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Since the last century, considerable efforts have been devoted to the study of valley-degenerate narrow gap
semiconductors, such as the Pb1−xSnxSe alloy. This material possesses band edges at the L points of their
Brillouin zone, yielding a valley degeneracy of four. However, in (111)-oriented films, it is still not fully
understood how differences between the longitudinal valley, oriented along the growth axis, and the oblique
valleys, oriented at an angle with respect to that axis, appear in infrared magneto-optical spectroscopy. In this
work, we report a magneto-optical study on this family of alloys, focusing on an anomaly in the interband
transition of the absorption strength ratio between longitudinal and oblique valleys under a magnetic field applied
along the [111] direction. Based on the Mitchell-Wallis model, we provide a theoretical fit for the experimental
transmission data, which quantitatively explains the spectral shape of the data at magnetic fields as high as 35 T.
In particular, we attribute this anomalous absorption strength variation to the carrier density difference between
the two types of valleys as well as the field-dependent multiple-beam interference or the Fabry-Pérot interference.
Our analysis also allows for the extraction of the real and imaginary parts of the dielectric function.
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I. INTRODUCTION

The valley degree of freedom in semiconductors and
semimetals is behind the realization and prediction of many
interesting quantum states. In van-der-Waals semiconductors,
the spin and valley degrees of freedom are intertwined, re-
sulting in the ability to excite charge carriers from individual
valleys with polarized light [1]. For instance, in mono-
layer graphene, quantum isospin ferromagnetism arises when
Coulomb interactions spontaneously lift valley degeneracy
[2,3]. Similarly, in few-layer graphene systems, such as the
Bernal bilayer graphene [4], rhombohedral trilayer graphene
[5,6], and twisted double bilayer graphene [7,8], the existence
of spin and valley degrees allows for the spontaneous gen-
eration of a variety of ground states featuring different spin
and valley orderings. Finally, in semimetal such as bismuth [9]
and narrow-gap semiconductor like SnTe [10], various valley
ordering (such as valley polarized and valley coherent states)
is also expected due to the Coulomb interaction.

While valley ordering due to interactions is attractive, it
can also appear in systems where the valley symmetry is
explicitly broken due to external perturbations, e.g., strain
[11], temperature [12], magnetic field [13], etc. Therefore,
it is crucial to identify the actual mechanism behind the
emergence of valley symmetry-breaking states, a task that
is by no means straightforward. For bulk semiconductors,
magneto-optical measurements are routinely used to probe the
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possible existence of various symmetry-breaking states, like
the ferroelectric state [12], the Volkov-Pankratov state [14],
the ferromagnetic or the antiferromagnetic state [15]. How-
ever, most experiments focused only on identifying the dip
positions in infrared magneto-optical spectra, which directly
relate to the selection rules governing optical transitions. The
question of whether analyzing the absorption strength or dip
intensity can help identify symmetry-breaking mechanisms
remains both important and largely unexplored.

In this work, we study this crucial question in the IV-VI
material Pb1−xSnxSe, which is a narrow-gap semiconductor
that hosts band edges at four L points and offers a platform
to study the valley degree of freedom as the electronic band
structure is tuned. Historically, this family of materials was
known as ideal platforms for studying fundamental properties
of narrow-gap bulk semiconductors, such as thermoelectric
performance and optoelectronics [16–20]. Moreover, it has
been known that their band inversions can be modulated
by continuously varying the alloy composition x [21]. More
recently, this family of materials is better known for their
connections to topological phases of matter. In fact, the ob-
served band inversion is now understood to be accompanied
by a quantum phase transition from a narrow gap semi-
conductor to a topological crystalline insulator (TCI) as the
alloy composition x goes above 0.16 [22–26]. Unlike topo-
logical insulators protected by the time-reversal symmetry
[27–29], TCIs are protected by crystal point group symme-
try, such as discrete rotational symmetry [22] and mirror
symmetry [23]. Furthermore, the metallic surface states of
TCIs only appear on surfaces that respect the crystalline
symmetry.
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FIG. 1. (a) Sketch of the oblique and longitudinal valleys of Pb1−xSnxSe. (b) Relative transmission T (B)/T (0) for Sample S1 with
x = 0.12. Transitions from different valleys are marked by red (oblique) and black (longitudinal) arrows. Labeled spectra for specific fields are
plotted in orange for clarity. The curves have been shifted for clarity. (c) Landau level fan chart extracted from the spectra in (b) and fitted by
Eq. (6). Interband transitions between Landau levels N and N + 1 are labeled on the right.

The Pb1−xSnxSe compounds were the first reported TCI
[22,23] and were later studied as a model system to eluci-
date the properties of mirror-symmetry protected topological
surface states [24,30]. Additionally, varying temperatures and
alloy compositions allow one to tune not only the energy gap
but also the band velocity and the Fermi surface anisotropy
of these materials [25]. However, the interest in quantum Hall
and Landau-level physics in IV-VI materials precede the era of
topological phases of matter. The high mobility of PbTe and
other IV-VI materials allowed a thorough mapping of their
low-energy band structure parameters through Landau level
spectroscopy [25,31–34].

The band edges of Pb1−xSnxSe are located at the L points
of the Brillouin zone. The 3D Fermi surface of these materi-
als consists of four ellipsoids with their great axis oriented
along 〈111〉 axis, as shown in Fig. 1(a). In (111)-oriented
layers, Fermi surface anisotropy yields two types of valleys.
Among them, the valley aligned with the growth axis (the
[111] direction) is known as the longitudinal valley, while
the other three valleys, oriented at an angle with the growth
axis, are known as the oblique valleys. The Landau levels
of bulk IV-VI semiconductors have been extensively studied
using infrared magneto-optical spectroscopy (IRMS). This
technique is an established tool to extract the band parameters
of electrons in solids by probing optical transitions between
Landau levels [25,35–37]. However, information pertaining
to the spectral shape of infrared magneto-optical spectra has
been overlooked in most experiments.

