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The discovery of many strongly correlated metallic phases has inspired different routes to generalize or go
beyond the celebrated Landau Fermi liquid theory. To this end, from universal consideration of symmetries and
anomalies, Else, Thorngren, and Senthil (ETS) have introduced a class of theories called ersatz Fermi liquids
which possess a Fermi surface and satisfy a generalized Luttinger’s theorem. In this work, we view all such
fermion liquids obeying the Luttinger theorem as incompressible quantum Hall liquids in higher-dimensional
phase space and use it as the starting point to derive their effective low-energy field theory. The noncommutativity
of phase space motivates us to use the Seiberg-Witten map to derive the field theory in an ordinary (commutative)
space and naturally leads to terms that correspond to the correct topological Chern-Simons action postulated by
ETS in one, two, and three dimensions. Additionally, our approach also reproduces all the nontopological terms
that characterize important contributions to the response, including the semiclassical equations of motion. Fi-
nally, our derivations of Chern-Simons terms from the Seiberg-Witten map also verify a longstanding conjecture
in noncommutative field theory.
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I. INTRODUCTION

Metallic phases formed by interacting electrons are of cen-
tral importance in condensed matter physics and materials
science. The most familiar of them is the Landau Fermi liquid,
which can be connected smoothly to the free Fermi gas where
quasi-electron and hole excitations are well defined around the
Fermi surface [1,2]. Recently, many experiments have shed
light on a variety of “non-Fermi liquid” phases where the
effects of interactions are nonperturbative, and quasiparticle
excitations are generally absent—distinct from the behavior
observed in Fermi liquids [3]. Nevertheless, many known
examples of non-Fermi liquids support Fermi surfaces that
satisfy the Luttinger theorem, like the one-dimensional (1D)
Luttinger liquid [4]. Due to the nonperturbative nature of
interaction, we do not have a general way to study non-Fermi
liquids, except in one dimension where the powerful method
of bosonization is available [5–8].

In this paper, we demonstrate that considerable insights
into fermion liquids (including both Fermi and non-Fermi
liquids in any dimensions) can be gained by viewing them
as incompressible quantum Hall liquids in phase space, as
long as the Luttinger theorem is obeyed. A quantum Hall
liquid could not be further from a Fermi liquid at first glance:
The former is incompressible with a gap for bulk excita-
tions, whereas the latter is compressible and supports gapless
quasiparticle excitations around its Fermi surface in the bulk.
The former requires breaking of time-reversal symmetry to
exist in two dimensions, while there is no such requirement
for the latter. Here, we point out that they are very closely
related in the following way: A d-dimensional Fermi liquid
is an incompressible liquid in phase space, with the Fermi

surface being part of its phase-space boundary. We argue
that this phase-space incompressible liquid is nothing but an
integer quantum Hall liquid in 2d spatial dimensions, whose
gapless boundary excitations correspond to the quasiparticle
excitations around the Fermi surface of the Fermi liquid. The
key connection is the noncommutativity of phase space. We
further argue that this analogy can be extended to a class of
non-Fermi liquid metallic states termed ersatz Fermi liquid
(EFL) by Else, Thorngren, and Senthil (ETS) [9]. There are
no sharp quasiparticles there but the Fermi surface remains
well defined and satisfies the Luttinger theorem (or more
precisely, the Luttinger sum rule) [10–12]. In our picture, the
Luttinger theorem is essentially a trivial consequence of the
incompressibility in phase space.

It is important to emphasize that our approach here is
complementary to existing literature on the subject [13–17].
Instead of motivating the phase-space Chern-Simons (CS)
term on the basis of an anomaly-matching argument, our
proposed effective noncommutative field theory for the in-
compressible liquid in phase space enables us to derive the
anticipated CS term that gives rise to the ETS anomaly [9,60].
More importantly, our derivation yields all other nontopolog-
ical responses in a controlled and systematic way. Thus, our
work complements and significantly extends recent work on
non-Fermi liquids through symmetries and anomalies.

A. Motivation and nontechnical discussion

Before diving into technicality, we first illustrate the ideas
outlined above by considering the simplest case d = 1 (1D),
where the ersatz Fermi liquid is simply the familiar Luttinger
liquid. We show that it can be viewed as an integer quantum
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FIG. 1. One-dimensional Luttinger liquid (a) as an integer quan-
tum Hall strip (b) in 2D. The strip is aligned along the horizontal (i.e.,
x) direction. The vertical direction is the linear momentum labeled by
k, and the kinetic energy maps onto a confining potential that restricts
the electrons to −kF < k < kF (dashed lines) in the ground state.
The low-energy excitations are the edge fluctuations (solid lines) that
move to the left and right at the lower and upper edges, respectively.
There is an anomaly when an electric field E (in the x direction) is
present, which pumps electrons from the lower edge to the upper
edge via the bulk quantized Hall conductance in this analogy.

Hall liquid in d = 2 (2D), which is the dimension of the phase
space of the Luttinger liquid. As shown in Ref. [19], we can
view the 2D phase space as the 2D real space subject to a
strong perpendicular magnetic field, where all particles are
confined to the lowest Landau level. In this representation, the
two components of the guiding center, R = (Rx, Ry) represent
(x, p) of the original 1D system if we set h̄ and the magnetic
length �B to be one, as [Rx, Ry] = i�2

B [2] and [x, p] = ih̄. The
kinetic energy p2 ∼ R2

y thus becomes a confining potential
along the y direction, and the lowest Landau level electrons
form a strip of ν = 1 quantum Hall liquid with width 2kF

aligned along the x direction. Note that the Fermi points
±kF become the y coordinates of the edge locations, and
the low-energy excitations of the Luttinger liquid are nothing
but the familiar (chiral) edge excitations of the quantum Hall
liquid, with left and right movers localized in the lower and
upper edges, respectively. The above discussion is illustrated
in Fig. 1. Naively, the left and right moving electrons are sep-
arately conserved corresponding to an emergent U(1) × U(1)
symmetry. However, the extra U(1) symmetry (in addition to
overall charge conservation) suffers a ’t Hooft anomaly, which
in the 2D formulation is nothing but the bulk-edge corre-
spondence of the quantum Hall liquid: electrons move from
the lower edge to the upper edge through the bulk when an
electric field is applied in the x direction due to the quantized
Hall effect, ruining the separate conservation of the left and
right movers. Just like for 2D ν = 1 quantum Hall liquid,
this anomaly is captured by the Chern-Simons action of the
external gauge potential A in the 2 + 1-D phase space for
Luttinger liquid:

S[A] = i

4π

∫
A ∧ dA = i

4π

∫
d3x εαβγ Aα∂βAγ , (1)

which is the 1D version of the ETS anomaly [9].
We now generalize the consideration above to d > 1 spa-

tial dimensions, whose phase-space dimension becomes 2d ,
with d pairs of conjugate variables,

[xm, pn] = iδmn. (2)

A Fermi liquid or ersatz Fermi liquid that satisfies the Lut-
tinger theorem is, by definition, an incompressible liquid in
phase space. This is because the Luttinger theorem states that
the momentum-space volume enclosed by the Fermi surface
is [11]

Vm = (2π )dnr, (3)

where nr is the real-space density of the liquid, implying the
phase-space density of the liquid

nr/Vm = (2π )−d (4)

is fixed, as long as we identify the Fermi surface as its bound-
ary in momentum space, as we did in the 1D Luttinger liquid
above. Similarly, the kinetic energy (which can correspond to
some band dispersion, not necessarily quadratic) in the phase
space, that depends on the momentum coordinates only, maps
onto a confinement potential in momentum space. As we will
demonstrate, the phase-space action for such an incompress-
ible liquid includes, among other terms, the topological CS
term in 2d + 1 spacetime dimensions:

S0[A] = i

(d + 1)!(2π )d

∫
A ∧ dA · · · ∧ dA, (5)

where ∧dA is repeated d times. This is precisely the action
that gives rise to the ETS anomaly, which was asserted in
Ref. [9] with no derivation.

