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ABSTRACT

Walking on uneven terrain becomes more difficult as we age, and gait becomes less automatic. Using mobile brain
imaging via high-density electroencephalography (EEG) can provide insight into the neural mechanisms contributing
to reduced mobility capability with aging. The objective of this study was to quantify age differences in electrocortical
dynamics during uneven terrain walking, both averaged across many strides and variations within a stride. We included
31 young adults and 71 older adults for analysis. All participants walked on an uneven terrain treadmill with four levels
of terrain difficulty at their self-selected speed. Compared with younger adults, older adults exhibited a greater
increase in step duration variability and mediolateral sacral excursion variability as the terrain became more uneven.
We identified multiple brain regions involved during walking on uneven terrain. Regardless of age group, walking on
uneven terrain compared with flat terrain led to a widespread change of electrocortical dynamics in the brain, espe-
cially in the alpha (8-13 Hz) and beta (13-30 Hz) band power. In the parieto-occipital region, younger adults experi-
enced a greater reduction in alpha and beta power with increasing terrain unevenness than older adults. We also
assessed how intra-stride power fluctuations changed with terrain unevenness and age group. Greater intra-stride
power spectral fluctuations in the occipital area were associated with greater terrain unevenness for younger adults,
but not for older adults. In summary, older adults showed a greater increase in gait variability than younger adults as
the terrain became more uneven, but exhibited a lack of modulation of parieto-occipital activity in response to terrain
unevenness. The lack of task-related power modulation may suggest reduced cortical network flexibility in older
adults. The absence of increased parieto-occipital activity when walking on uneven versus flat surfaces in older adults
may also indicate that, unlike younger adults, older adults already heavily rely on visual processes during flat surface
walking and may, therefore, have reduced occipital modulation range remaining to cope with the visuomotor process-
ing demands of walking on uneven surfaces.
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1. INTRODUCTION

One-third of older adults in the United States report mobil-
ity limitations (Musich et al., 2018), which is estimated to
incur more than $42 billion in healthcare costs (Hardy
etal., 2011). Walking ability is a vital indicator for assessing
mobility limitations (Brown & Flood, 2013; Groessl et al.,
2007). Older adults walk more slowly, have reduced endur-
ance, exhibit altered kinetics and joint kinematics, and are
at a greater fall risk than younger adults (Akyol, 2007;
Boyer et al., 2023; Frimenko et al., 2015). When walking in
daily life, the ability to walk safely on uneven terrain, such
as from grass to a concrete sidewalk, is essential for
community-dwelling older adults. Walking on uneven sur-
faces poses a greater risk of falls for older adults than
walking on flat ground. Uneven terrain causes older adults
to walk slower, take shorter steps, and increase their
movement variability (Downey et al.,, 2022; Marigold &
Patla, 2008; Thies et al., 2005). These mobility changes
may lead to avoidance of community ambulation and
diminish quality of life, highlighting the importance of
understanding the mechanisms contributing to uneven
terrain mobility limitations with aging.

The underlying neural mechanisms contributing to age
differences in uneven terrain walking are not well under-
stood. The challenge of walking on uneven terrain
increases with age, as walking on flat ground is already
less automatic and relies more on cognitive control for
older adults (Clark, 2015; Shah et al., 2023). Prior studies
using functional near infrared spectroscopy (fNIRS) have
reported overaction of the prefrontal cortex in older adults
during walking, which suggests a need for greater cogni-
tive control (Belli et al., 2021; Clark, 2015; Clark et al.,
2014; Holtzer et al., 2011). It remains unclear how aging
impacts activity in other brain regions, although we know
that deterioration in motor and sensory systems, visuo-
spatial processing, and sensorimotor integration impacts
walking function for older adults (Franz et al., 2015; Sato
& Choi, 2022; Seidler et al., 2010).