The focus of Ref. [26] is to identify the surface states of
Pb1−xSnxSe samples after the band inversion with the alloy
composition x > 0.16. In contrast, the present paper focuses
on investigating a ubiquitous spectral anomaly [25,34,38] be-
fore the band inversion with x < 0.16. This anomaly appears
in the relative absorption strength of magneto-optical transi-
tions between the longitudinal and oblique valleys. Despite
the expected three-to-one degeneracy ratio, our experimental
observation shows that the optical transitions between low-
index Landau levels are shown to violate this ratio. Such
a spectral anomaly has been observed in the same family
of materials in previous experiments but never studied. To
resolve this puzzle, we develop a theoretical model to cap-

ture the spectral response of the Landau level transitions.
By applying this method to analyze our experimental data
obtained for (111)-oriented Pb1−xSnxSe epilayers, we find
that the anomalous intensity ratio arises from two important
factors: the carrier density difference between the two types
of valleys (i.e., valley polarization) and the field-dependent
multiple-beam interference effects. When included, the model
accurately reproduces our data, allowing the extraction of a
disorder-broadening parameter and yielding the relative car-
rier population for each valley. Through this analysis, the
real and imaginary parts of the dielectric function are also
extracted. Our theoretical approach provides a comprehen-
sive framework for understanding the anomalous absorption
strength in infrared magneto-optical spectroscopy of IV-VI
semiconductors and elucidates the actual mechanism behind
valley ordering in our sample.

The structure of the paper is the following: In Sec. II,
we build up an effective Hamiltonian and extract the model
parameters from the Landau fan diagram obtained from the
experiment. In Sec. III, we analyze the infrared magneto-
optical spectroscopy data and explain the observed anomalous
absorption strength ratio variations. In Sec. IV, we provide
additional discussions on the results and conclude the paper.

II. THE LANDAU FAN DIAGRAM

Experimentally, we carry out IRMS measurements using
infrared setups at the National High Magnetic Field Lab-
oratory (NHMFL). The in-house developed vacuum FT-IR
spectrometer was used in conjunction with a resistive magnet,
enabling transmission measurements at magnetic fields up to
B = 35 T and temperatures as low as T = 5 K. Infrared radia-
tion emitted from the spectrometer’s Globar source propagates
inside an evacuated optical beamline to the top of the cryostat,
then entering the probe’s light pipe and continuing down to
the sample. The measurement is set up in Faraday geometry
[39], and the transmission signal is collected by a silicon
bolometer positioned a short distance below the sample. The
field-independent spectral features were removed by normal-
izing the transmission spectrum at each magnetic field to the
spectrum measured at zero magnetic field. These high-field
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TABLE I. Parameters of the two samples.

p-type carrier density for
Valley � (meV) vc(105 m/s) vz

a (105 m/s) m(me) �S
b (meV) each individual valleyb (1017 cm−3) gv d (nm)

S1 (x = 0.12) L 25 5.20 4.11 0.25 0 0.52 1 518
O 25 4.70 5.14 0.30 28.50 3.2 3

S2 (x = 0.10) L 28 5.38 4.19 0.40 0 1.1 1 990
O 28 4.83 5.32 0.40 11.46 2.2 3

avz is derived from the x-y plane velocity vc of longitudinal and oblique valleys [25].
bThese quantities are inferred from Appendix A.

infrared data were additionally supplemented by a dataset
with a significantly better signal-to-noise ratio, obtained using
a different FT-IR setup coupled with a 17.5 T superconduct-
ing magnet. In this work, we report measurements on two
samples, S1 and S2, in Table I, both of which are grown on
BaF2 (111) substrate by molecular beam epitaxy.

Figure 1(b) shows infrared magneto-optical spectra taken
on Pb1−xSnxSe with x = 0.12 (Sample S1). By dividing the
transmission spectra T (B) by the spectra measured at zero
magnetic field T (0), we extract the relative transmission that
contains only field-dependent transitions. The relative trans-
mission exhibits a set of minima that shift to higher energies
with increasing magnetic field originating from interband
transitions between the Landau levels of the conduction and
valence band. From the spectra, we can construct a Landau
level fan chart shown in Fig. 1(c), where the energy of dips in
Fig. 1(b) is replotted as a function of the magnetic field. Note
that water cooling in the resistive setup generates additional
noise at the high-photon-energy range in the spectra.

A. The k · p model for Pb1−xSnxSe

To understand the observed Landau fan diagram, we theo-
retically introduce the k · p Hamiltonian for Pb1−xSnxSe near

the four L points [16,40–43],

H(k) = H (k) + � · I,

H (k) =

⎡
⎢⎢⎣

−εk 0 h̄vzkz h̄vck−
0 −εk h̄vck+ −h̄vzkz

h̄vzkz h̄vck− εk 0
h̄vck+ −h̄vzkz 0 εk

⎤
⎥⎥⎦. (1)

In the above equation, εk ≡ � + h̄2k2
⊥/2m, vz is the velocity

along the z axis (which is parallel to the [111] direction),
k± = kx ± iky, k2

⊥ = k2
x + k2

y , vc is the velocity in the x-y
plane, and m represents the contribution from the far bands
to the effective mass. We ignored a potential k2

z term in εk ,
as its contribution is much smaller than the other terms [43].
The symbol � labels a relative shift of the valley splitting and
equals 0 (�S ) for the longitudinal (oblique) valley.

In the presence of a strong perpendicular magnetic field,
Landau levels appear in the energy spectra. After applying
the Peierls substitutions and some simplifications [42], we can
write the the Hamiltonian H (k) as

HB(N, kz ) =

⎡
⎢⎢⎢⎣

−� − h̄ωSN− 0 h̄vzkz h̄ωR

√
N

0 −� − h̄ωSN+ h̄ωR

√
N −h̄vzkz

h̄vzkz h̄ωR

√
N � + h̄ωSN− 0

h̄ωR

√
N −h̄vzkz 0 � + h̄ωSN+

⎤
⎥⎥⎥⎦. (2)

The above Hamiltonian is written in the basis
[V

1
2 |N − 1〉,V − 1

2 |N〉,C
1
2 |N − 1〉,C− 1

2 |N〉], where V and
C denote the valence and conduction bands, respectively, and
the superscripts ±1/2 denote the two eigenstates that form a
Kramers pair in this subspace. In the above Hamiltonian, N is
the Landau level index, N± ≡ N ± 1, and � is half of the band
gap. We have also introduced the relativistic energy h̄ωR =√

2h̄eBv2
c and the nonrelativistic energy h̄ωS = h̄eB/m.

The eigenvalues of the effective Hamiltonian are⎧⎪⎨
⎪⎩

Eλ=±,N,ξ=±(kz ) = λ

√
P2

N,ξ + h̄2v2
z k2

z + �, N > 0

Eλ=±,0,ξ=+(kz ) = λ

√
P2

0,ξ=+ + h̄2v2
z k2

z + �, N = 0,

(3)

where

PN,ξ=± = ξ h̄ωS +
√

Nh̄2ω2
R + (� + Nh̄ωS )2. (4)

Here λ = ±1 labels the conduction and valence band, respec-
tively, and ξ = ±1 is the index that represents the Kramers
pair s = ∓1/2. The corresponding eigenstates will be denoted
as |λ, N, ξ , kz〉.