At this point, let us briefly review the core result of Ref. [9]
and related work. ETS identify that the microscopic trans-
lation symmetry in an ersatz Fermi liquid maps to a global
symmetry GIR of the IR theory. In two spatial dimensions, the
Fermi surface is parametrized by a single parameter θ , and the
appropriate symmetry is the loop group LU(1) of U(1). LU(1)
is the set of all smooth maps from the circle S1 to U(1), and
reflects the fact that the quasiparticle density is conserved at
each point on the Fermi surface. The kinematic properties of
the ersatz Fermi liquids are governed by the ‘t Hooft anomaly
of this emergent loop group symmetry, and the CS term
in 2d + 1 spacetime dimensions was postulated as the ap-
propriate topological term describing the higher-dimensional
symmetry-protected topological (SPT) phase whose bound-
ary theory carries the ’t Hooft anomaly for the GIR gauge
fields. The interpretation of the Chern-Simons action as a
phase-space quantum Hall liquid was mentioned in passing
in Ref. [9] and in earlier literature. Specifically, Ref. [13]
analyzed the responses arising from the phase-space Chern
Simons term extensively. However, neither of these works
take into consideration the noncommutativity of phase space.
Using the analogy with (higher-dimensional) quantum Hall
effect and the inherent noncommutativity of phase space, we
are able to derive Eq. (5). This is the primary goal and main
result in this work.

The higher-dimensional CS action has been discussed in
literature in the context of higher-dimensional generalizations
of the quantum Hall effect [25]. Earlier works by Karabali and
Nair [26–28] have argued that the (2k + 1)-dimensional CS
term describing the dynamics of a quantum Hall droplet on
complex projective spaces CPk arises from a Seiberg-Witten
type mapping. While the analogy to the higher-dimensional
quantum Hall effect is important to our work as a motivation,
our starting point is much simpler, that of an incompressible
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liquid in phase space. The key derivations rely heavily on
the symplectic form for the noncommutative parameter that
characterizes quantum phase space.

The organization of this manuscript is as follows. In Sec. II,
we provide a brief review of noncommutative field theory
and the Seiberg-Witten (SW) map [43]. This serves as a
comprehensive introduction to the key technique that we will
use in formulating the field theory for the fermion liquid in
noncommutative phase space. Readers who are familiar with
noncommutative field theory may skip this section. In Sec. III,
we introduce the phase-space action in arbitrary dimensions,
and discuss general considerations that hold for all the special
cases discussed in later sections. In Sec. IV, we demonstrate
the power of our approach by formulating a 1D fermion liquid
(i.e., a Luttinger liquid) as the corresponding noncommutative
field theory in two-dimensional phase space. By assuming
that the fermion liquid satisfies Luttinger’s theorem, we show
explicitly how the CS term emerges naturally from the SW
map. In this sense, we successfully derive the ETS anomaly
in one-dimensional ersatz Fermi liquid [9]. Then, the same
approach is employed for two-dimensional fermion liquids
in Sec. V. Here, we obtain the most important result: the
CS term governing the anomaly and universal topological
responses emerges from the second-order SW map. Along the
way, we also obtain other terms that describe nontopological
responses. These terms describe the usual electromagnetic
responses in the semiclassical theory of metals, which are
relevant and important in realistic systems. Next, we dis-
cuss fermion liquids in three dimensions (3D) and beyond
in Sec. VI. Parallel to the 2D case, we obtain the seven-
dimensional (7D) CS term from the third-order expansion of
the SW map. Lastly, we summarize our work in Sec. VII. The
Appendixes discuss some technical issues and mathematical
derivations using the SW map, which also form an important
part of the present work.

II. REVIEW OF NONCOMMUTATIVE FIELD THEORY

A noncommutative field theory is defined in a noncommu-
tative space with the coordinates satisfying [20–23]

[X μ, X ν] = iθμν. (6)

In this work, the noncommutative space is the quantum phase
space with spatial coordinates Qj and momentum Pj , where
j = 1, . . . , d . Here, d is the spatial dimension of the system.
By defining X 2 j−1 = Qj and X 2 j = Pj , the noncommutative
parameters take the form

θ2 j−1 2 j = h̄. (7)

To easily compare the dimensionality between different terms
in the later discussion, we will keep h̄ = 1 explicit.

A theory defined in noncommutative space X μ can be
traded for a noncommutative field theory defined on the usual
commuting coordinates xμ ([xμ, xν] = 0). For this, the prod-
uct between two noncommutative fields needs to be replaced
by the Weyl-Moyal star product, which is defined as

f (x) � g(x) = exp

(
i

2
θμν ∂

∂xμ

∂

∂yν

)
lim
x→y

f (x)g(y). (8)

Our discussion in Sec. I A and early literature already
suggested that noncommutative field theory has a deep con-
nection with quantum Hall physics [24,29–36]. This is further
corroborated by the recent work on formulating a composite
fermion theory restricted to the lowest Landau level and other
related topics [37–42].

A. Seiberg-Witten map

The Seiberg-Witten map provides a systematic procedure
to approximate a noncommutative field theory by a commu-
tative field theory [43]. Here, we only focus on theories with
a U(1) gauge field coupled to a matter field. In commutative
field theories, a U(1) gauge potential transforms as

Aμ → Aμ + ∂μλ ⇒ δλAμ = ∂μλ. (9)

Both equations describe an exact transformation here. For a
matter field transforming in the fundamental representation,
one has

ψ → eiλψ ⇒ δλψ = iλψ. (10)

Note that the second equation describes an infinitesimal
transformation. We will use this notation in the following
discussion. The corresponding transformation for the non-
commutative U(1) gauge potential needs to transform in the
adjoint representation,

Âμ → Âμ + ∂μ� + i[�, Âμ]�

⇒ δ�Âμ = ∂μ� + i[�, Âμ]�. (11)

The last term in the transformation does not vanish since it is
a star product, which marks the biggest difference between
noncommutative and commutative gauge theories. For the
noncommutative matter field, one has

� → ei� � � ≈ � + i� � � ⇒ δ�� = i� � �. (12)

It is emphasized that we only consider left-coupling gauge
field in this work, which describes the probe field. This is dif-
ferent from the studies of composite fermion theory, in which
both left- and right-coupling (i.e., the emergent) gauge fields
are involved [37–42]. This avoids the subtlety of formulating
a mutual noncommutative Chern-Simons term [40,41].

1. Gauge equivalence conditions

The Seiberg-Witten map relates the sets of noncommuta-
tive and commutative fields via a list of gauge equivalence
conditions. From Eq. (10), subsequent gauge transformations
on ψ commute. On the other hand, Eq. (12) shows that sub-
sequent U(1) gauge transformations for � do not commute.
Specifically, one has

ei�α � ei�β � � ≈ (1 + i�α ) �
(
1 + i�β

)
� �

⇒ iδα�β � � = −(�α + �β ) � � − i�α � �β � �. (13)

Reversing the order of the transformations, one finds

ei�β � ei�α � � ≈ (
1 + i�β

)
� (1 + i�α ) � �

⇒ iδβ�α � � = −(�α + �β ) � � − i�β � �α � �. (14)

Since the above rules hold for every �, we have

iδα�β − iδβ�α = −[�α,�β ]�. (15)
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This gives a consistency condition that the noncommutative
gauge parameters �α and �β need to satisfy.