Innovations in brain imaging using high-density elec-
troencephalography (EEG) allow the direct yet non-
invasive assessment of brain activity with high temporal
resolution (in milliseconds) during walking and other
behaviors (Gwin et al., 2011; Richer et al.,, 2024;
Yokoyama et al., 2021). Each of the EEG spectral power
bands (theta, alpha, beta) provides unique insight into
brain function during human locomotor tasks (reviewed
by Richer et al., 2024). Increasing demand for balance
control is consistently associated with an increase in
theta power (3-8 Hz) and decreases in alpha (8-13 Hz)
and beta (13-30 Hz) power (Blum et al., 2022; Bruijn
et al., 2009; Liu et al., 2024; Sipp et al., 2013). Addition-
ally, intra-stride EEG power fluctuations are thought to

reflect sensorimotor processing or integration during
gait (Guo et al., 2024; Seeber et al., 2014). Intra-stride
EEG power fluctuations localized to the sensorimotor
cortex have exhibited event-related synchronization
during the double support phase and desynchronization
during the swing or single support phase of gait (Artoni
et al., 2017; Bradford et al., 2016; Bruijn et al., 2015;
N. A. Jacobsen & Ferris, 2023; Liu et al., 2024; Zhao
et al., 2022). Such power fluctuations became more pro-
nounced when participants were asked to step on pre-
cise targets when walking on a treadmill, likely due to
increased visuomotor processing for controlling foot
placement (Oliveira et al., 2018; Yokoyama et al., 2021).
Taken together, quantifying both electrocortical changes
at different bands and the intra-stride power spectral
fluctuations could enable a comprehensive profile of the
influence of older age on brain dynamics during uneven
terrain walking.

The objective of this study was to quantify age differ-
ences in electrocortical dynamics during uneven terrain
walking. We used a high-density EEG system to quantify
the gait-related brain activity when younger and older
adults walked on uneven treadmill terrains with four lev-
els of difficulty at a preferred walking speed. Our hypoth-
eses were based upon our previous finding that as terrain
unevenness increases, younger adults demonstrated a
decrease in alpha and beta spectral power in the senso-
rimotor and posterior parietal areas and an increase in
theta power in the mid/posterior cingulate area (Liu et al.,
2024). Here, we hypothesized that older adults would
exhibit a greater increase in spectral power with terrain
unevenness than younger adults in theta bands (decrease
for alpha and beta) as older adults tend to recruit more
neural resources during gait and balance (Hawkins et al.,
2018; Holtzer et al., 2011). We also hypothesized that
older adults would demonstrate greater intra-stride spec-
tral power fluctuations than younger adults in sensorimo-
tor and posterior parietal areas as terrain unevenness
increases. This would relate to a higher demand for sen-
sorimotor processing. We also performed a whole-brain
exploratory analysis to reveal age differences in electro-
cortical activity. Findings from this study may uncover the
underlying neural mechanisms that contribute to mobility
limitations in older adults and inform targeted interven-
tions to enhance mobility.

2. METHOD

2.1. Participants

This study is part of a larger multimodal brain imaging
study (Mind in Motion), which investigates walking and
mobility decline in older adults (NIH U01AG061389)
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(Clark et al., 2020). Here, we analyzed the cross-
sectional EEG data from the larger study. We recruited
35 healthy younger (19 females, mean age = 24 + 4 years,
mean walking speed on uneven terrain tread-
mill = 0.7 + 0.2 m/s) and 96 older (58 females, mean
age = 75 + 7 years, mean walking speed on uneven ter-
rain treadmill = 0.35 £+ 0.21 m/s) adults to assess their
brain dynamics during walking on uneven terrain. Inclu-
sion criteria consisted of younger adults being aged 20-
40 years and community-dwelling older adults aged
65 years or older with a wide range of mobility. Exclu-
sion criteria included the presence of cognitive impair-
ments assessed by Montreal Cognitive Assessment
[MoCA] score < 26, existing medical conditions that
would significantly interfere with walking ability yet are
not directly related to brain function, visual impairment
that is not corrected, and implants with contraindica-
tions for magnetic resonance imaging (MRI). Full inclu-
sion and exclusion criteria have been described
previously (Clark et al., 2020). This study was approved
by the University of Florida Institutional Review Board
(IRB 201802227). All participants provided written
informed consent.

We included 31 younger adults and 71 older adults for
data analysis (Table 1). A total of three younger adults
were excluded from data analysis due to (1) gelling issues
with braids (n = 1) and (2) technical issues (n = 2). Twenty-

five older adults were excluded for data analysis (Supple-
mentary Fig. S1) due to (1) not completing the MRI
session (n = 8), (2) technical issue occurring during data
collection (n = 1), (3) not completing high-terrain condi-
tions (n = 7), or (4) walking with a speed slower than
0.1 m/s because these participants tended to walk
toward the front of the treadmill, pause their walking, and
then let the treadmill transport them toward the back
(n=9).

