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Abstract—This study presents a numerical model for simulating
screening current distribution in REBCO stellarator coils using
a distributed-circuit approach with widthwise segmentation. By
applying an equipotential assumption along the conductor‘s width,
which can generally be applied, the model reduces the number of
circuit elements, enabling efficient calculation of electromagnetic
and thermal parameters such as current distribution and AC loss
within a short time. Experimental validation using a 1/20-scale
stellarator coil confirmed the model’s accuracy in predicting the
effects of screening current on voltage profiles during repeated
operations. The results indicate that voltage measurements can
effectively estimate screening currents in high-temperature super-
conducting (HTS) magnets.

Index Terms—Distributed-circuit, fusion, screening current,
screening current induced voltage, stellarator.

1. INTRODUCTION

N the past decade, with the advancements in high-
I temperature superconducting (HT'S) magnet technology [1],
[2], [3], [4], [5], [6], there has been growing anticipation that
fusion magnets could also adopt HTS technology [7], [8], [9],
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[10], [11]. Many startups are actively developing HTS mag-
nets [12], [13], [14], [15], showing significant results. No-
insulation (NI) technique [16], which played a significant role
in achieving the world‘s highest DC magnetic field [17], has
greatly contributed to these achievements. However, challenges
such as field distortion [18], [19] and stress caused by screening
currents [20], [21], [22] remain unresolved. Moreover, studies
that address the aforementioned issues under the assumption
of using HTS in stellarators are rare and have only recently
begun to gain attention. To analyze these screening currents,
the finite element method (FEM) has been widely used [23],
[24], [25], and many studies have demonstrated its consistency
with experimental results [26], [27]. Nevertheless, for complex
shapes like stellarator coils, the time and computational power
required for FEM increase significantly, highlighting the need
for more efficient analysis methods.

In this study, we developed a numerical model to simulate
the screening current distribution in REBCO stellarator coils
using a distributed-circuit method with widthwise segmenta-
tion [28], [29], [30]. The model was applied to analyze current
distribution and AC loss in a full-scale stellarator module coil
designed by Proxima Fusion, comparing the results across three
different operating current scenarios. Experimental validation
with a 1/20-scale stellarator coil confirmed the model’s accuracy,
particularly in predicting the impact on voltage (or screening
current induced voltage) during operations.

II. METHOD: DISTRIBUTED-CIRCUIT MODEL WITH
WIDTHWISE SEGMENTATION

We adopted a distributed-circuit model based on the partial
element equivalent circuit (PEEC) method [31], [32], [33], [34]
to simulate the screening current distribution (or nonuniform
current distribution) within the conductor. Although more ac-
curate results can be obtained when the NI coil is expressed
with all the circuit components, the computation time should be
considered. To reduce the circuit component, we set the width-
wise equipotential assumption, which means that the electrical
potential along the width of the REBCO conductor is the same
as shown in Fig. 1. redThis assumption is generally valid for
magnet simulations, as the current flowing in the width direction
of the superconducting tape is relatively negligible and has
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Fig. 1. Schematic drawing of the small block of distributed-circuit model
based on the PEEC. Each tape is divided in widthwise direction to simulate
screening current distribution, and each divided pieces are named ‘segment’.
With equipotential assumption, which can be considered in general, the nodes
within the red circle is merged for simplification of model. The conductor is
expressed by combination of self-inductances, mutual inductances, and the
‘index’ resistance following the power-law V-I characteristics. The electrical
contact between conductor is expressed by turn-to-turn contact resistances.

little impact on the analysis results of the current distribution in
the tape‘s length direction. Therefore, each lengthwise element
of the conventional PEEC model for a NI coil is substituted
by widthwise segmented element while the electrical contact
between adjacent tapes is characterized by a single path with a
resistance.

For the simulation, the mutual inductances between circuit
elements are required. We used the numerical integration method
with the well-known Neumann formula [35] for two line seg-
ments. The closed-form solution of mutual inductance between
two line segments is determined according to the positional re-
lationship between them. Then, the mutual inductance between
two thin conductors can be numerically integrated by the sum
of the inductance of the pairs of two line segments within the
conductors.

Contact resistance R, between adjacent tapes were calculated
by following equation:

R. = £, )
where p.; and S represent the contact resistivity between
conductors [36], [37], [38], [39] and the contacted area, re-
spectively. Moreover, superconducting ‘index’ resistance was

calculated with consideration of field-dependent properties of
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Fig. 2. Schematic of real-scale stellarator module coil. The cable is assumed
to consist of 100 tapes of REBCO conductor.

REBCO conductor. We adopted the practical fitting function
suggested by D. K. Hilton et al. [40]. Then, a system of nonlinear
first-order differential equations was formulated according to the
simulation cases, and it was solved by the MATLAB’s built-in
solver.

III. CASE STUDY: SIMULATION OF 100-TAPE REBCO
STELLARATOR MODULE COIL IN REAL SCALE

Simulation target for this study was a real-scale stellarator
coil designed by Proxima Fusion. Approximately 4-m wide
module coil was designed with consideration of target magnetic
field distribution and bending strain. We assumed the module
coil is made by one turn of stacked cable with 12-mm square
cross-section. As shown in Fig. 2, the cable consisted of 100
tapes of REBCO conductor. We assumed that the Faraday Fac-
tory Japan’s conductor is used for the cable, and the operating
temperature is 4.2 K. These assumptions are for convenience of
simulation, so they might not be applied for the real magnet.