Next, the gauge potentials Â and A are related by the
following condition:

Âμ(A, θ ) + δ�Âμ(A, θ ) = Âμ(A + δλA, θ ). (16)

On the left, the transformation is performed on Âμ. The result
should be the noncommutative gauge potential that is associ-
ated with A after a usual U(1) transformation, i.e., A + δλA on
the right. From Eq. (9), one obtains

Âμ(A + δλA, θ ) − Âμ(A, θ ) = ∂μ� + i[�, Âμ]�

⇒ δλÂμ(A, θ ) = ∂μ� + i[�, Âμ]�. (17)

Similarly, the noncommutative and commutative matter fields
are related by

�(ψ, θ ) + δ��(ψ, θ ) = �(ψ + δλψ, θ )

⇒ �(ψ + δλψ, θ ) − �(ψ, θ ) = δ��(ψ, θ )

⇒ δλ�(ψ, θ ) = i� � �. (18)

In order to map or approximate a noncommutative field
theory by a commutative field theory, Eqs. (15), (17), and (18)
need to be solved consistently. This is achieved by assuming
the following functional forms for the noncommutative fields
and gauge parameters [43]:

� = �(λ, A, θ ), (19)

Â = Â(A, θ ), (20)

� = �̂(ψ, A, λ, θ ). (21)

Then, the noncommutative fields are expanded order by order
in θ such that one recovers the commutative fields as θ → 0:

� = �
(0)
λ + �

(1)
λ + �

(2)
λ + · · · , (22)

Âμ = Aμ + A(1)
μ + A(2)

μ + · · · , (23)

� = ψ + ψ (1) + ψ (2) + · · · . (24)

The symbol �
(k)
λ denotes a term in the kth order of θ . For

k = 0, we have �
(0)
λ = λ. For k > 0, �

(k)
λ is a function of λ,

Aμ, and their temporal and spatial derivatives. In principle,
Eqs. (15), (17), and (18) can then be solved order by order in
θ . Nevertheless, the task turns out to be very challenging when
one considers higher-order terms. In Appendix A, we discuss
some technical and mathematical results with respect to the
SW map, which are important to our work.

2. First-order solution in θ

To illustrate the systematic procedures in determining the
SW map, we discuss in detail the first-order SW map here. It
starts by deducing �

(1)
λ since Eq. (15) only involves � and λ.

By expanding Eq. (15) up to the first order in θ , we obtain

δα�
(1)
β − δβ�(1)

α = i[α, β]� = −θμν∂μα∂νβ. (25)

An inhomogeneous solution is given by [44–48]

�
(1)
λ = − 1

2θμνAμ∂νλ. (26)

Note that the SW map is not unique. One can always add a
homogeneous solution to �

(1)
λ [44,45].

For the gauge potential, performing a similar series expan-
sion for Eq. (16) and retaining terms up to the first order in θ

gives

δλ

[
Aμ + A(1)

μ

] = ∂μ

[
λ + �

(1)
λ

] − i(iθαβ∂αAμ∂βλ)

⇒ δλA(1)
μ = ∂μ

( − 1
2θαβAα∂βλ

) − θαβ∂βAμ∂αλ. (27)

A possible inhomogeneous solution is [44–48]

A(1)
μ = − 1

2θαβAα (∂βAμ + Fβμ). (28)

Here, Fβμ = ∂βAμ − ∂μAβ is the field tensor. The above result
can be rewritten as the sum of total derivatives (i.e., boundary
terms in the action) and a term in the Chern-Simons form [46]:

A(1)
μ = − 1

2∂β (θαβAαAμ) + 1
4θαβ (AμFβα + AβFαμ + AαFμβ ).

(29)

In 3D, the last term for A(1)
0 is actually the CS term. The term

vanishes when μ �= 0 in 3D but does not vanish in higher
dimensions:

A(1)
μ,3D = −1

2
∂β (θαβAαAμ) − h̄

2
δμ,0ε

αβνAα∂βAν . (30)

Note that in general, setting Âμ = 0 does not exclude the
possibility of the corresponding commutative gauge field Aμ

being nonzero under the SW map. When we go to the phase
space, this allows us to set the noncommutative fields Âpi =
Âxi = 0 for simplicity.

Lastly, we consider the first-order expansion for the matter
field using Eq. (18):

δλ[ψ + ψ (1)] = i[λ + λ(1)]

(
1 + i

2
θμν←−∂μ

−→
∂ν

)
[ψ + ψ (1)]

⇒ δλψ
(1) = iλψ (1) + iλ(1)ψ − 1

2
θμν∂μλ∂νψ. (31)

Since ψ (1) appears on both sides, ψ (1) must be a product
between an expression and ψ . After the action of δλ, the
expression should cancel the remaining two terms on the right.
This suggests a possible inhomogeneous solution [48,49],

ψ (1) = − 1
4θμνAμ(2∂ν − iAν )ψ. (32)

III. ACTION FOR PHASE-SPACE FERMION LIQUID IN
ARBITRARY DIMENSIONS

In this section, we give the general form for the action of
an incompressible fermion liquid in phase space in d spatial
dimensions. In subsequent sections we will develop the the-
ory for the physically relevant cases of one, two, and three
dimensions.

Assuming the usual noncommutativity relations [Eq. (7)]
for the position Xi and momentum Pi variables, we propose
the following Euclidean action for the incompressible liquid
in phase space:

S =
∫

d2d+1x �̄ �

(
∂�

∂τ
− iÂ0 � �

)
+ · · · , (33)

where the ellipses include terms of quartic and higher order
in the fermions. In writing the above action, we have already
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traded the noncommutativity in the coordinates for the Moyal-
Weyl star product. The (classical) phase-space measure is

d2d+1x = dτ

d∏
i=1

dxid pi. (34)

Incompressibility of the fermion liquid implies that the den-
sity operator �̄ � � and its commutative counterpart (zeroth
order in the Seiberg-Witten map) ρ ≡ ψ̄ψ have fixed expec-
tation values and their fluctuations (and other excitations)
gapped out in the bulk, and the low-energy excitations only
live on the boundaries. Thus, we write the density in phase
space as a sum of the mean density and fluctuations,

ψ̄ψ ≈ 〈ψ̄ψ〉 + δρ = ρ̄ + δρ, (35)

where ρ̄ is given by

ρ̄ = 1

(2π h̄)d
, (36)

and fluctuations above it can be integrated out perturbatively.
In a fully translation-invariant system the fermion liquid

has a boundary in the momentum directions corresponding
to the Fermi surface, and no boundary in real space because
periodic boundary conditions need to be imposed in real-space
directions. In reality, on the other hand, there is a real-space
boundary which breaks translation invariance. The advantage
of our phase-space formalism is that boundaries in real space
and momentum space, which are both parts of phase-space
boundaries, can be treated on the same footing. In order to
contain the liquid, there must be a confining potential in all
directions in Â0(xi, pi, τ ), which is nothing but the noninter-
acting Hamiltonian for the fermion liquid:

Â0(x, p, τ ) = ε̂(p) − μ + V̂0(x, p), (37)

where ε(p) is the band dispersion and V̂ is the external poten-
tial (which could in principle be momentum dependent). So,
in our phase-space formulation the kinetic (band) energy is
nothing but a confining potential in momentum space, which
is treated on equal footing with real-space potential. For sim-
plicity, we set Âp = Âx = 0.

Since a star product between two functions under the inte-
gral can be replaced by the ordinary product if boundary terms
can be neglected [20–23], the action can be simplified to

S =
∫

d2d+1x

[
�̄

(
∂�

∂τ
− iÂ0 � �

)]
+ · · · . (38)

The above form will be the starting point for our discussions
from hereon.