B. Extracting model parameters

The above k · p model can now be used to understand the
Landau fan chart in Fig. 1(c). In particular, each dot in the fan
chart corresponds to the dip of an interband transition charac-
terized by the divergent DOS at kz = 0 and the selection rule
�N = ±1 and �s = ±1. Moreover, the following interband
transitions have the same dip energy at kz = 0:

(i) |λ = −, N, ξ = −〉 → |λ = +, N + 1, ξ = +〉,
(ii) |λ = −, N, ξ = +〉 → |λ = +, N + 1, ξ = −〉,

(iii) |λ = −, N + 1, ξ = −〉 → |λ = +, N, ξ = +〉,
(iv) |λ = −, N + 1, ξ = +〉 → |λ = +, N, ξ = −〉. (5)

205302-3



XIAOQI DING et al. PHYSICAL REVIEW B 111, 205302 (2025)

FIG. 2. Energy gap as a function of the alloy composition x. Our
data points lie on the upper end of the error bars determined by
Krizman et al. [25].

Later, without explicitly mentioning, we use the label
|λ, N, ξ 〉 ≡ |λ, N, ξ , kz = 0〉. As a result, we will use the
symbol (N − N + 1) to denote the collection of these tran-
sitions. Such considerations yield the following energy for the
(N − N + 1) interband transition [39,44]:

�E =
√

(� + (N + 1)h̄ωS )2 + (N + 1)h̄2ω2
R

+
√

(� + Nh̄ωS )2 + Nh̄2ω2
R, (6)

which are plotted as solid lines in Fig. 1(c). By fitting the
solid lines with the experimental data, we obtain the model
parameters in Table I. A comparison between our data and
Krizman et al. [25] is shown in Fig. 2. Our data points lie on
the upper end of the error bars determined by theirs, but are
largely consistent.

The infrared magneto-optical spectra also allow us to ex-
tract the Fermi energy EF of the system. Specifically, in the
presence of a strong magnetic field, the p-type carrier density
of the system can be estimated by

ntotal(EF ) = gL

S

∑
valleys

∑
N,ξ

∫ ∞

−∞

[
1 − f (Eλ,N,ξ (kz ))

]dkz

2π

= 1

2π2l2
B

1

h̄vz

∑
valleys

∑
N,ξ

√
(E ′

F )2 − P2
N,ξ

× 	(−|PN,ξ | − E ′
F ), (7)

where E ′
F = EF − �, gL = S/2π l2

B is the degeneracy of each
Landau level with lB = √

h̄/eB being the magnetic length
and S is the cross-section area of the sample perpendicular
to the magnetic field. Moreover, the Fermi-Dirac distribution
f (Eλ,N,ξ (kz )) is taken to be a step function in the zero-
temperature limit and λ = −1 represents the valence band.
The details of how we determine the carrier density are

FIG. 3. Landau fan diagram of the Sample S1. (a) Solid and
dashed lines show the Landau levels of longitudinal and oblique
valleys, respectively. In particular, we use |λ, N, ξ〉 to label each
Landau level at kz = 0. The blue (red) lines illustrate the Landau
level with the index ξ = +1 (−1). Moreover, the black line in the
figure marks the position of the Fermi level. (b) Energy dispersion
along kz at B = 0 T with kx = ky = 0. The valley splitting results in
the different populations of holes (empty states below the gap) in
different valleys.

provided in Appendix A. After obtaining the carrier density
of the system, the Fermi level can be uniquely determined
from Eq. (7) at various magnetic fields. The variation of the
Fermi level as a function of the magnetic field is shown in
Fig. 3(a). It is observed that the longitudinal valley enters
the quantum limit (where only the lowest Landau level is
unoccupied) at a significantly lower magnetic field compared
to the oblique valleys. As the magnetic field continues to
increase, the carrier density of the longitudinal valley be-
comes completely depleted at around 26.6 T as shown in
Appendix A. We also observe the population transfer be-
tween two valleys, a phenomenon that has been reported in
the literature [32,33,40]. Notably, we find that a finite val-
ley splitting �S between the two valleys is necessary to fit
the experimental data (see Appendix A for further details).
Meanwhile, even in micron-thick epilayers of IV-VI materials,
the uneven valley populations could arise from the thermal
strain resulting from the thermal expansion coefficient mis-
match between the substrate and the material [45,46]. Such
a thermal strain is known to cause a splitting between the
longitudinal and oblique valleys. A similar splitting result-
ing from lattice strain has recently enabled the observation
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FIG. 4. (a) Comparison of the spectra of the experiment acquired at 17 T for samples S1 and S2. (b) Comparison between the spectra
obtained at 10 T, 12.5 T, and 15 T and using two different IRMS setups for the sample S1. The spectra between the two setups are manually
shifted for better shape comparison. (c) Dip area ratio between the oblique and longitudinal valley. The red and blue data points (measured in
different setups) correspond to the (1-2) interband transition, and the yellow and black data points correspond to the (2-3) interband transition.

of a valley-polarized quantum Hall effect in IV-VI quantum
wells [11].

III. ANOMALOUS ABSORPTION STRENGTH RATIO
IN THE INFRARED MAGNETO-OPTICAL SPECTRA

One of the most interesting features in the experimental
data is the anomalous absorption strength ratio variations,
which we discuss in this section.

A. Absorption strength ratio variations in the experiment

In Fig. 1(b), we have marked the (0-1), (1-2), and (2-3)
interband transition dips according to Fig. 1(c). Dips from the
intraband cyclotron resonances (CR) may be present at lower
energies at 35 T, which quickly merges into the noise region
and cannot be extracted reliably. Transitions corresponding
to oblique and longitudinal valleys are marked by red and
black arrows, respectively. Because the oblique valleys are
threefold degenerate (gv = 3) and the longitudinal valley is
nondegenerate (gv = 1), one would have naively expected that
the absorption strength of magneto-optical transitions from
the oblique valley to be close to three times stronger than
those from the longitudinal valley. However, it is evident from
Fig. 1(b) that while the (2-3) interband transition roughly
follows this expectation, the (1-2) interband transition does
not. The latter transition violates this ratio over the entire
magnetic field range.

