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The Mott transition, a metal-insulator transition due to strong electronic interaction, is observed in many ma-
terials without an accompanying change of system symmetry. An important open question in Mott’s proposal is
the role of long-range screening, whose drastic change across the quantum phase transition may self-consistently
make the transition more abrupt, toward a first-order one. Here, we investigate this effect in a model system of
hydrogen atoms in a cubic lattice, using charge self-consistent dynamical mean-field theory that incorporates
approximately the long-range interaction within the density functional treatment. We found that the system is
well within the charge-transfer (CT) regime and that the CT gap intimately related to the Mott transition closes
smoothly instead. This indicates that the long-range screening does not play an essential role in this prototypical
example. This finding can be understood from the fact that the obtained insulating phase in this model system
is driven by strong local interaction, and the transition is associated with the closing of CT gap. Contrary to
Mott’s length-scale argument, such energetic competition between kinetic energy and local interaction is thus

insensitive to long-range screening.
DOI: 10.1103/ydzp-1985

I. INTRODUCTION

Mott transition, as an interaction-driven metal-insulator
transition (MIT) without the assistance of symmetry change,
has continued to attract great attention in the past decades
[1-3]. It describes the phase transition between a metal and
a Mott insulator widely observed in strongly correlated ma-
terials, such as transition-metal oxides [4-8]. To date, Mott
insulators have become one of the most important platforms
for the exploration of strongly correlated physics such as
unconventional superconductivity [4,9] and magnetism [10].

The unique characteristic of Mott insulators lies in their
unexpected insulating behavior. Traditional insulators have
their Bloch orbitals completely filled by electrons such that
a finite energy scale is needed for the electrons to propagate
without violating the Pauli principle. Mott insulators, on the
other hand, do not satisfy this condition and therefore would
appear metallic in standard band theories, indicating the need
to include additional physics beyond the Pauli principle. To
understand such insulating behavior, Mott [1,11] pointed out
the importance of electronic interactions, under which the
electrons in the system would reside in a bound state and
thus be unable to propagate without overcoming the effective
binding energy.

Following Mott’s general picture, authors of modern the-
oretical studies [12,13] of Mott insulators typically use the
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half-filled Hubbard model [14-17] or its generalized form.
For example, transition-metal oxides [4,6—8] and organic Mott
insulators [18,19] have relatively strong local electronic re-
pulsion U compared with the kinetic energy. In half-filled
systems, such a large U pushes states with doubly occupied
orbitals toward high energy and thus allows them to be inte-
grated out from the low-energy sector, effectively leaving only
singly occupied states without charge freedom (thus an insu-
lator). From the perspective of Mott’s picture, the repulsion
U in such half-filled systems provides exactly the necessary
electronic interaction to bind the electron in an effective local
orbital.

Still, an important physics question remains open, namely,
the role of the long-range Coulomb interaction on the na-
ture of the quantum Mott transition. Mott argued [1,11] that,
between the metallic and insulating phases, the significant
change in the screening of long-range interaction could lead
to a first-order MIT at zero temperature. In contrast, authors of
current Hubbard model-based studies (which only incorporate
local interaction) have found the quantum phase transition to
be continuous [12,20] instead. It is therefore an important and
timely task to investigate the role of long-range interaction
on the Mott transition, particularly to examine the validity of
Mott’s expectation.

Here, to address this essential question, we attempt to
incorporate the effect of long-range interaction and investi-
gate the Mott transition of a model system with hydrogen
atoms in a cubic lattice. The effect of interaction screening is
incorporated approximately via density self-consistency
[21,22] of the density functional theory plus dynamic mean-
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FIG. 1. Mott’s picture of the key scales of MIT: (a) radius ag
of the particle-hole bound state, and (b) range A of screened long-
range Coulomb attraction V (r) as a function of relative distance r.
(c) When the bound state density pp is confined within the Coulomb
attraction ag < X, the system is insulating. (d) Otherwise, the system
becomes metallic. The finite A at the transition dictates a first-order
phase transition in this picture.

field theory (DFT+DMFT; see Appendix for all calculation
details) [12,13,23-29]. We found that this model system
is in the charge-transfer (CT) regime, in which the rel-
evant low-energy charge sector is dominated by the 2s
and singly occupied ls orbitals. Correspondingly, the Mott
transition is intimately related to the closing of the CT gap.
Importantly, the insulating gap is found to reduce smoothly
to zero, and the charge carrier density (reflected by s orbital
occupations) grows continuously. Both results suggest a con-
tinuous quantum phase transition, instead of the first-order
transition expected by Mott’s consideration of long-range
screening. Our result can be understood from the fact that this
common type of Mott transition in materials is mainly con-
trolled by competition between kinetic and local interaction
energies. Contrary to Mott’s length-scale argument, such an
energetic competition is therefore insensitive to screening of
long-range interaction.