IV. EMERGENCE OF THE CHERN-SIMONS
TERM IN ONE DIMENSION

Let us study one-dimensional fermion liquids using the
phase-space formalism. We know that the topological re-
sponse is captured by the CS action or ETS anomaly in
Eq. (1). As we will demonstrate below, this term emerges
naturally by employing the SW map to the noncommutative
field theory formulated for the incompressible liquid in the
(2+1)-dimensional (phase) spacetime. This trick was first
employed in the recent studies of composite fermion theory

restricted to the lowest Landau level [37]. The main difference
is that the CS term we will obtain is for the probe field Aμ,
but not the emergent gauge field. Thus, it indeed governs the
anomaly and topological responses of the system under the
external electromagnetic field. Using the zeroth-order term
from the SW map in Eq. (38), we get

S =
∫

d3x[ψ̄ (∂τ − iA0)ψ] + · · · . (39)

Hereafter, we assume � and ψ are time independent. As
ψ̄ψ ≈ ρ̄ ∼ h̄−1, the term written explicitly in Eq. (39) is of
the order O(1/h̄).

Next, we consider the first-order θ expansion for Âμ in
Eq. (28). The zeroth component is given by

Â(1)
0 = − 1

2θμνAμ(∂νA0 + Fν0). (40)

Plugging in the incompressibility assumption Eq. (35), we
have

S ≡ S−1 + S0 + · · ·

=
∫

d3x[−iA0](ρ̄ + δρ)

+
∫

d3x
i

2
θμνAμ(∂νA0 + Fν0)(ρ̄ + δρ) + · · · . (41)

Using integration by parts or Eq. (30) directly, one obtains

S0 = ih̄ρ̄

2

∫
d3x εμνσ Aμ∂νAσ + S0,B + · · · , (42)

where S0,B denotes the boundary term in Eq. (30).
Finally, using ρ̄ = 1/(2π h̄) and ignoring the terms propor-

tional to δρ, we get

S0 − S0,B = i

2(2π )

∫
d3x εμνσ Aμ∂νAσ . (43)

We thus obtain the desired Chern-Simons term, and it is in this
sense we have a quantum Hall liquid in phase space. For the
remaining terms, we have

S−1 =
∫

d3x[−iA0]δρ (44)

and the boundary term from integration by parts is

S0,B = ih̄ρ̄

2

∫
d3x [∂2(A0A1) − ∂1(A0A2)]. (45)

The existence of boundary terms begets the question of
gauge invariance of the effective actions. Of course, the
starting action Eq. (38) is explicitly gauge invariant un-
der a U(1) gauge transformation in phase space. The full
SW map preserves this gauge invariance. The constraint
∂τ� = 0 is a gauge choice, which explains the apparent lack
of gauge invariance at order O(1/h̄) in S−1. Additionally, S0,B

is exactly canceled by a term that one gets upon relaxing
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incompressibility,

S0,B2 =
∫

d3x [−iA0](ψ̄ψ (1) + ψ̄ (1)ψ )

= i

2

∫
d3x θμν[A0Aμ∂ν (ψ̄ψ )]

= − ih̄

2

∫
d3x ψ̄ψ[∂2(A0A1) − ∂1(A0A2)], (46)

which becomes precisely −S0,B upon assuming ψ̄ψ ≈ ρ̄. Fi-
nally, we are left with the CS term, whose gauge invariance
must be imposed by additional boundary degrees of freedom
corresponding to the edge excitations of the quantum Hall
liquid, as expected.

V. 2D FERMION LIQUID AS 4D PHASE-SPACE
QUANTUM HALL LIQUID

Next, we specialize to two spatial dimensions, where
the action, Eq. (38), is integrated over (2 + 2 + 1)-D
space with d5x = dτdxd pxdyd py. Again, the Fermi sur-
face (pF

x (θ ), pF
y (θ )) defines the boundary in the momentum

directions.
Following the previous example on one-dimensional space,

we assume � and ψ are time independent. The mean density
is now ρ̄ = 1/(2π h̄)2. The leading term in the effective action
for the fermion liquid is thus of order O(1/h̄2):

S−2 = 1

(2π h̄)2

∫
d5x[−iA0] + · · · . (47)

A. Order-by-order expansion in θ

1. Contribution from first-order expansion for Â0

The first subleading term scales as θ−1,

S−1 =
∫

d5x
[ − iA(1)

0 ψ̄ψ
]

= iρ̄

2
θαβ

∫
d5x[Aα (∂βA0 + Fβ0)], (48)

up to contributions from the fluctuations δρ. We define the
coordinate system for the phase space with imaginary time
as (τ, x, px, y, py ). Here, τ is the zeroth coordinate. Thus, the
antisymmetric tensor θ takes a symplectic form,

θ12 = θ34 = 1, θ21 = θ43 = −1, and zero otherwise (49)

Using the previous trick of integration by parts [or Eq. (30)]
twice, we have

S−1 = iρ̄

2
θαβ

∫
d5x[Aα (∂βA0 + Fβ0)]

= ih̄ρ̄

2

⎡
⎣∫

d5x εμνσ Aμ∂νAσ

∣∣∣∣ (μ,ν,σ )
=(0,1,2)

+
∫

d5x εμνσ Aμ∂νAσ

∣∣∣∣ (μ,ν,σ )
=(0,3,4)

⎤
⎦ + S−1,B. (50)

This is similar to having two decoupled Landau levels in
(x, px ) and (y, py) [19]. Note that S−1 is not a genuine

Chern-Simons term in the five-dimensional spacetime, but
the two three-dimensional subspaces (τ, x, px ) and (τ, y, py ).
S−1,B collects the boundary terms from the two lower-
dimensional CS forms.

The CS 3-forms in S−1 are “nontopological” in the sense
that their coefficients are not quantized in 4+1-D phase space.
However, this does not mean that their forms are arbitrary. In
fact, S−1 is invariant under any canonical transformations in
phase space. Under a canonical transformation

(x, y, px, py) → (x′, y′, p′
x, p′

y),

the phase-space measure remains invariant due to the sym-
plectic condition. For the gauge fields, A0 remains invariant,
but the remaining Aμ transform as covariant vectors

A′
μ =

∑
ν �=0

∂x′ν

∂xμ
Aν . (51)

Let us consider the set of terms

A0(∂1A2 − ∂2A1 + ∂3A4 − ∂4A3). (52)

After the canonical transformations, they remain invariant due
to the invariance of the Poisson bracket {x′μ, x′ν} between
canonical coordinates:

A′
0

⎛
⎝ ∑

ν,σ �=0

∂x′ν

∂x1

∂x′σ

∂x2
− ∂x′ν

∂x2

∂x′σ

∂x1

⎞
⎠∂A′

σ

∂x′
ν

+ A′
0

⎛
⎝ ∑

ν,σ �=0

∂x′ν

∂x3

∂x′σ

∂x4
− ∂x′ν

∂x4

∂x′σ

∂x3

⎞
⎠∂A′

σ

∂x′
ν

= A′
0

∑
ν,σ �=0

{x′ν, x′σ }∂A′
σ

∂x′
ν

= A′
0(∂ ′

1A′
2 − ∂ ′

2A′
1 + ∂ ′

3A′
4 − ∂ ′

4A′
3). (53)

The same holds true for the remaining terms in the CS
3-form as well. Thus, the total contribution to the physical
responses from the nontopological terms are invariant under
arbitrary canonical transformations in phase space.

2. Contribution from second-order expansion for Â0

Finally, let us consider the contribution from A(2)
0 ,

S0 =
∫

d5x
[−iA(2)

0 ψ̄ψ
]
. (54)

In Appendix A, we show that in five-dimensional phase space,
A(2)

0 can be rewritten as the sum of a Chern-Simons form and
boundary terms [Eq. (A24)]. A direct substitution of the result
gives

S0 − S0,B = −iρ̄ h̄2

6

∫
d5x εαβσρνAα∂βAσ ∂ρAν, (55)

where S0,B is a surface term contributed by the first line in
Eq. (A24). Thus, we arrive at one of our main results, the first
term in Eq. (55) is the correct dimensionless CS 5-form with
the correct prefactor 1/[6(2π )2].