For the simulation of widthwise distribution of screening cur-
rent, each tape was subdivided into 16 segments. The operating
currents were assumed to 20 kA, 50 kA, and 100 kA while the
coil charging times were assumed to be identically one hour.
Then, the operating current was assumed to be maintained for
another single hour. Furthermore, we calculated the inductance
between each element, and the results are shown in Fig. 3. To
calculate this inductance matrix, total of 1.6 hours was required
by our numerical integration method.

By the aforementioned assumptions and inductance matrix,
we simulated the current distribution and AC loss. These pa-
rameters are crucial to estimate the electromagnetic and thermal
properties of the coil. The screening current distribution for each
operating current case were simulated as shown in Fig. 4. The
results are the current distribution in the cross-section of the
coil at right after the charging (1 h). Due to the complex shape
of stellarator coil, asymmetrical distributions were confirmed
compared to the typical solenoid magnet. Total simulation times
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Fig. 3. Inductance matrix calculation results. Diagonal components represent
the self-inductance of each element while other components are the mutual
inductances.
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Fig. 4. Calculation results of current distribution on the cross-section of the
coil at right after the charging for (a) 20 kA, (b) 50 kA, and (c) 100 kA cases.
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Fig. 5. AC loss calculation results for each simulation case. Peak loss was
about 10 W for the lowest operating current while the values were significantly
larger for another cases.

for two hours of operation scenario were 22, 36, and 57 minutes
for the cases.
Based on current distribution, AC loss can be calculated by

following equation:
O = / / E.Tav @)

where Q, E, and 7 represent the AC loss, electrical field
determined by power-law, and the current density, respectively.
As shown in Fig. 5, peak value of AC loss was about 10 W
for 20 kA case while the values were considerably larger for
another cases. For the actual stellarator magnet operation, AC
loss should be determined based on the current distribution of
each module coil and magnetic field distribution. Our simulation
showed that the magnet properties caused by the screening
current can be calculated within an hour which is considerably
short period of time. The analysis results can serve as a reference
to quantitatively determine how slow the charging speed must
be to reduce AC loss to a negligible level.

IV. EXPERIMENTAL VALIDATION: 50-TURN NONPLANAR NI
CoIL WITH SIMPLIFIED STELLARATOR SHAPE

Although it would be fascinating to verify the model by
building a real-scale magnet, it is not efficient or practical due to
large amount of cost and time required. Therefore, we fabricated
1/20-scale stellarator coil as shown in Fig. 6. The shape of the
coil was simplified due to excessive strain during scale-down.
We arbitrarily removed some strain peak points to control the
maximum strain less than 0.4% . The test coil was wound with
SuNAM’s 4-mm width conductor. The number of coil turns was
50, and no-insulation technique was incorporated to validate
the circuit model. The aluminum coil bobbin was fabricated
by metal 3D printing technology. The clamps were used to
maintain the coil shape. The test coil was charged in the 77 K
of liquid nitrogen bath and the measured contact resistivity was
120 1Qcem?. To observe screening current induced voltage, we
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Fig.6. Fabricated test coil with a simplified stellarator shape. A 50-turn single-
pancake coil was wound with NI technique. To fix dimension of the coil, clamps
were used as shown in the blue box. Red box indicates the current lead structure,
and the pink box shows the winding results.
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Fig. 7. Calculation results of current distribution on the cross-section of the
test coil after (a) the first 50 A charge, and (b) the second one. The results show
distinguishable differences.

repeatedly charged the coil without warming up. If we don‘t
warm up the coil, then the residual screening current remains so
we can observe different voltage profile between each charging
process. The operating current of the coil was 50 A.

Using the same circuit model, we calculated current distribu-
tion as well as other parameters. The results clearly show the
different current distribution for the first and second charging as
shown in Fig. 7. This difference in current distribution caused the
different voltage profiles. The voltage profiles of the first charge
and the second charge showed distinguishable discrepancy as
expressed in Fig. 8(a). However, when we held the current at
50 A, we cannot observe any resistive component inside the
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Fig. 8. Screening current induced voltage measurement results. Voltage pro-
files during the charging sequence showed the discernible discrepancy while
voltage at current holding did not show any resistance.

coil. We can clearly see the difference by this enlarged graph
in Fig. 8(b). The circuit analysis results clearly reproduced the
trend of the screening current induced voltage, verifying the
accuracy of the circuit model and confirming its usefulness.

V. CONCLUSION

In this study, we developed and validated a numerical model
for simulation of the screening current distribution in REBCO
stellarator coils using a distributed-circuit model with widthwise
segmentation of conductor. The number of circuit elements
was reduced by applying the equipotential assumption along
the conductor width, which can generally be applied. This
model efficiently calculated the electromagnetic and thermal
parameters such as current distribution and AC loss within a
short period of calculation time. The experiment involving a
1/20-scale stellarator coil confirmed the accuracy of the model,
especially in capturing the effects of screening current on voltage
profiles during repeated coil operation. The results suggested
that voltage measurement can be a useful tool for estimating
screening current in high-temperature superconducting (HTS)
magnets. Future work will focus on simulating the entire stellara-
tor magnet system for more comprehensive analysis, as well as
validating the effectiveness of simulation method by additional
experiments.
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