2.2. Experimental protocol

Details of the study protocol have been previously
reported (Clark et al., 2020; Liu et al., 2024) and we
provide a summary of the procedures and setup below.
We included one session of EEG and one session of
MRI scans for this paper. The EEG and MRI sessions
were conducted on separate days, with an average
interval of 30 days between sessions (standard devia-
tion = 91 days).

Prior to the EEG session, participants walked on an
overground version of the Flat, Low, Medium, and High
Terrain uneven conditions on a 3.5-meter mat three times.
The overground speed for each terrain was computed as
the average speed to walk through the middle 3-meter
portion. During the EEG session, participants walked on
the custom-designed treadmill belts at a subject-specific

Table 1. Participant characteristics, racial background/ethnicity for younger and older adults.
Characteristics Included younger adults (n = 31) Included older adults (n = 71) p Value
Age (years), mean (SD) 24 (4) 75 (8) n.a
Sex, M/F 15/16 31/40 n.a
Hand dominance, Right/left/ 28/3 65/5/1 n.a
both
Treadmill speed for all terrains 0.70 (0.16) 0.39 (0.20) p < 0.001
(m/s), mean (SD)
Short physical performance 12 (0) 9(1.7) p < 0.001
battery (score)?, mean (SD)
400 m walk (sec), mean (SD) 326 (40.5) 389.5 (63) p < 0.001
400 m speed (m/s), mean (SD) 1.2 (0.15) 1.05 (0.17) p < 0.001
Montreal Cognitive Assessment 28 (1.4) 27.5(1.6) p = 0.06
(score)?, mean (SD)

Included Excluded Included Excluded

younger younger older adults older adults
Racial background/ethnicity adults (n = 31) adults (n = 4) n=71) (n=25)
White 22 3 63 23
Black 1 1 3 2
Asian 6 0 2 0
Other 2 0 3 0
Hispanic 7 1 7 0

Average (standard deviation) age, treadmill speed, short physical performance battery, 400-meter walking duration, 400-meter walking
speed, and Montreal Cognitive Assessment for younger and older adults.

aThese assessments were performed with 20 younger adults.
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walking speed on four different levels of uneven terrain
(Flat, Low, Med, and High) and at four different speeds
(0.25, 0.5, 0.75, and 1.0 m/s) on the flat surface. Subject-
specific treadmill speed for all terrains was set to 75% of
the slowest overground speed across the terrains unless
participants requested a slower treadmill speed. Each
condition consisted of two walking trials, each lasting
3 minutes. Participants also completed a 3-minute seated
resting trial (Fig. 1A). During treadmill walking, partici-
pants wore a harness to prevent falling to the ground, but
the harness did not provide any body weight support
unless a fall occurred. No falls occurred during data col-
lection. We pseudorandomized the conditions with eight
unique orders of uneven terrain conditions and speed
conditions, respectively.

2.3. Data acquisition

Participants wore a custom-made dual-layer EEG cap
(ActiCAP snap sensors; Brain Products GmbH, Ger-
many), including 120 scalp electrodes and 120 mechan-
ically coupled noise electrodes, when walking on the
treadmill. The scalp electrodes followed a 10-05 elec-
trode system. We inverted and mechanically coupled
noise electrodes to the scalp electrodes (Fig. 1A) (Nordin
et al., 2018; Studnicki et al., 2022). We used a conduc-
tive fabric as an artificial skin circuit and bridged the
noise electrodes. Eight of the original 128 scalp elec-
trodes (TP9, P9, PO9, 09, 010, PO10, P10, and TP10)
were repurposed to measure muscle activity of the ster-
nocleidomastoid and trapezius on the left and right
sides. We kept all scalp electrode impedance values
below 15 Kohm during the setup. Ground and reference
electrodes were kept below 5 Kohm. We digitized the
electrode locations using a structural scanner (STO1,
Occipital Inc., San Francisco, CA). We used 4 LiveAmp
64 amplifiers and logged EEG data at 500 Hz. The online
reference and ground electrodes were at CPz and Fpz,
respectively.