The topological CS term describes several contributions to
responses in the 2D EFL [9,13], especially the unquantized
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part of the anomalous Hall response [54] in the presence
of nonzero Berry curvature Fpx,py [61]. Additionally, if we
view the current as being generated by Bloch wave packets
φR,K(x, y), we also obtain the response due to mixed-space
Berry curvatures [55–57], such as

Fxi,p j = ∂xi Apj − ∂p j Axi , (56)

which can be activated for electronic wave packets moving in
the presence of a topologically nontrivial magnetic structure.

B. Semiclassical terms in the response

An upshot of our treatment of the phase-space quantum
Hall liquid is that in addition to the topological CS term
in 4+1-D phase space proposed by ETS, we also get the
lower-dimensional (and nontopological) CS forms [Eq. (50)].
The CS 3-forms (CS3) generate the group velocity term in the
current,

JCS3
xi

∝
∫

d pxd py δρ ∂pi A0. (57)

As noted earlier, the p-dependent part of A0 is the dispersion
ε(p) and thus ∂pi A0 = ∂piε is the group velocity. Adopting
the electronic wave-packet point of view, we also get its
momentum-space equivalent,

JCS3
pi

∝ dKi

dt
= −∂xi A0, (58)

which is nothing but Newton’s second law. These semiclas-
sical terms were absent from earlier works focusing only on
the topological term. In fact, the semiclassical response will
always be generated for the ersatz Fermi liquid in any space-
time dimension. Consider the EFL in d spatial dimensions.
The first-order SW map for Â0 will always yield a set of
terms like Eq. (50), for each set of conjugate pairs (xi, pxi ).
The semiclassical contributions are essentially the Hamilton-
Jacobi equations for a free electron moving in the presence
of an electric field, and thus are invariant under arbitrary
canonical transformations, as we already saw in Eq. (53). This
is what fixes the form of S−1.

VI. FERMION LIQUIDS IN 3D AND BEYOND

The main obstacle to generalizing our results to arbitrary d
is that it is difficult to verify if one always gets the topological
CS term in the Seiberg-Witten map, though this has been
conjectured in earlier literature, such as Ref. [46]. There is
a recursive solution to the SW map at all orders (Ref. [47]
and Appendix A), which ensures that the topological term
Eq. (5) can only arise at order d on the SW map, but not
earlier. This implies one needs to go to higher orders in the SW
map in higher dimensions in order to obtain the topological
CS term, which quickly becomes quite challenging. For the
case of three spatial dimensions, we were able to verify the
conjecture (Appendix B) using an approach analogous to the
proof in two dimensions. The main result of Appendix B is
that the third-order term A(3)

0 in the SW map for the gauge
field can be rewritten as a CS term in 6+1-D phase space, up
to total derivatives. Thus, for the physically relevant cases of
d = 1, 2, 3 the topological CS term is in fact derived from the
SW map.

FIG. 2. Generation of different CS actions in the six-dimensional
phase space with imaginary time, and the corresponding subspaces
with smaller odd dimensions under the SW map. Note that there is
only a single imaginary time τ .

For the three-dimensional fermion liquids, similar to the
previous cases, the lowest-order expansion consists of several
terms (Fig. 2),

S = S−3 + S−2 + S−1 + S0 + · · · , (59)

where

Sn−3 =
∫

d7x
[−iA(n)

0

]
ψ̄ψ (60)

for n ∈ (0, 1, 2, . . .). By generalizing Eq. (50) and assuming
incompressibility, we see that S−2 consists of three terms that
describe the CS 3-form in each set of conjugate variables
(x, px ), (y, py), and (z, pz ). Similarly, S−1 consists of three
terms that describe the CS 5-form in separate pairs formed by
any two sets of conjugate variables (x, px ), (y, py), and (z, pz ),
with a boundary term:

S−1[A] = −i�z,pz

6(2π )3h̄

∫
d5x εμνσρδAμ∂νAσ ∂ρAδ

∣∣∣∣ (μ,ν,σ,ρ,δ)
=(0,1,2,3,4)

+ (x → y → z) + (x → z → y) + S−1,B + O(δρ),

(61)

where �xi,pxi
is the volume in phase space along the specified

directions and S−1,B collects all the boundary terms.
At order S0 (contribution of the third-order SW term A(3)

0 ),
we have the topological CS term

S0 − S0,B = i

(2π )34!

∫
A ∧ dA ∧ dA ∧ dA (62)

with the correct quantized coefficient for 7D (phase) space-
time.

Again, like the 2D scenario, we obtain the nontopolog-
ical terms S−1 and S−2 which describe physically relevant
responses of the fermion liquids. S−2 contains three sets of
CS 3-forms for each pair of conjugate variables (xi, pi ) and
generates the semiclassical responses Eqs. (57) and (58). The
set of CS 5-forms S−1 is responsible for generating the anoma-
lous Hall responses in all three spatial currents Jx, Jy, and Jz

when the Fermi surface encloses nonzero Berry flux

σCS5
xi,x j

∝
∫

d pid p j Fpi,p j . (63)
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The nonquantized part of the anomalous Hall response in
the equilibrium current is yet another important contribu-
tion that cannot be obtained from the topological CS term
[Eq. (62)] that yields the ETS anomaly. Thus, our approach
unifies all possible responses of the fermion liquid to real- or
momentum-space gauge fields.

VII. CONCLUDING REMARKS

We have shown that fermion liquids with Fermi surfaces
satisfying the Luttinger sum rule can be viewed as incom-
pressible liquids in phase space, which are topologically
nontrivial in the way similar to quantum Hall liquids. Tak-
ing into consideration the noncommutativity of phase space,
we employed the Seiberg-Witten map to derive the effective
action governing their responses to external probing gauge
fields. In addition to the topological term that captures the ETS
anomaly, the phase-space formalism also yields lower-order
terms that reproduce semiclassical and other nonquantized
responses in 2D and 3D. From the viewpoint of noncommuta-
tive field theory, our work also presents an important technical
advancement. It has been a longstanding conjecture [46] that
CS forms arise at all orders in the SW map. We prove that this
is indeed true, up to order 3. In Appendix C, we sketch a proof
by induction for the higher-order terms.

Our work unifies the description of Fermi and non-Fermi
liquids, as they share the same bulk (in phase space) topo-
logical properties. Their difference, on the other hand, lies at
the phase-space boundary, including the Fermi surface. This
is similar to what happens in quantum Hall liquids with a
specific bulk topological order, where edge physics can still be
different due to nonuniversal physics like edge reconstruction.
As a concrete example, the edge of a ν = 1 quantum Hall
liquid is a Fermi liquid without reconstruction, but becomes
a Luttinger liquid with reconstruction. Our work further uni-
fies the description of Fermi surface (or momentum-space
boundary) with real-space boundary, as they are both parts
of phase-space boundary. Strictly speaking, Fermi surfaces
are not sharp in the presence of disorder and/or a real-space
boundary. As both break translation symmetry, one can only
talk about phase-space boundary in such cases. This suggests
the possibility of probing Fermi surface physics at the real-
space boundary of the system, in a way similar to edge physics
of quantum Hall liquids.

In a way our work also unifies the description of metals
and (band or Mott) insulators, which are normally considered
the exact opposite of each other. The similarity between them,
in the context of the present paper, lies in their incompress-
ibility, one in phase space and the other in real space. In fact,
insulators are also incompressible in phase space, except their
boundaries are confined to real space (in other words, they
have no Fermi surface). From this viewpoint the difference
between metal and insulator lies in the (phase space) bound-
ary, with insulators being simpler because their phase-space
boundaries are orthogonal to the momentum-space directions.