We can confirm that this anomalous absorption strength
ratio variation is an intrinsic property of the material. For
example, Fig. 4(a) presents infrared magneto-optical spectra
measured for another sample S2 at 17 T. The anomaly seen
in Sample S1 for the (1-2) interband transition is clearly
reproduced in this second sample. Additionally, Fig. 4(b)
demonstrates that the reproducibility of the spectral shape
seen in Fig. 1(b) for measurements taken on two different
setups at the NHMFL (a 35 T resistive magnet and a 17.5 T
superconductor coil).

Figure 4(c) plots the ratio between the integrated absorp-
tion strength, or integrated dip intensity, of the oblique and the
longitudinal valley transitions for the (1-2) and (2-3) interband
transitions. The integrated absorption strength is extracted by

performing a Gaussian fit and taking the integral over the
fitted function in a narrow range of energies spanning each
transition. We should note that the uncertainty of such a fit
is influenced by the definition of the baseline of the spectra.
Thus, it only serves as a means of extracting the changing
trend of the ratio versus magnetic fields and does not represent
the value of the real ratio. However, it is evident from this
fit that the integrated absorption strength ratio for the (1-2)
interband transition is significantly smaller than that found for
the (2-3) interband transition.

B. Optical conductivity and transmission

In order to understand the observed absorption strength
ratio variations, we need to calculate the theoretical transmis-
sion spectra based on the model in Eq. (2). In general, the
transmission properties of a bulk semiconductor are related to
its dielectric function, which can be written generally as [47]

ε = εcore + i
σ

ωε0
, (8)

where σ is the (complex) conductivity of the material, ω is the
frequency of the incident light, and ε0 is the vacuum permit-
tivity. εcore represents the contributions from far bands outside
our energy window. In the literature, the value of εcore of our
energy window typically ranges from 19.8 to 21.5 for PbSe
[26,48–52]. In this work, we take εcore = 21, with which we
can produce a refraction index n̄ (see Appendix D) consistent
with values reported in the literature [48,49,53].

Based on the Kubo formula, the dynamical conductivity
for the right-handed (+) circularly polarized light and the left-
handed (−) circularly polarized light can be written as

σ±(ω) = gLgve2h̄

iV
∑
α,β

f (Eα ) − f (Eβ )

Eα − Eβ

|〈β|v̂±|α〉|2
Eα − Eβ + h̄ω + i


,

(9)

where V is the volume of the sample; gv = 1 and gv = 3
are the degeneracy of the longitudinal and oblique valley,
respectively; and ω is the frequency of incident light. In ad-
dition, α and β label all eigenstates |λ, N, ξ , kz〉. The velocity
operator v̂± = (v̂x ± iv̂y)/

√
2 are defined as v̂x = ∂H/∂ px,
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FIG. 5. The theoretically calculated real and imaginary part of the (a) conductivity σ and (b) dielectric function ε at B = 1 T and B = 35 T.
These results are obtained by averaging over left-handed and right-handed circularly polarized light. The unit conductivity σ0 = e2/8π h̄lB is
calculated at B = 1 T. (c) The infrared magneto-optical spectra of the sample S1. The black and red lines correspond to the experiment and
theory, respectively. The dashed box highlights the anomalous absorption strength variations of the (1-2) interband transition.

v̂y = ∂H/∂ py. Finally, 
 is a broadening parameter. When we
fit the experimental data with our formula, we found that the
broadening parameter 
 is best taken to be 
(h̄ω) = a + bh̄ω

[26], where a and b are fitting parameters. Further details
for using this dynamic broadening model are provided in
Appendix C.

In Fig. 5(a), we present the numerically calculated conduc-
tivity of the sample at two different magnetic fields of B = 1 T
and B = 35 T. At B = 1 T, the real part of the conductivity
Re[σ (ω)] has two interesting features. First, it shows a sudden
increase for h̄ω ∼ 150 meV, which is due to the absorption
edge. Second, it approaches a linear function of the photon
energy in the high-frequency limit. At B = 35 T, the whole
curve starts to oscillate around the B = 1 T case. Note that we
label the intraband cyclotron resonance as CR in the figure,
which mainly arises from the intraband transitions between
the N = 0 and N = 1 Landau levels in the valence band.

Next, we consider the dielectric function shown in
Fig. 5(b), which inherits many features from the conductiv-
ity. For example, because Im[ε] = Re[σ ]/ωε0, the asymptotic
behavior of Re[σ ] ∼ ω produces a constant Im[ε] = 5.5. Re-
garding the energy window concerned, with εcore = 21, the
real part of the calculated dielectric function Re[ε] is close
to 25 as reported in the literature [48,51,52]. Meanwhile, we
introduce two important optical constants, the refractive index
n̄ and the optical extinction coefficient k. They are related to
the dielectric function ε as

n̄ =
√

|ε| + Re[ε]

2
, k =

√
|ε| − Re[ε]

2
. (10)

In the high-frequency regime, as shown in Appendix D,
the refractive index exhibits n̄ ≈ 5. To see this, note that
Re[ε]2 
 Im[ε]2, we can estimate that the refractive index
n̄ ≈ √

Re[ε] ≈ 5, which is consistent with the value in the
literature [48,49,53].

With the dielectric function at hand, we can finally obtain
the slab transmission as [54,55]

T (B) = e−Ad (1 − |r|2)2 + 4|r|2 sin2(φr )

(1 − |r|2e−Ad )2 + 4|r|2e−Ad sin2(αd + φr )
,

(11)

where d is the thickness of the sample, and all other parame-
ters are functions of n̄ and k. A brief derivation of Eq. (11) is
given in Appendix B. Specifically, α = ωn̄/c, and A = 2ωk/c
is the absorption coefficient. In addition, |r|, φr in Eq. (11)
are the amplitude and phase of the half-space reflection coef-
ficient r, respectively, defined as

r = 1 − (n̄ + ik)

1 + (n̄ + ik)
. (12)

The results of these optical coefficients are discussed in
Appendix D.

By combining the above Eqs. (8)–(12), we can obtain the
theoretical results for the magneto-optical transmission of the
sample, which are shown in Fig. 5(c). Note that here we plot
Tunpolarized = (T+ + T−)/2 because the experimental data is
obtained using an unpolarized light source. As demonstrated
in the figure, there is a good agreement between our theory
and the experimental data.

C. The (1-2) interband transition

Having achieved a general agreement between the theory
and the experimental data, we now focus on the (1-2) inter-
band transition, which is one of the most interesting features
in our data. A dashed box in Fig. 5(c) highlights this part of
the data.