II. MOTT’S PICTURE

Let us first review the original consideration of the Mott
transition. Mott proposed that a lattice of one-electron atoms,
such as hydrogen, must be an insulator at large lattice spacing.
This is because, starting from a ground state with a uni-
form charge of one electron per atom, the low-energy current
response must be gapped associated with the formation of
particle-hole bound states with an effective Bohr radius ag
[cf. Fig. 1(a)] (assuming a poorly screened e?/r attractive
Coulomb interaction over distance r.) On the other hand, at
small lattice spacing, the system is expected to become a
good metal with the lowest energy band half-filled. This is
because the current response now turns gapless in association
with the delocalization of particle-hole pairs, as a result of the

long-range screening that reduces the range of the attraction
—(ez/r)exp(—Zn r/A) to a finite length scale A [cf. Fig. 1(b)].
Therefore, in such a length-scale consideration, there must
exist a transition point for a MIT at some intermediate lattice
spacing.

As a simple estimation, Mott proposed that the MIT would
take place at the point when ap and A are equal. This seems
quite reasonable since, at ap < A [cf. Fig. 1(c)], the bound
state is well preserved such that the system should be a good
insulator, while at ag > A [cf. Fig. 1(d)], the interaction is
screened too strongly to maintain a bound state such that the
system would be a good metal. Based on this rough criteria,
Mott estimated the critical density ng/ 3agp ~ 0.25 [30] via
Thomas-Fermi approximation. Though this estimation is very
crude, the criteria works very well for many materials [2].

The necessity of a finite A ~ ag in Mott’s criterion of
MIT strongly suggests that the transition be first-order since
a finite A corresponds to a finite itinerant carrier density. As
another way to visualize this, near the critical density, a slight
increase of itinerant electrons would lead to an enhanced
screening (or reduced A), which in turn further increases the
carrier density. One would therefore expect that such nonlin-
ear feedback can lead to a discontinuous transition at zero
temperature. Unfortunately, due to the complexity of quantum
many-body problems, authors of theoretical studies to date
have not been able to incorporate the screening of the length
scale of long-range interactions, nor has the corresponding
first-order quantum phase transition been obtained [12,13].

III. METHOD

To include this important screening effect of long-range
Coulomb interaction beyond the Thomas-Fermi approxima-
tion, we use the density self-consistency scheme [21,22] of
DFT+DMFT [7,31-35], with previously established double
counting formulation [22]. In the process of self-consistent
iteration, the change of electron density and the correspond-
ing screening effect will feedback to the next iteration and
thus allow the possibility of the first-order transition. The
strong intra-atomic repulsion U (~1 Ry [36]) is included
via DMFT [12,13,25-29], which is so far the most widely
applied approximation to achieve the Mott insulating phase.
This scheme is implemented by the DFT+ embedded DMFT
(eDMFT) functional [21,22].

IV. RESULTS

We first start with a low-density insulating case at lattice
spacing a = 3.0 A. Figure 2(a) shows the resulting density
of states (DOS) in the standard DFT calculation via local
density approximation (LDA) [23,24]. As expected, the sys-
tem is incorrectly identified as a metal with the chemical
potential in the middle of the first band, corresponding to
the half-filling 1s orbital. Upon inclusion of strong local
exchange-correlation via DMFT at T = 0.01eV, Fig. 2(b)
shows the correct insulating state with a DOS hosting a gap
around the chemical potential.

It is obvious that this insulating gap is not the standard Mott
gap in a Hubbard model since its size (see Appendix A for
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FIG. 2. (a) One-body DOS in units of (eV unitcell)™' for
a = 3.0 A via standard DFT treatment, indicating a metallic system
with a CT gap Ect above the chemical potential set as the reference
energy at zero. (b) The same via DFT4+DMFT at T = 0.01 eV, giv-
ing an insulating system with a correlation-renormalized CT gap Ecr
across the chemical potential. (¢) Smooth reduction of CT gap Ecr
and Ecr as the lattice constant a decreases toward the quantum criti-
cal point at a., below which Ecr < 0, and the system turns metallic
with a gradual increase of itinerant hole carrier density reflected by
the smooth reduction of 1s occupation within a fixed atomic sphere
(d). Both (c¢) and (d) indicate a continuous quantum phase transition
different from Mott’s proposal.

the determination of CT gap Ecr and renormalized CT gap
Ecr) [38] s only around 2 eV in this case, much smaller than
the local repulsion U ~ 1 Ry. Indeed, in both DFT [panel (a)]
and DFT+DMFT [panel (b)] results, the orbital content right
above the gap is predominately of 2s and 2p instead of Is.
Therefore, within the parameter range near the Mott transi-
tion, this model system is well within the CT insulator regime,
in which the lowest-energy charge fluctuation is between ls
and 2s/2p orbitals of neighboring atoms.

