters (Table SB18 in the
Supporting Information). Posterior density is given in Figure
SB1 in the Supporting Information. Credible intervals are given
in Tables SB28, SB29, and SB30 in the Supporting Informa-
tion. The estimates of the individual muscle SRMs, the SRM
using optimal weights (SRMopt), and the SRM using equal
weights 𝒘equal = (0.25, 0.25, 0.25, 0.25)′ (SRMequal) are also given
in Table 3. SRMequal uses the same model parameters as SRMopt.
Note that SRMopt and SRMequal account for correlations between
muscles unlike the individual muscle SRMs.

SOL weight increases from early to late ambulatory and then
decreases from late to nonambulatory. VL weight decreases from

TABLE 3 | Point estimate of weights, individual muscle SRMs, SRM
from optimal weights, SRM from equal weights.

Early
ambulatory

Late
ambulatory Nonambulatory

𝑤1[SOL] 0.290 0.459 0.358
𝑤2[VL] 0.465 0.218 0.051
𝑤3[BB] 0.245 0.235 0.591
𝑤4[DEL] 0 0.088 0
SRMSOL 0.706 0.957 0.706
SRMVL 0.913 0.804 0.335
SRMBB 0.563 0.687 1.010
SRMDEL 0.368 0.770 0.567
SRMopt 0.985 1.183 1.144
SRMequal 0.901 1.137 0.940

TABLE 4 | Point estimate of weights, SRM from optimal weights,
SRM from equal weights (for model with only SOL and VL).

Early
ambulatory

Late
ambulatory Nonambulatory

𝑤1[SOL] 0.392 0.665 0.936
𝑤2[VL] 0.608 0.335 0.064
SRMopt 0.935 1.098 0.708
SRMequal 0.932 1.065 0.579

early to nonambulatory. BB weight very slightly decreases from
early to late ambulatory and then greatly increases from late to
nonambulatory. DEL weight is zero or close to zero across the
ambulatory disease stages which may be explained by its rela-
tively high correlation with other muscles, particularly SOL and
BB (Table SB18). Among the four muscles, the lower extremi-
ties and BB are the most responsive muscles to FF replacement
across all ambulatory disease stages. As the individuals lose their
ability to walk, BB becomes increasingly more responsive and
eventually contributes the most weight by the nonambulatory
disease stage. At early ambulatory, VL contributes more weight
than SOL, but this eventually shifts by late ambulatory and per-
sists to nonambulatory.

The trends for individual muscle SRMs across the ambulatory
disease stages are similar to the observed trends from before for
the point estimate of the weights. As expected, SRMopt is greater
than any individual muscle SRM and SRMequal. We note that VL
SRM is greater than SRMequal at early ambulatory, and BB SRM is
greater than SRMequal at nonambulatory.

Table 4 provides corresponding estimates as in Table 3 if the
model only considers SOL and VL. Individual muscle SRMs for
SOL and VL are the same as in Table 3. We find similar trends
for the point estimate of the weights with the exception that
SOL shows only an increasing trend from early to nonambula-
tory since no upper extremities are present. The SRM from opti-
mal weights are smaller across the ambulatory disease stages
when the model only considers lower extremities, particularly at
nonambulatory.
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We visualize the joint posterior distribution of the weights that
live on the simplex by plotting each set of weights as a point on
a tetrahedron and then using a three-dimensional version of the
boxplot called gemPlot (R package) [32]. See Section SB.3.1 of
the Supporting Information for further details and figures.

7 | Discussion

Our objective was to estimate an optimal combination of
biomarkers in order to assess disease progression of individuals
with DMD. To do this, we modeled the data using an MVN dis-
tribution with a structured correlation matrix to account for the
high rate of missingness. For Bayesian inference, we addressed
the positive definiteness constraint of a structured correlation
matrix by proposing a generalization of the interval approach
in [1]. In particular, we adapted the Barnard approach to the
set of the largest possible submatrices of a structured correla-
tion matrix, where a target correlation parameter is a unique ele-
ment inside each submatrix. This procedure computes a “tight”
interval for the support of a correlation parameter. We provided
detailed rationale and specific algorithms on how to build the
largest possible submatrices in the context of our parameteri-
zation. We note that our approach can be used for any corre-
lation structure without necessitating an ordering of variables
including partial time series structures. For example, to replace
the exchangeable structure with an autoregressive order one, we
would replace 𝛾 with 𝛾 |lag|

Our approach for the correlation structure in the MVN model
could also be used for a 𝑡 or skew-normal model. This was
demonstrated in the simulations where we fit the MVN model
for datasets generated by 𝑡10, 𝑡3, and skew-normal distributions.
MSEs and coverages of credible intervals were as expected and
magnitudes of biases were small for the weights and SRM of the
construct. The simulations also showed that the positive definite-
ness and acceptance rates of the correlation parameters in MCMC
were improved when using our approach. We compared different
candidate distributions with tightened supports for the correla-
tions parameters against Unif(−1, 1).

For each posterior sample of the model parameters, we computed
optimal weights for the construct to evaluate DMD progression
across different ambulatory disease stages. We also demonstrated
how to visualize the joint posterior of the weights on the simplex.
We found that at the early and late ambulatory disease stages,
the lower extremities were the most responsive muscles. After
the individuals lost their ability to walk, biceps brachii became
the most responsive muscle. The posterior means and SRMs
of individual muscles also support our findings. As the disease
progressed, variability of individual muscles increased, whereas
correlations between muscles or measurement times generally
decreased. We note that the deltoid muscle had a weight close
to zero and has a relatively high correlation with other muscles
across all disease stages. FF of the deltoid is difficult to measure
using magnetic resonance spectroscopy due to heterogeneous
distribution of fat across the muscle, making it difficult to capture
a representative sample in a rectangular voxel.

We note that the constructs can vary with other disease character-
istics besides ambulatory status, including other functional mile-
stones or continuous outcomes, for example, 6MWD (6-minute
walking distance); we are currently working on this extension.
We will also explore alternative objective functions besides the
SRM to optimize the weights. In addition, our approach to com-
pute “almost” PD intervals can be used for concentration matri-
ces. Finally, we could consider a “composite” proposal, that first
samples from the reparameterized-beta and then samples from
the uniform based on our intervals to increase the acceptance rate
and allow for a more efficient exploration of the posterior.
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