First, this part of the data mainly arises from the group of
four transitions labeled as (1-2), as defined in Eq. (5). Second,
note that there are two dips inside the dashed box, the left of
which belongs to the oblique valley and the other to the lon-
gitudinal valley. Most interestingly, the two dips initially have
a similar magnitude at B = 15 T but become highly uneven
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FIG. 6. The theoretical (1-2) interband transition of (a) oblique and (b) longitudinal valleys of the Sample S1 at B = 10 T and B = 20 T.
Dashed and solid lines show kz dispersion of the Landau levels of oblique and longitudinal valleys, respectively. The blue (red) lines illustrate
the Landau level with the index ξ = +1 (−1). The black solid lines illustrate the Fermi level, and black dots correspond to the occupied
electron states. The Landau levels from top to bottom in (a) and (b) correspond to the following states: |+, 2, +〉, |+, 2, −〉, |+, 1,+〉, |+, 1, −〉,
|+, 0, +〉, |−, 0, +〉, |−, 1, −〉, |−, 1, +〉, |−, 2, −〉, |−, 2, +〉. The dashed green lines label the interband transition of the left-handed circularly
polarized light η− : |−, 2, ±〉 → |+, 1, ∓〉 at kz = 0. The dashed orange lines label the interband transition of the right-handed circularly
polarized light η+ : |−, 1, ±〉 → |+, 2, ∓〉 at kz = 0.

at B = 35 T. This is surprising because one might expect the
magnitude of the oblique valley dip to be three times that of
the longitudinal valley dip. After all, the material has three
oblique valleys and only one longitudinal valley.

To analyze this unexpected feature, note that the different
populations in the two valleys can have an impact on the
absorption strength of the (1-2) interband transition. As shown
in Fig. 3(a), the (1-2) interband transition of the longitudinal
valley saturates at B = 4.2 T, whereas the oblique valleys
do not achieve that until B = 18.9 T. To further understand
those details, we consider the allowed interband transitions of
circularly polarized light. The selection rules for the absorp-
tion process are mainly determined by the following matrix
elements of the velocity operator v̂τ=±,

〈λ′, N ′, ξ ′, k′
z|v̂τ=±|λ, N, ξ , kz〉

= δk′
z,kzδN ′,N+τ δλ′,1δλ,−1(Q1 + Q2), (13)

where

Q1 = h̄

lBm

[
(C′C − A′A)

√
N − 1

2
+ 1

2
τ

+ (D′D − B′B)

√
N + 1

2
+ 1

2
τ

]
,

Q2 = v√
2

[(1 + τ )(A′D + C′B) + (1 − τ )(B′C + D′A)],

(14)

and τ = +1 (−1) labels the right-handed (left-handed) cir-
cularly polarized light. The general form of eigenstates
|λ, N, ξ , kz〉 = [A, B,C, D] and A, B,C, D are functions of
variables (λ, N, ξ , kz ).

Because the transition dips primarily arise from kz ≈ 0,
we will then focus on that part. Specifically, for kz = 0, the
eigenstates take the form

|+, N,+〉 = [A, 0, 0, D],

|+, N,−〉 = [0, B,C, 0],

|−, N,+〉 = [0, B,C, 0],

|−, N,−〉 = [A, 0, 0, D]. (15)

By combining the Eqs. (5), (13)–(15), we can identify the
allowed interband transitions of the right-handed circularly
polarized light (η+) and the left-handed circularly polarized
light (η−) as shown in Fig. 6. These transitions correspond to

η+ : |λ = −, N, ξ = ±〉 → |λ = +, N + 1, ξ = ∓〉,
η− : |λ = −, N + 1, ξ = ±〉 → |λ = +, N, ξ = ∓〉. (16)

However, this constraint is generally not satisfied for kz �= 0.
Let us now proceed to examine the (1-2) interband transi-
tions at kz = 0 before and after the occupation of |−, 1,±〉
of the oblique valley. As shown in Fig. 6(a), when |−, 1,±〉
is unoccupied by electrons, only η− : |−, 2,±〉 → |+, 1,∓〉
transitions are allowed. After the Fermi level moves above
the |−, 1,±〉 state at B = 20 T, all four transitions η± in
Eq. (16) become allowed. This will increase the absorption
strength of the (1-2) interband transition for oblique valleys.
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FIG. 7. Theoretical transmission spectra at B = 35 T with vary-
ing sample thicknesses (red dashed or solid lines). The red solid
line represents the thickness of the sample. The experimental data
of sample S1 is represented by the black solid line for reference.

A similar analysis could be conducted at B = 15 T where
the allowed interband transitions for the oblique valleys are
η− : |−, 2,±〉 → |+, 1,∓〉 and η+ : |−, 1,+〉 → |+, 2,−〉.
While the longitudinal valley has already reached the quan-
tum limit at B = 4.2 T, the absorption strength of the (1-2)
interband transition for the longitudinal valley is expected to
remain unchanged as shown in Fig. 6(b). In summary, the very
different populations in the two valleys (see Table I) can cause
the absorption strength ratios to deviate from 3:1.

However, the above explanation still does not capture a
puzzle in the experimental data: Above B = 18.9 T, the (1-2)
interband transitions of the oblique valley are already satu-
rated. Therefore, the absorption strength ratio of the (1-2)
interband transition should not vary significantly after this
point. Contrarily, the ratio appears to increase even further
from 20 to 35 T, as shown in Figs. 4(c) and 5(c). This proves
that the movement of the Fermi energy is not the sole reason
for the anomalous absorption strength ratio observed in the
experiment. It turns out that the thickness d of the sample
also plays an important role in determining the pattern of the
absorption strength ratio. In Fig. 7, we present the transmis-
sion spectra as a function of thickness at B = 35 T. Notably,
a small change in the thickness of about 20% remarkably
alters the shape of the spectra near the (0-1) and (1-2) inter-
band transition. As discussed in Ref. [54], the transmission
will display an oscillatory behavior as a function of the film
thickness d and the frequency ω, especially in the lossless
limit (n 
 k), which is where our experiment was performed.
This phenomenon is known as multiple-beam interference or
Fabry-Pérot interference.