Notice that the CT gap Ect is strongly reduced from
4 eV in the DFT result [panel (a)] to only ~2 eV in the
DFT+DMFT result [panel (b)]. This can be understood from
the additional energy lowering from the emergent antiferro-
magnetic spin exchange between the itinerant carrier in 2s/2p
and the local immobile 1s spin, similar to the one that drives
the formation of Kondo singlet [37,38].

Now approaching the metal-insulating transition via re-
ducing the lattice constant, as shown by the black line in
Fig. 2(c), the CT gap of the insulating solution reduces and
eventually vanishes around a = a, ~ 2.8 A. Naturally, af-
ter that, the insulator solution can no longer be found and
the system is metallic. Incidentally, for a > a., the metallic
solution is unstable as well. This indicates that the phase
transition is intimately related to the gap closing. (Note
that, in an extremely narrow range of Aa ~ 0.003 A around
a., both metallic and insulating solutions can be found (cf.
Appendix B). Considerations on this nearly negligible and
somewhat artificial feature will be discussed later.)

Most importantly, our results display a very important
deviation from Mott’s expectation on the phase transition.
Figure 2(c) shows that, even with the long-range Coulomb
interaction and its screening incorporated via the DFT treat-
ment, as the lattice spacing decreases, Ecr only smoothly
reduces to zero. Furthermore, as the lattice spacing de-
creases further, Fig. 2(d) shows that the occupation of the
Is orbital (within a fixed atomic sphere [39] of radius
1.8 a.u.) decreases smoothly as well, indicating a gradual
development of hole carrier density. No abrupt enhancement
of gap closing or the hole carrier density is found at a. that cor-
roborates Mott’s expectation of a first-order phase transition.
Clearly, our results suggest a continuous MIT. In other words,
within the approximation of the state-of-the-art DFT+DMFT
approach (omission of nonlocal correlation), the proposed
drastic effect of screening of long-range interaction does not
appear to be essential to the Mott transition in this model
system.

V. DISCUSSION

This lack of relevance of long-range screening can be
understood from the following energetic considerations of
this model system. In this charge transfer insulator, mobile
carriers can only occur in the ground state when the fully
renormalized bandwidths grow to overcome the orbital energy
and eliminate the indirect normalized CT gap minimum Ecr
[between momentum (7, v, r) and (7r,0,0)]. However, this
system has a rather large orbital energy difference (~10 eV)
between the dressed 2s and ls orbitals and a large kinetic
energy represented by the bandwidths of the dressed 1s band
Wiy ~ 5eV) and the dressed 2s band (W, ~ 20 eV). Both
of these key high-energy factors are insensitive to long-range
interaction and thus its screening. Particularly, no dramatic
change of long-range screening (of wave vector g ~ 0) is
expected even right before the indirect gap is closed since the
direct gap remains very large, of 10 eV scale.

In real materials, even beyond this point of gap closing,
the mobile electrons in the dressed 2s orbital and holes in
the dressed 1s orbital may still be bound into charge-neutral
excitons by the long-range interactions. To such an excitonic
insulator [40,41], Mott’s consideration of the insulating phase
in Fig. 1(c) may apply, in which the length scale of the long-
range interaction is longer than the size of the bound excitons.
Nevertheless, given that such excitonic binding should be of
the order of 100 meV at best, two orders of magnitude weaker
than the above kinetic energies, such an excitonic insulating
phase, if present, must only delay the emergence of metallic
carriers in a negligibly narrow region. Consequently, only
a small number of carriers would be present when entering
the metallic phase. Furthermore, this excitonic effect would
be greatly suppressed by the dramatic difference in the ef-
fective masses of the electrons and holes. Therefore, even
if Mott’s proposal of a first-order transition may be realized
here, the effect is likely too weak for the accuracy of realistic
many-body calculations to date. On the technical side, such
excitonic physics that involves nonlocal particle-hole pairs is
surely beyond the capability of the LDA+DMFT framework
employed in this study or even the advocated GW+eDMFT
framework [42—-45].
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Our conclusion and the analysis above are qualitatively
different from those of the previous extended DMFT studies
on the extended Hubbard model [42-53], in which authors
found a first-order quantum phase transition instead [46]. Note
that those results originate from the nonlinear feedback in
mapping the long-range Coulomb interaction onto retarded
(dynamical) screening of local U of the Kondo impurity
model. Such a mechanism is therefore physically distinct
from (and unable to address) Mott’s proposal of screening
the length scale of long-range interaction. In contrast, the key
factor for the MIT here is the closing of the indirect charge
transfer gap, which is insensitive to the long-range screening.
Correspondingly, a smooth continuous transition naturally re-
sults in our case.