This line of work will likely lead to new insights into
high-dimensional bosonization (of the Fermi surface), the
formulation of which has not been entirely satisfactory. A
promising formulation has appeared recently in Ref. [50] and
subsequent works [51–53]. Our perspective, namely, treating

the Fermi surface as the boundary of an incompressible liquid
in phase space, is complementary to this approach.

It is tempting to generalize our approach to study interact-
ing quantum Hall liquid in phase spaces that are topologically
distinct from those studied here, and explore its physical con-
sequences. In particular, one can consider a fractional version
of the incompressible liquids with higher levels of CS term in
their effective action. Such liquids satisfy a fractional version
of the Luttinger sum rule, in a way similar to fractional quan-
tum Hall liquids with a fractional bulk filling factor. Due to
the quantization of the level of the CS term, the phase-space
density of such liquids must be a rational fraction of that
dictated by the Luttinger sum rule, the simplest version of
which is 1/m, with m being an integer. This corresponds to the
Laughlin sequence in fractional quantum Hall effect [58]. It is
not immediately clear, however, whether m has to be odd for
d � 2. We leave these issues to be addressed in future works.
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APPENDIX A: TECHNICAL DETAILS OF THE
SECOND-ORDER SEIBERG-WITTEN MAP

In the main text, we have demonstrated explicitly how
to obtain the first-order SW map. The result can be used to
deduce the second-order SW map, which was used in Sec. V
to derive the Chern-Simons action and different responses of
fermion liquids in two dimensions. However, the derivation
of second- and higher-order SW maps is tedious and highly
technical. In this Appendix, we provide the derivation based
on the useful results reported in previous literature [46,47].

By expanding Eq. (15) to second order in θ , we obtain

δα

[
β + �

(1)
β + �

(2)
β

] − δβ

[
α + �(1)

α + �(2)
α

]
= −θμν

[
∂μα + ∂μ�(1)

α

][
∂νβ + ∂ν�

(1)
β

]
. (A1)

Comparing different terms order by order in θ , we have

δαβ − δβα = 0, (A2)

δα�
(1)
β − δβ�(1)

α = −θμν∂μα∂νβ. (A3)

The solution to the first-order equation is given in Eq. (26).
Our main focus here is the second-order equation,

δα�
(2)
β − δβ�(2)

α

= 1
2θμνθσρ[(∂μα)∂ν (Aσ ∂ρβ ) + (∂νβ )∂μ(Aσ ∂ρα)]. (A4)
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A possible inhomogeneous solution is given by [46,47]

�
(2)
λ = 1

6θμνθσρAν[∂μ(Aρ∂σλ) − Fρμ∂σλ]. (A5)

Furthermore, Ref. [46] pointed out explicitly that �
(2)
λ can be

written as

�
(2)
λ = 1

6∂μ(θμνθσρAνAρ∂σλ)

− 1
12θμνθσρ (AρFμν + AμFνρ + AνFρμ)∂σλ. (A6)

In 4 + 1-D, the second term can be rewritten in a Chern-
Simons form. Hence,

�
(2)
λ = 1

6∂μ(θμνθσρAνAρ∂σλ) − 1
6 h̄2εμνσρAρ∂μAν∂σ λ. (A7)

The above rewriting is achieved by using the following iden-
tity:

θμνθσρ (AρFμν + AμFνρ + AνFρμ)∂σ f

= h̄2εμνσρAρFμν∂σ f = 2h̄2εμνσρAρ∂μAν∂σ f , (A8)

where f can be any function. Another useful identity for later
discussion is

θμνθσρ (∂μAνFσρ + ∂μAσ Fρν + ∂μAρFνσ )

= 2h̄2εμνσρ∂μAν∂σ Aρ (A9)

Note that these identities only work in 4+1-D with the Greek
letters taking nonzero value.

By expanding Eq. (16) to second order in θ , we have

δλ

[
Aμ + A(1)

μ + A(2)
μ

] = ∂μ

[
λ + �

(1)
λ + �

(2)
λ

]
− θαβ∂β

[
Aμ + A(1)

μ

]
∂α

[
λ + �

(1)
λ

]
.

(A10)

Comparing terms order by order in θ , we have

δλAμ = ∂μλ (A11)

δλA(1)
μ = ∂μ�

(1)
λ − θαβ∂βAμ∂αλ (A12)

δλA(2)
μ = ∂μ�

(2)
λ − θαβ∂βAμ∂α�

(1)
λ − θαβ∂βA(1)

μ ∂αλ.

(A13)

It is challenging to solve the equation for A(2)
μ . A possible

solution is reported in Ref. [47]:

A(2)
μ = 1

6
θαβθρσ Aα[∂β (Aρ∂σ Aμ) + Fβρ∂σ Aμ + 2∂β (AρFσμ)

+ 2FβρFσμ]. (A14)

Notice that other forms for A(2)
μ have been reported, which

differ from each other and Eq. (A14) by a total derivative [48].
It is difficult to determine whether A(2)

μ (in particular, A(2)
0 ) can

be expressed as a sum of boundary terms and a CS 5-form.
We will later discuss a recursive solution that allows us to

verify such a possibility and generalize to higher dimensions.
Using similar procedures, one can derive an expression for
ψ (2) [49]. The expression is very lengthy, but its exact form is
not important in our discussion.

1. Double series expansion, recursive solution,
and Chern-Simons term in 5D

In the Seiberg-Witten map, one usually expands �, Âμ, and
� in powers of the noncommutative parameter θαβ . Another
possible expansion is in a power series of gauge potential.
Then, each noncommutative quantity becomes a power series
of both θ and A. One writes

� =
∑
n,m

�
(n,m)
λ

(An, θm) (A15)

Â =
∑
n,m

A(n,m)(An, θm). (A16)

Here, A(n,m) denotes the term involving a product of n + 1 A
and ∂A and the mth power of θ . Using this double expansion,
one has the recursive solution

�
(n,n)
λ = − 1

n + 1
θαβA(n−1,n−1)

α ∂βλ (A17)

A(n,n)
μ = − 1

n + 1
θαβA(n−1,n−1)

α (∂βAμ + nFβμ). (A18)

Note that in these recursive solutions, one needs to treat
A(n−1,n−1)

α as an operator acting from the left to all terms
on their right-hand side. This is important in dealing with
the differential operators. Now, we will use Eq. (A18) to
rewrite A(2)

μ .
We first use Eqs. (A17) and (A18) to verify with the solu-

tions for �
(2)
λ and A(2)

μ in Eqs. (A5) and (A14), respectively. In

the second-order expansion in θ , one only has �
(2)
λ = �

(2,2)
λ

and A(2)
μ = A(2,2)

μ . The same feature holds for �
(1)
λ and A(1)

μ in
the first-order expansion in θ [47]. Using Eq. (A17),

�
(2,2)
λ = − 1

3θαβA(1,1)
α ∂βλ

= − 1
3θαβ

[ − 1
2θμνAμ(

−→
∂ν Aα + Fνα )

]
∂βλ

= 1
6θμνθαβAμ[∂ν (Aα∂βλ) + Fνα∂βλ]. (A19)

This agrees with Eq. (A5) after a redefinition of the indices.
Using Eq. (A18), we have

A(2,2)
μ = − 1

3θαβA(1,1)
α (∂βAμ + 2Fβμ)

= − 1
3θαβ

[ − 1
2θσρAσ (

−→
∂ρ Aα + Fρα )

]
(∂βAμ + 2Fβμ)

= 1
6θσρθαβAσ [∂ρ (Aα∂βAμ) + Fρα∂βAμ + 2∂ρ (AαFβμ)

+ 2FραFβμ]. (A20)

This is exactly the expression in Eq. (A14).
Meanwhile, A(1,1)

α has been rewritten as a sum of derivative
term and a CS form in Eq. (30). Let us repeat it here with a
new set of indices,

A(1,1)
α = − 1

2∂ρ (θσρAσ Aα ) + 1
4θσρ (AαFρσ + AρFσα + Aσ Fαρ ).