Following this observation, it is instructive to compare
the slab transmission formula in Eq. (11) with the Beer-
Lambert law T = e−Ad , which has been widely used to
explain the transmission data in bulk semiconductors. We
note that the Beer-Lambert law only applies to thick samples,
while Eq. (11) is much more general. To better elucidate their

differences, we present a simplified version of Eq. (11),

T = (1 − |r|2)2

eAd − 2|r|2 cos(2αd )
, (17)

which is obtained by noting that n̄ 
 k, |r| ≈ 0.67,
φr ≈ −π in our sample (see Appendix D for more details).
In our sample, we have Ad ∈ (0.04, 1.30), and thus, we can-
not simply apply the Beer-Lambert law. Instead, the factor
cos(2αd ) plays an important role, leading to a strong mod-
ulation between the longitudinal and oblique valleys. This
is why a slight change in sample thickness could yield an
appreciable variation in the absorption strength ratio between
these two valleys. Such a feature is a direct manifestation
of field-dependent multiple-beam interference. Note that the
importance of multiple-beam interference is also emphasized
in the literature in the B = 0 case [56]. The Beer-Lambert
law is recovered only in the limit Ad 
 1, or d 
 A−1 =
c/(2ωk). For example, from the plot of k in our sample shown
in Appendix D, we estimate that the Beer-Lambert law only
applies to samples with thickness d > 2.0 µm in the frequency
range of h̄ω > 200 meV.

To test our theory further, we applied the same calculation
to another sample (S2), which has a different composition and
thickness. The fitting results are also satisfactory and can be
found in Appendix E.

IV. DISCUSSION AND CONCLUSION

Although such an anomalous absorption strength ratio vari-
ation has been observed in other samples, there are a few
reasons why it is particularly prominent in our sample. First,
the contributions from the longitudinal and oblique valleys
should be well separated in the transmission spectra so that
we can distinguish the contributions from the two types of
valleys. This condition is usually satisfied before the band
inversion of the material Pb1−xSnxSe (x < 0.16) because the
Fermi surfaces of the four L valleys have an ellipsoid shape
[25,38]. Therefore, the longitudinal valley and the oblique
valleys have very different vc corresponding to different dips’
positions. In contrast, after the band inversion of Pb1−xSnxSe
(x > 0.16) [26], the Fermi surfaces of the four L valleys
become spherical, and hence the differences between the lon-
gitudinal and oblique valleys cease to exist [25]. As a result,
these anomalous absorption strength ratio variations can be
difficult to observe after the band inversion [26].

To summarize, in this work, we carried out a detailed ex-
perimental and theoretical study of infrared magneto-optical
spectroscopy in the Pb1−xSnxSe alloy system. In particular,
we focus on the variations of the absorption strength ratio
of the interband transition, which is often neglected in the
literature. We developed a theoretical model to describe the
fine structures in the interband transition, which helped us
extract the dielectric function of the sample. The fitting be-
tween the experiment and theory is satisfactory. The analysis
allows us to attribute anomalies in the spectral shape of the
infrared magneto-optical spectra to an uneven valley popu-
lation and the impact of the field-dependent multiple-beam
interference. The different population has been observed and
attributed to the thermal strain between the substrate BaF2 and
lead salts in literature [45,46]. Meanwhile, the field-dependent
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multiple-beam interference is most pronounced when the ma-
terial thickness is sufficiently small.

Our work sheds light on whether the absorption strength
can help identify symmetry-breaking patterns in a sample. By
carrying out a thorough theoretical and experimental anal-
ysis, we identify a large carrier density difference between
longitudinal and oblique valleys in our sample. The fact that a
single-particle model provides sufficient evidence to explain
the anomalous absorption strength ratio leaves little room
for spontaneous symmetry breaking in our sample. Our work
demonstrates that sample thickness could complicate the anal-
ysis. Therefore, a careful analysis is needed to understand the
spectral shape.

Our model provides a crucial foundation for identifying
other fine structures in the interband transition region resulting
from different mechanisms. However, there are still unan-
swered questions that require further investigation. First, there
exists a deviation of T (B)/T (0) between the experimental
results and our calculations in the low-frequency regime, such
as the 120 meV < h̄ω < 190 meV window for the B = 20 T
curve in Fig. 5(c). This is likely due to the existence of
an absorption edge within this energy window. Such a dis-
agreement has also been observed in other experiments [26].
Meanwhile, it will be interesting to carry out a similar study
for Pb1−xSnxTe. We anticipate that some of the features in
our sample will be even more pronounced in those samples
because the difference between the vc in the longitudinal and
oblique valleys is much larger.
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APPENDIX A: DETAILS OF DETERMINATION
OF THE CARRIER DENSITY

AND THE VALLEY SPLITTING

In this Appendix, we explain the procedure for determining
the carrier density of samples. Additionally, we will present
the fitting results for the valley splitting.

1. Challenges in determining the carrier density

Several factors make it complicated to determine the carrier
density in each valley in this experiment. First, in the presence
of a strong magnetic field, the carrier density in each valley
is no longer separately conserved because all four valleys
share one single Fermi energy [32,33,40]. In other words,
carriers can transfer between different valleys as the magnetic

TABLE II. The onsets of different transitions in the experiment.

Oblique valley Longitudinal valley

Transitions Bc( T) nO(1017/ cm3) Bc( T) nL (1017/ cm3)

(0-1) — — 3.00–4.00 0.42–0.67
(1-2) 6.00–7.00 2.5–3.1 1.75–2.50 0.51–0.89
(2-3) 4.75–5.00 3.1–3.4 1.50–2.50 0.74–1.6

field strength is varied. Second, the exact value of the valley
splitting �S cannot be measured directly from the experiment.
Third, the experimental data only provides the onset of each
transition, which is not sufficient to determine the exact posi-
tion of the Fermi energy EF at different magnetic fields.

To address these challenges, we first determine the car-
rier density of each valley at a specific magnetic field by
identifying the onset of a specific interband transition. For ex-
ample, the onset of the (0-1) interband transition corresponds
to the moment that the system occupies the electron state
|−, 1,+, kz = 0〉. We can generalize this procedure to other
transitions, and obtain the p-type carrier density of each valley
using

nvalley(EF ) = gL

S

∑
N,ξ

∫ ∞

−∞
[1 − f (Eλ,N,ξ (kz ))]

dkz

2π

= 1

2π2l2
B

1

h̄vz

∑
N,ξ

√
E2

F − P2
N,ξ	(−|PN,ξ | − EF ).

(A1)

The difference between Eqs. (7) and (A1) is that the latter
determines how many states are occupied in a single valley
even without knowing the exact valley splitting �S between
different valleys. The reason is that the carrier density of each
valley is determined by the number of occupied states in that
valley, which is not affected by the relative shift of Landau
levels between different valleys. Such a procedure is repeated
for different transitions, and the results are summarized in
Table II. We define the onset magnetic field Bc as the magnetic
field at which certain transitions become observable. We note
that Bc of each transition is subject to uncertainty due to the
resolution of the experimental data. As a result, the carrier
density of each valley also carries an uncertainty.