Finally, it is well known [12,13,54] that the lack of in-
teratomic correlation in DMFT treatments can lead to an
unphysically large degree of degeneracy and, in turn, an
artificially large entropy at finite temperature T = 0. This
often causes an entropy-driven first-order transition at finite
temperature [55,56]. Our finite-temperature calculation and
the effective analytical model above are not immune to this
problem (cf. Appendix B). Nonetheless, it is interesting to
note that this artifact is much weaker in this model CT system
than that in the Hubbard model. In fact, in Fig. 2(c), the region
hosting first-order transition is narrower than the thickness of
the black line. We take it that this distinction reflects the more
robust continuous nature of the quantum phase transition in
such CT systems.

Experimentally, our model system of a periodic hydrogen
lattice could be tested by the next generation of capabilities
that engineers a hydrogenlike lattice of any desired geometry
through scanning tunneling microscopy—implanting donors
on surfaces of semiconductors [57]. These experimental ad-
vances allow tuning the system across Mott transition without
randomness and are thus ideal to experimentally clarify the
role of long-range interaction.

VI. CONCLUSION

In summary, we investigate the important open question
concerning the role of long-range screening on the quantum
Mott transition using a model system of hydrogen lattice. We
employ the charge self-consistent scheme of the DMFT that
incorporates approximately the long-range interaction and its
screening within the density functional treatment. The system
is found to be well within the CT regime, and the CT gap
closes smoothly across the quantum phase transition. Together
with a gradually increasing hole carrier density in the metallic
phase, this indicates a continuous quantum phase transition
distinct from Mott’s proposal. This deviation from Mott’s
long-range screening-based first-order picture can be under-
stood from the following: (1) The obtained insulating phase in
this typical case is driven by short-range interaction, and (2)
the MIT involves the closing of the screening-insensitive CT
energy, instead of length-scale switching proposed by Mott.
Quantum MITs in such CT materials are thus insensitive to
the long-range interaction. In this study, we leave open the
finite possibility of a weak excitonic insulating phase in a very
narrow region, in which Mott’s picture might still apply. Fur-

ther resolution of this possibility would require a significant
advance in current computational capability.
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APPENDIX A: CALCULATION DETAILS

Our self-consistent DFT+DMFT calculation employs an
implementation [21,22] of the eDMFT method [12,13] based
on the WIEN2K package [39]. The double-counting choice is
exact [22]. We set a model system with a simple cubic hydro-
gen lattice with various lattice constants and a fixed on-site
interaction U = 1 Ry on the 1s orbital. With the decrease of
lattice constant, the kinetic hopping between atoms increases.
A large energy window [—30 eV, 30 eV] is used in defining
the quantum Hilbert space that provides channels for various
hopping and CT processes. The real-frequency dependence of
the DOS is obtained from analytical continuation via the max-
imum entropy method [58] from the Matsubara-frequency
Green’s function.

The bare CT gap Ecr is determined from the DOS of the
DFT calculation where the value of DOS goes to zero. This
however is not applicable in the DFT4+DMFT calculations
in which the DOSs are obtained by the maximum entropy
method [58] such that the DOS can never reduce to absolute
zero. The CT gap (insulating gap) Ect in the DFT+DMFT
calculation shown in Fig. 1(c) is determined by the linear
extrapolation near the gap edge, as shown in Fig. 3(a). Since
the gaps are estimated in the regime far away from the phase
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FIG. 3. (a) Determination of the CT gap (insulating gap) Ecr in
the DFT+DMEFT calculation. Red dashed line is the linear extrap-
olation near the edge of the gap. (b) CT gap Ecr as a function of
lattice spacing a at temperature 0.1 eV (green triangle), 0.02 eV (blue
triangle), 0.04 eV (red circle), and 0.01 eV (black square).
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FIG. 4. Phase diagram of a real hydrogen lattice as a function
of temperature and the lattice constant. The color map shows the
value of the DOS at the chemical potential. Two dashed lines are
the boundary of the coexistent region. The dark blue line Tzg(a) is
the Brinkman-Rice line marking the thermal destruction of metallic
quasiparticles [59]. The inserted figure is the coexistent region with
two boundaries a.;(T') and a,(T) denoted by red and dark blue
dashed lines, respectively.

transition, they are barely influenced by the temperature,
which is much smaller than these gaps in the energy scale, as
shown in Fig. 3(b). One can find that the gaps remain almost
the same upon increasing the temperature from 0.01 to 0.1 eV.