(A21)
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Using it and the recursive solution, we obtain

A(2,2)
μ = − 1

3θαβ
[ − 1

2

−→
∂ρ (θσρAσ Aα ) + 1

4θσρ (AαFρσ + AρFσα + Aσ Fαρ )](∂βAμ + 2Fβμ)

= 1
6∂ρ

[
θαβθσρAσ Aα (∂βAμ + 2Fβμ)

] − 1
12θαβθσρ (AαFρσ + AρFσα + Aσ Fαρ )(∂βAμ + 2Fβμ).

Following the derivation of A(1)
μ in Eqs. (28) and (30), we

perform an integration by parts to the second term with ∂βAμ.
This gives

A(2,2)
μ = 1

6∂ρ

[
θαβθσρAσ Aα (∂βAμ + 2Fβμ)

]
− 1

12∂β

[
θαβθσρAμ(AαFρσ + AρFσα + Aσ Fαρ )

]
+ 1

12θαβθσρAμ(∂βAαFρσ + ∂βAρFσα + ∂βAσ Fαρ )

− 1
6θαβθσρ (AαFρσ + AρFσα + Aσ Fαρ )Fβμ

+ 1
12θαβθσρAμ(Aα∂βFρσ + Aρ∂βFσα + Aσ ∂βFαρ ).

(A22)

The last term vanishes due to the antisymmetry of θ and F .
The first line is clearly a sum of two boundary terms which
can be further simplified. Using Eqs. (A8) and (A9), we have

A(2,2)
μ = 1

6
θαβθσρ∂ρ[Aσ Aα (∂βAμ + 2Fβμ)

− Aμ(Aσ ∂βAα + AβFασ )]

+ h̄2

6
εαβσρ[Aμ∂αAβ∂σ Aρ + 2Aα∂βAσ ∂ρAμ

− 2Aα∂μAβ∂σ Aρ]. (A23)

In 5D, the expression can be written as a sum of derivative
term and a CS 5-form:

A(2,2)
μ = 1

6
θαβθσρ∂ρ[Aσ Aα (∂βAμ + 2Fβμ)

− Aμ(Aσ ∂βAα + AβFασ )]

+ h̄2

6
δμ,0ε

αβσρνAα∂βAσ ∂ρAν . (A24)

Similar to A(1)
μ = A(1,1)

μ , the CS term vanishes if μ �= 0. When
d < 5, the CS term vanishes for all μ. This completes our
discussion of the second-order SW map.

APPENDIX B: CHERN-SIMONS TERM IN THE
THIRD-ORDER SW MAP

In this Appendix, we show that the diagonal term in the
third-order SW map for the gauge potential, A(3,3)

μ , in non-
commutative phase space can be written as a sum of a total
derivative and a term of the Chern-Simons form. For the case
of 6+1-D phase space, we obtain the topological CS term.
From the recursive relation for diagonal terms [47], we have

A(3,3)
γ = − 1

4θαβA(2,2)
α (∂βAγ + 3Fβγ ). (B1)

For the second-order term, A(2,2)
α , we use the form derived

in Appendix A which makes the (4+1-D) CS term more

explicit [Eq. (A23)],

A(2,2)
α = 1

6θμνθσρ∂ρ[Aσ Aμ(∂νAα + 2Fνα )

− Aα (Aσ ∂νAμ + AνFμσ )]

+ h̄2

6
εμνσρ[Aα∂μAν∂σ Aρ + 2Aμ∂νAσ ∂ρAα

− 2Aμ∂αAν∂σ Aρ], (B2)

with the understanding that the εμνσρ antisymmetrizes
nonzero indices in groups of four. For example, in 6+1-D,
it will antisymmetrize the three groups

(μ, ν, σ, ρ) ∈ (1, 2, 3, 4), or (B3)

∈ (1, 2, 5, 6), or (B4)

∈ (3, 4, 5, 6). (B5)

We can rewrite the CS form in A(2,2)
α in terms of fields Fμν ,

A(2,2)
α = 1

6
θμνθσρ∂ρ[Aσ Aμ(∂νAα + 2Fνα )

− Aα (Aσ ∂νAμ + AνFμσ )]

+ h̄2

6
εμνσρ

[
1

4
AαFμνFσρ + AμFνσ ∂ρAα

− AμFσρ∂αAν

]

= 1

6
θμνθσρ∂ρ[Aσ Aμ(∂νAα + 2Fνα )

− Aα (Aσ ∂νAμ + AνFμσ )]

+ h̄2

24
εμνσρ

[
AαFμνFσρ + 4AμFνσ Fρα

]
. (B6)

In the last equality, we have used the identity

εμνσρAμFσρ∂αAν = εμνσρAμFνσ ∂αAρ. (B7)

When applying the recursive formula, we need to keep in
mind that the derivatives that are not part of gauge-invariant
quantities like Fμν act as operators from the left.

A(3,3)
γ = − 1

24
θαβθμνθσρ{�∂ρ[Aσ Aμ(�∂νAα + 2Fνα )

− Aα (Aσ �∂νAμ + AνFμσ )](∂βAγ + 3Fβγ )}

− h̄2

96
θαβεμνσρ[AαFμνFσρ + 4AμFνσ Fρα](∂βAγ

+ 3Fβγ ). (B8)

We know that every term generated by the first term in
Eq. (B6) in the above equation can be written as a total
derivative, so we drop those terms temporarily for the sake of
simplicity. In our search for the CS terms we will continuously
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drop the boundary contributions going ahead. We will address
the boundary terms after deriving the CS form. Let us define
for convenience

A(3,3)
γ ≡ A(3,3)

γ − (Bdy terms). (B9)

We have

A(3,3)
γ = − h̄2

96
θαβεμνσρ[AαFμνFσρ + 4AμFνσ Fρα]

× (∂βAγ + 3Fβγ ). (B10)

Similar to the derivation of the CS term in the first- and
second-order SW maps, we integrate by parts the term with
∂βAγ . Up to the boundary terms, we get

A(3,3)
γ = h̄2

96
θαβεμνσρAγ (∂βAαFμνFσρ + 4∂βAμFνσ Fρα )

− h̄2

32
θαβεμνσρ (AαFμνFσρ + 4AμFνσ Fρα )Fβγ

+ h̄2

96
θαβεμνσρ[Aα∂β (FμνFσρ ) + 4Aμ∂β (Fνσ Fρα )].