2. Fitting the valley splitting

From the above discussion, we know that if the onsets of
the transitions of two valleys can be identified simultaneously,
one can determine the total carrier density of the system
uniquely. However, this is generally not possible from the
experimental data. To address this issue, we utilize a fitting
procedure. Specifically, we start by choosing an initial guess
for the carrier densities for longitudinal and oblique valleys
and then search for a consistent solution from the following
equations of the total particle number conservation:

nO(�S, Bi ) = ni
O,

nL(�S, Bi ) = ni
L,
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FIG. 8. The population of the longitudinal valley (solid line) at
different magnetic fields. The red star marks the initial guess.

ntotal = gL

S

∑
valleys

∑
N,ξ

∫ ∞

−∞
[1 − f (Eλ,N,ξ ,�S (kz ))]

dkz

2π

= 3ni
O + ni

L = 3nO(�S, B) + nL(�S, B), (A2)

where ni
O and ni

L are the initial guesses at a given mag-
netic field Bi, ntotal is the total carrier density of the system.
nO(�S, Bi ) and nL(�S, Bi ) are the carrier densities of the
oblique and longitudinal valleys at Bi with a fitted val-
ley splitting �S . For example, for sample S1, according to
the Table II, if we assume that ni

O = 3.2 × 1017/ cm3 and
ni

L = 0.5 × 1017/ cm3 respectively at Bi = 4.9 T, one can
uniquely determine the valley splitting �S from above
Eqs. (A1) and (A2), as shown in Fig. 8. Although there are
different initial carrier densities, from our fitting, we find that
if one valley is fixed, e.g., oblique valley, then the other valley
can only vary within ±0.1 × 1017/ cm3. Otherwise, no proper
solution of �S that satisfies both Eq. (A2) and Table II can be
found. From this procedure, we can extract the valley split-
ting �S = 28.50 meV for sample S1. The valley population
between the longitudinal and oblique valleys is also shown

FIG. 9. The population of different valleys at different magnetic
fields. The red and blue solid lines represent the carrier density of the
longitudinal and oblique valleys, respectively. The black solid line
is the total carrier density of the system. The carrier density of the
longitudinal valley vanishes at around B = 26.6 T.

TABLE III. The onsets of different transitions of the theory.

Oblique valley Longitudinal valley

Transitions Bc( T) nO(1017/ cm3) Bc( T) nL (1017/ cm3)

(0-1) 12.75 3.0 3.30 0.49
(1-2) 7.00 3.1 1.75 0.51
(2-3) 4.84 3.2 1.18 0.51

in Fig. 9. The carrier density of the longitudinal valley even
becomes completely depleted after 26.6 T. By fitting the data,
we can theoretically obtain the counterpart of Table II in
Table III. Considering the minimum step size �B = 0.25 T of
the experiment, most theoretical results fall within the range
of the experimental data.

3. Hall measurements for the carrier density

To identify the type of carrier density, we also performed a
Hall measurement in Fig. 10. The sample is hole doping due
to Sn vacancies. From the Hall measurement, we extract the
carrier density of the sample S2 to be p = 11 × 1017/ cm3. It
is close to the one extracted from the infrared magneto-optical
spectroscopy p = 7.7 × 1017/ cm3 as indicated in Table I, but
not totally identical. This kind of difference is also observed
in the previous work [26], where the difference between two
measurements can be as large as a factor of 2. The difference
may be attributed to the inhomogeneity of the sample, since
Hall measurements are macroscopic, while magneto-optical
spectroscopy provides local measurements.

APPENDIX B: DERIVATION
OF THE SLAB TRANSMISSION

In this Appendix, we briefly explain how to derive the slab
transmission formula in Eq. (11).

We start by considering the geometry shown in Fig. 11,
which depicts the general process of a light incident from the
helium gas, going through the sample and the substrate, and
is eventually received by the bolometer behind the substrate.
Under this geometry, the complex transmission coefficient τ

FIG. 10. The Hall measurement of Sample S2. The positive slope
of the Hall resistance indicates the presence of hole carriers of the
sample.
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FIG. 11. A sketch of the incidence of a beam with multiple re-
flections inside a plane-parallel slab of thickness d . Here L = 0, 1, 2
labels the index of the layer. In addition, Ei, Er,m, and Et,m label the
incident, multiple reflected and transmitted light, respectively.

can be obtained by summing up the contributions from the
incident beam’s multiple reflections in the film, which yields

τ =
∑∞

m=0 Et,m

Ei
= t01t12eiδ1

∞∑
m=0

(r12r10e2iδ2 )m

= t01t12eiδ1

1 − r12r10e2iδ2
. (B1)

In the above equation, r jk and t jk are the Fresnel coefficients,
and j and k label the layer indices of the media shown in
the figure. δ1 is the phase accumulated by the incident light
when it goes through the film the first time, and 2δ2 is the
phase difference between two adjacent beams. In the nor-
mal incident case, δ1 = δ2 = δ is the phase accumulated by
the incident light when it goes through the film once. The
phase is given by δ = qd = (α + iA/2)d , where A and α were
introduced in Eq. (11). In addition, the Fresnel coefficients
become

r jk =
√

ε j − √
εk√

ε j + √
εk

, t jk = 2
√

ε j√
ε j + √

εk
, (B2)

In the absorbing media, the complex refractive index is de-
fined as

√
ε = n̄ + ik. Note that the refractive index of the

substrate BaF2 in the far infrared regime varies from 1.01 to
1.46 [57], which is much smaller than that of Pb1−xSnxSe.
Meanwhile, the refractive index of the helium gas is also
close to the vacuum. Therefore, it is reasonable to simplify
our model by assuming that the film is surrounded by the
vacuum on both sides [54]. Notice that now rk j = −r jk ,
r01 = −r12 = r, t12 = 1 − r, t01 = 1 + r we then obtain the
complex transmission as

τ = t01t12eiδ

1 + r12r01e2iδ
= (1 − r2)eiδ

1 − r2e2iδ
. (B3)

By substituting the relations r = |r|eiφr , we finally obtain the
expression for the slab transmission as [54]

T = ττ ∗

= e−Ad (1 − |r|2)2 + 4|r|2 sin2(φr )

(1 − |r|2e−Ad )2 + 4|r|2e−Ad sin2(αd + φr )
,

which is exactly Eq. (11) in the main text.