APPENDIX B: ENTROPY-DRIVEN FIRST-ORDER
PHASE TRANSITION

It is well known that DMFT calculation at finite temper-
ature suffers from the lack of nonlocal correlation, which
introduces a large entropy contribution of the local spin
even at T = 07 [54]. For the particular issue of Mott tran-
sition, such a large entropy is known to lead to a first-order
phase transition at finite temperature calculation [12,13], even
though the quantum phase transition is continuous. For the
typical one-band case, there is a coexistent region which
suggests a first-order phase transition. In our model system,
if one carefully tunes the lattice space, the coexistent region
can be still found in an extremely tiny region. As shown the
inserted figure in Fig. 4, we also find a coexistent region below
T ~ 10 meV with an extremely narrow size which demon-
strates a first-order phase transition at finite temperature. This
phase transition is, however, driven by the entropy instead of
the screening effect suggested by Mott. More importantly, this
artificially large entropy does not affect the continuous nature
of the quantum phase transition.

It is interesting to note that, compared with the coexistent
region of the typical one, there are two main differences.
First, the value of critical on-site repulsion U, is much larger.
Usually, U, ~ 2D is approximately equal to the bandwidth,
while here, U, ~ 5D is in great contrast with the single-band
Hubbard model (D is half of the bandwidth in the LDA cal-
culation, which is about 2 eV near a ~ 2.8 10\). This is not
surprising because the transition is controlled by the energy
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FIG. 5. DOS corresponds to a = 2.78 A, on the metallic side of
the coexistence region. In contrast with the behavior found for a
single-band Hubbard model at half-filling, here, the destruction of
metallic quasiparticles leaves behind a preformed gap.

scale of the CT gap instead of U. Second, a ~0.5%DT, here
is also significantly smaller than the ~3%D in the Hubbard
model. These quantitative differences all demonstrate that the
phase transition is not a one-band type.

In addition to the above difference in the tiny coexistent
region, there are more interesting features in the phase dia-
gram in a larger temperature scale. Figure 4 shows the value
of the DOS at the chemical potential as a function of the
lattice constant and temperature. A significant difference of
the above phase diagram compared with the one-band Hub-
bard model [12,60] is the existence of an insulatorlike phase
(in red) even beyond the metallic phase (in light blue) which
should end at a.; in the traditional scenario [12,60]. Figure 5
shows the DOS at a = 2.78 A where the system is in a metallic
phase at low temperature 7 = 12.5 meV. One can find that,
at high temperature 7 = 20 meV, with the destruction of the
quasiparticle peak, an insulating gap appears again.

Are these features in the phase diagram the specific re-
sults of our hydrogen lattice or the intrinsic properties of
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FIG. 6. Phase diagram of a simple two-band model, in the CT
regime (see text). The CT gap E, (here plotted in the same units
as temperature) decreases linearly as the bandwidth increases but
remains sizeable throughout the coexistence region (¢, ~ 0.563), ex-
trapolating to zero further on the metallic side (around #, ~ 0.58).
Results shown correspond to V = 0.217, and U = 2. The results are
plotted as a function of ¢, which sets the bandwidth. Here, we use
& = 1 as the unit of energy.
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the CT model? To verify this question, we perform the same
calculation on a simplified two-band CT model without any
long-range screening, which includes one correlated orbital
and one higher-energy orbital, given by the Hamiltonian

H=> (t—pyehcio+ Y (6 — W) fio

i#j,o io

+ Y Viscl fio + Via ficio) + Y +Ungirngiy. (B1)

where ¢! , fi create one electron at site i with spin o in two
different orbitals, and ns, = f;, fir is the number operator.

Only f electrons feel the strong intra-atomic repulsion de-
noted by U. Here, V is the coupling between two orbitals, and
€r > 0 denotes the CT energy. As the phase diagram shown
in Fig. 6, when U > €, we find a similar strongly suppressed
T. to the hydrogen lattice as well as an insulator phase above
the metal phase. The similar phase diagram to that of the
hydrogen lattice again implies that the phase transition is less
relevant to the long-range screening effect. On the other hand,
our results on the simplified CT model indicate these special
features in the phase diagram should be the generic behaviors
of the CT system instead of the specific results of this partic-
ular hydrogen lattice which needs more investigation in the
future.
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