(B11)

At this point, we verify a few identities explicitly for the 6D
phase space using MATHEMATICA [59]. In the above equation,
the last term sums to zero because of the antisymmetry of θαβ ,

εμνσρ , and the field tensors. Thus, we have

θαβεμνσρ[Aα∂β (FμνFσρ ) + 4Aμ∂β (Fνσ Fρα )] = 0 (B12)

when the Greek indices take nonzero values (1, . . . , 6). For
the first term in Eq. (B11), we verified the identity

θαβεμνσρ (∂βAαFμνFσρ + 4∂βAμFνσ Fρα )

= −4h̄εαβμνσρ∂αAβ∂μAν∂σ Aρ, (B13)

where εαβμνσρ is the fully antisymmetric tensor in six indices.
Similarly, the second term in Eq. (B11) can be simplified as

θαβεμνσρ (AαFμνFσρ + 4AμFνσ Fρα )Fβγ

= 4h̄εαβμνσρAα∂βAμ∂νAσ (∂ρAγ − ∂γ Aρ ). (B14)

Now we can see the 7D CS term taking form. Using all three
of the above identities together, we get

A(3,3)
γ = − h̄3

24
εαβμνσρ[Aγ ∂αAβ∂μAν∂σ Aρ

+ 3Aα∂βAμ∂νAσ (∂ρAγ − ∂γ Aρ )], (B15)

which is nothing but the 7D CS term when γ = 0:

A(3,3)
γ = − h̄3

24
δγ ,0ε

αβμνσρδAα∂βAμ∂νAσ ∂ρAδ. (B16)

Thus, the diagonal term A(3,3)
γ in the third-order Seiberg-

Witten map can be written as the sum of a topological CS term
in 7D and total derivatives. For the sake of completeness, let
us evaluate the boundary terms explicitly:

A(3,3)
γ − A(3,3)

γ = − 1

24
θαβθμνθσρ{∂ρ[Aσ Aμ∂ν (Aα∂βAγ + 3AαFβγ ) + 2Aσ AμFνα (∂βAγ + 3Fβγ )]}

+ 1

24
θαβθμνθσρ{∂ρ[AαAσ ∂ν (Aμ∂βAγ + 3Fβγ ) + AαAνFμσ (∂βAγ + 3Fβγ )]}

− h̄2

96
θαβεμνσρ∂β[AαAγ FμνFσρ + 4AμAγ Fνσ Fρα]. (B17)

At the third order in θ , A(3,3)
γ is not the only term in the SW

map,

A(3)
γ = A(3,3)

γ + A(1,3)
γ . (B18)

There is another term which is order 1 in A, given by [47]

A(1,3)
γ = 1

48θαβθμνθσρ (∂α∂μAσ )[∂β∂ν (∂ρAγ + Fργ )]. (B19)

Integrating by parts, we see that A(1,3)
γ is in fact a boundary

term,

A(1,3)
γ = 1

48θαβθμνθσρ∂β[(∂α∂μAσ )∂ν (∂ρAγ + Fργ )].
(B20)

Thus, we arrive at the conclusion that the third-order SW
map expansion for the U(1) gauge field A0 can be writ-
ten as the sum of a Chern-Simons term in 7D and total

derivatives,

A(3)
γ = − h̄3

24
δγ ,0ε

αβμνσρδAα∂βAμ∂νAσ ∂ρAδ + (Bdy terms).

(B21)

APPENDIX C: CS FORMS IN HIGHER-ORDER TERMS IN
THE SW MAP: AN INCOMPLETE PROOF

In the main text and Appendixes A and B, we have de-
rived the CS terms for the three-, five-, and seven-dimensional
(phase) spacetime based on the first three orders of the
Seiberg-Witten map. A natural follow-up question is: Can
similar Chern-Simons terms in 2p + 1 dimensions be derived
from the pth order SW map? It is tempting to think that a
similar procedure as in Appendix B can be generalized to
arbitrary dimensions. In this section, we sketch an incomplete
proof of this statement by induction.

Before we proceed, it is important to note that the deriva-
tion of the CS terms in the SW map at the second order
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and higher orders is only discussed here in the context where
the noncommutativity matrix θαβ takes the symplectic form.
That is,

θ2i−1,2i = h̄, i ∈ (1, 2, . . . , d ). (C1)

Now, we begin the proof by induction. Assume that
A(p−1,p−1)

γ can be written as a CS form in 2(p − 1) + 1 di-
mensions,

A(p−1,p−1)
γ = (−h̄)d−1A[

γ
∂μ1 Aμ2∂μ3 Aμ4 , . . . , ∂μ2p−3 Aμ

2p−2

]
+ (Bdy terms), (C2)

where the square brackets denote antisymmetrization of the
indices. Given the above form and the recursive relation

A(p,p)
γ = − 1

p + 1
θαβA(p−1,p−1)

α (∂βAγ + pFβγ ), (C3)

we need to prove that the resulting diagonal term is also of
a CS form. The edge case is proved in Appendix B, where
we showed that the CS form in the third-order SW map can
be derived from the second-order terms and the recursive
relation.

The boundary terms from A(p−1,p−1)
γ become boundary

terms in A(p,p)
γ because derivatives enter as operators in the re-

cursive relation. We ignore the boundary terms. Next, we must
integrate by parts the term with ∂βAγ . This is possible if the
higher-dimensional equivalents of the identities Eqs. (B12)–
(B14) are proven. Here, we state them as conjectures.

Conjecture C.1. We conjecture that the terms with deriva-
tives of field tensor that are generated due to the integration
by parts of ∂βAγ sum up to zero in arbitrary dimensions.
Formally,

θαβεμ1...μ2p−2

[
Aα∂β

(
p−1∏
i=1

Fμ2i−1,μ2i

)
+ 2(p − 1)Aμ1∂β

×
(

Fμ2p−2,α

p−2∏
i=2

Fμ2i,μ2i+1

)]
= 0, (C4)

where the antisymmetric tensor ε is understood to antisym-
metrize a set of 2(p − 1) indices at a time (there will be p
such combinations).

Conjecture C.2. Next, we conjecture the analog of
Eq. (B13),

θαβ (∂βA[γ )∂μ1 Aμ2 , . . . , ∂μ2p−3 Aμ2p−2]

= − h̄

(2p − 1)!
εμ1,...,μ2p

2p−1∏
i=1

∂μi Aμi+1 . (C5)

Conjecture C.3. Finally, we have the higher-dimensional
analog of Eq. (B14),

θαβεμ1,...,μ2p−2

⎡
⎣Aα

p−1∏
i=1

Fμ2i−1,μ2i + (p − 1)Aμ1 Fμ2p−2,α

×
p−2∏
i=2

Fμ2i,μ2i+1

⎤
⎦Fβγ

= 2p−1h̄εμ1,...,μ2pAα∂βAμ1

(
∂μ2p−2 Aγ − ∂γ Aμ2p−2

)
×

p−2∏
i=2

∂μ2i Aμ2i+1 . (C6)

Using these identities in the recursive formula, it is easy to see
that

A(p,p)
γ = −h̄pA[

γ
∂μ1 Aμ2 , . . . , ∂μ2p−1 A

μ2p

] + (Bdy terms).

(C7)
When the indices take values μi ∈ (1, 2, 3, . . . , 2p). Due to
the antisymmetry of γ with respect to μi, the CS term only
contributes when γ = 0. Thus, we can write

A(p,p)
γ = (−h̄)p

(p + 1)!
δγ ,0ε

μ1,...,μ2p+1 Aμ1∂μ2 Aμ3 , . . . , ∂μ2pAμ2p+1

+ (Bdy terms), (C8)

where μi now take values (0, 1, 2, . . . , 2p). Thus, starting
from the form of A(p−1,p−1)

0 , we have shown that the pth-order
diagonal term A(p,p)

0 can be rewritten as a topological CS
term in 2p + 1-dimensional spacetime, up to total derivatives.
The proof is strictly incomplete—it relies strongly on the
conjectures we made. Nevertheless, the recursive nature of
the procedure hints that there might be a deep mathematical
reason for the appearance of the CS forms in the SW map at
all orders. In particular, Ref. [46] pointed out that the SW map
of a noncommutative Abelian gauge field can be formulated
in the language of Becchi-Rouet-Stora-Tyutin (BRST) coho-
mology. In this formulation, the topologically nontrivial CS
terms derived from the Seiberg-Witten map can be understood
as different nontrivial elements in the BRST cohomology
groups. In our present work, there is an additional symplectic
structure for the noncommutative phase space. We are not
aware of any mathematical proof for the emergence of CS
terms in every order of the Seiberg-Witten map, and how it
can be derived rigorously through BRST cohomology. We
will leave this as a speculation and an open question to future
work.
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