FIG. 12. Differences between a constant and a dynamical
broadening parameter at B = 35 T. The black line illustrates the
experimental data of Sample S1. The red line is the theoretical
transmission spectra obtained with a dynamical broadening parame-
ter 
(h̄ω) = 2 meV + 0.027h̄ω. The blue dashed line represents the
theoretical transmission spectra obtained with a constant broadening
parameter 
 = 10 meV.

APPENDIX C: DETAILS
OF THE NUMERICAL PROCEDURE

In this Appendix, we highlight a few notable details from
our numerical calculations.

First, to avoid numerical difficulties when calculating the
Landau level at a zero magnetic field (B = 0), we approximate
T (0) with T (B = 1 T) [26]. In practice, it is sufficient to
keep all Landau levels below a maximum Landau level index
Nmax(B), which is taken to include all interband transitions
below 800 meV. This approximation has been verified against
experimental data. Moreover, the limit of the kz integral is
capped at kz,max = 20 nm−1.

We now comment on the broadening parameter 
 in the
Kubo formula for conductivity, Eq. (9). Based on the em-
pirical rule for the interband magneto-optical transitions in
graphene [58,59], we choose the frequency-dependent broad-
ening parameter 
(h̄ω) = a + bh̄ω [26] to fit the experimental
data.

In principle, the broadening parameter 
 is the self-energy
[60], which is a function of the energy of the photon h̄ω and
the wave vector k. We apply the linear approximation to fit the
broadening parameters, given by 
(h̄ω) = 2 meV + 0.027h̄ω.
Note that h̄ω is written in the unit of meV.

In Fig. 12, we compare the results in sample S1 using a
constant broadening parameter 
 = 10 meV with those ob-
tained with the full dynamical broadening parameter 
(h̄ω) =
2 meV + 0.027h̄ω. The constant broadening 
 = 10 meV fit
the data well for photon energies above h̄ω = 300 meV, but
smears out the dips of (0-1) interband transition between
h̄ω = 100 meV and h̄ω = 200 meV. It is evident that the
dynamical broadening parameter fits better with the experi-
mental data across the entire spectra. Therefore, we used the
full dynamical broadening parameter in the results shown in
the main text. Meanwhile, we find that the same form of 


also works well for the other sample (S2), where we found
that 
(h̄ω) = 1 meV + 0.027h̄ω.
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FIG. 13. In this figure, we present theoretically calculated (a) re-
fractive index n̄, (b) extinction coefficient k, (c) amplitude, and
(d) phase of the half-space coefficient r of the sample S1. These
results are obtained by averaging over left-handed and right-handed
circularly polarized light.

APPENDIX D: ADDITIONAL DISCUSSIONS
ON THE OPTICAL COEFFICIENTS FOR SAMPLE S1

Apart from the dielectric function shown in the main text,
it is instructive to study other optical constants, including the
refractive index n̄, the optical extinction coefficient k, and the
half-space reflection coefficient r. These quantities are plotted
in Fig. 13. We can see that these optical constants satisfy the
following relations: n̄ 
 k, |r| ≈ 0.67 and φr ≈ −π .

In addition, at B = 1 T, both n̄ and |r| show two peaks
at small photon energies, corresponding to the absorption
edge of the longitudinal and oblique valleys, respectively. The
fact that the dispersion of the refractive index will display
peaks at the absorption edge has been reported in the previous
Ref. [61]. Meanwhile, the extinction coefficient k displays two
steep increases at the same position and keeps flat over photon
energy 200 meV < E < 460 meV. In general, the refractive
index n̄ and the extinction coefficient k respectively display
the same behavior as the real and imaginary part of the di-
electric function ε based on Eq. (10), and a good agreement
of these quantities has been achieved comparing with the
literature [48,49,53].

In Fig. 14, we compare the transmission spectra
of right-handed circularly polarized light (η+) and left-
handed circularly polarized light (η−). The spectra exhibit
significant differences between the two polarizations. First,
for CR or the (0-1) intraband transition, the material ab-
sorbs more left-handed circularly polarized light η− than
right-handed circularly polarized light η+. To understand this
behavior, we examine the dipole transition matrix element
given by

〈λ′, N ′, ξ ′, k′
z|v̂τ=±|λ, N, ξ , kz〉

= δk′
z,kzδN ′,N+τ δλ′,−1δλ,−1(Q1 + Q2), (D1)

where Q1 and Q2 are defined in Eq. (14) in the main text.
Based on this equation, we can determine the selection rule

FIG. 14. The theoretical transmission spectra of right-handed
(η+) and left-handed (η−) circularly polarized light of the sample
S1.

for the intraband transition,

η+ : |λ = −, N, ξ = ±〉 → |λ = −, N + 1, ξ = ±〉,
η− : |λ = −, N + 1, ξ = ±〉 → |λ = −, N, ξ = ±〉.

(D2)

When |−, 0,+〉 is the only unoccupied state, only the η− in-
traband transition |−, 1,+〉 → |−, 0,+〉 is allowed at kz = 0.
This explains why the absorption strength is larger for η−
compared to η+. Moreover, because the Landau levels of the

FIG. 15. The infrared magneto-optical spectra of the sample S2.
The black and red lines correspond to the experimental data and
theoretical results, respectively.
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valence bands of the longitudinal valley are completely occu-
pied above B = 26.6 T, we predict that the CR for that valley
is absent in the spectra at B = 30 T and B = 35 T, although
the experimental data does not provide enough details of this
transition in the whole spectra because of the noise. Second,
we find an enhancement of the (1-2) interband transition of
the oblique valley for η+ between B = 10 T and B = 20 T in
Fig. 14. The reason is that, as B increase, the |−, 1,±〉 states
becomes occupied, and thus enabling more (1-2) interband
η+ process. Finally, for the (0-1) interband transition, the
absorption strength of η− is significantly larger than that of
η+. This can be understood from the selection rule in Eq. (16),
which shows that the (0-1) interband transition of η− for
both valleys can saturate at a lower magnetic field than that
of η+.

APPENDIX E: FITTING RESULTS FOR SAMPLE S2

Here we comment on the experimental data in the other
sample S2, which has a Sn concentration of x = 0.10 and
a thickness of 990 nm. On the theoretical side, we applied
the same procedure to this sample. The model parameters
are shown in Table I. It is notable that the thickness of this
sample is almost twice that of the other sample. With a
slightly different choice of the broadening parameter 
(h̄ω) =
1 meV + 0.027h̄ω, we can achieve a good agreement with
the experimental data for this sample as shown in Fig. 15. In
particular, the anomalous variation of the absorption strength
ratios for the (1-2) interband transition is also well captured.
This agreement demonstrates that our theory is general and
can be applied to different samples of this material.
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