2.4. Gait event and kinematics analyses

We analyzed kinematic and kinetic data using MAT-
LAB2020b (Mathworks, USA, RRID:SCR_001622) to
compute behavioral variables. We defined foot strike and
toe off based on ground reaction forces measured with
the capacitive shoe insole sensors (loadsol 1- 184 sen-
sor, Novel Electronics Inc., St. Paul, MN, USA) with 20 N
threshold (Downey et al., 2022). We computed the peak-
to-peak excursion of the sacrum in the anteroposterior
and mediolateral direction using the IMU. We have previ-
ously reported the details of the algorithm and calcula-
tions (Downey et al., 2022). We removed outliers that

were +2.5 standard deviations away from the mean within
each trial (Downey et al., 2022). We calculated the vari-
ability of each of these measures as the coefficient of
variation (standard deviation over mean).

2.5. EEG data analyses

We processed all EEG data using custom MATLAB
scripts, EEGLAB (v 2021.0, RRID:SCR_007292) (Delorme
& Makeig, 2004), and the BeMoBIL pipeline (v2.0.0) (Klug
et al., 2022) (Fig. 1B). We applied a 1 Hz high-pass filter
(-6 dB at 0.5 Hz) with eegfiltnew on all scalp, noise, and
muscle channels to remove drift for each trial and then
applied a 20 Hz high-pass filter with eegfiltnew on muscle
channels. We used the CleanLine plugin in EEGLAB to
remove line noise at 60 and 120 Hz. We rejected bad
channels that were 3 standard deviations away from the
mean of EEG and noise channels, respectively. We per-
formed average reference for scalp, noise, and muscle
channels, respectively. We then used iCanClean (Downey
& Ferris, 2023; Gonsisko et al., 2023) to remove artifacts
that were highly correlated with noise reference elec-
trodes (R? = 0.65 with a 4-second moving window) and
muscle reference electrodes (R? = 0.4 with a 4-second
moving window). We used clean_artifacts in EEGLAB to
remove bad channels and noisy time frames using default
parameters except for the following: chan_crit1 = 0.7,
win_critl = 0.4, winTol = [-Inf, 10]. These parameters
were selected in a preliminary analysis of a subset of the
data, which aimed to minimize the number of channels
and time frames rejected while maximizing a good num-
ber of brain components by ICLabel (Liu et al., 2023;
Pion-Tonachini et al., 2019). We retained 110 + 6 chan-
nels after pre-processing. Scalp EEG data were re-
referenced. We performed adaptive mixture independent
component analysis (AMICA) on the preprocessed data
to decompose the preprocessed EEG data into statisti-
cally independent components (Palmer et al., 2011). For
this analysis, we used all EEG data (approximately
50 minutes), which included both terrain and speed walk-
ing trials, as well as the resting trial, for AMICA; however,
we only used the terrain trials in subsequent data analy-
sis. We later used the independent components to per-
form source localization.

2.6. Epoch and compute power spectral density
and event-related spectral perturbations

For the walking trials, we segmented data into epochs of
5.25 seconds (from 1 second before to 4.25 seconds
after the right foot strike). The epoch length was chosen
to accommodate participants with long step durations
during the slowest walking condition (0.25 m/s). We
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Fig. 1. Experiment setup and processing pipeline. (A) Partic

ipants completed treadmill walking trials on four different

levels of uneven terrain (Flat, Low, Medium, High) and other walking trials at different speeds performed on the Flat
terrain. Participants wore a custom-made dual-layer EEG cap, an inertial measurement unit on their sacrum, and insole

force sensors inserted in their shoes. Dual-electrode EEG set

up has scalp electrodes and noise electrodes that were

mechanically coupled. We used a conductive fabric as an artificial skin circuit to bridge the noise electrodes. (B) Data
processing flowchart with steps for EEG pre-processing, source localization, spectral principal component analysis, and
clustering brain components. * indicates referring to supplementary material for details.

rejected epochs that were 3 standard deviations from the
mean gait event time. For the resting seated trial, we also
segmented data into epochs of 5.25 seconds.

We computed the log power spectral density (PSD)
using spectopo from EEGLAB with default parameters
for each independent component and normalized by
subtracting each individual’s mean log spectral power

density from all conditions. We then computed the time-
frequency decomposition of the resting trial with new-
timef (Morlet wavelets cycles: [3 0.8]) and averaged
across all epochs and time. We also computed the
time-frequency decomposition for all walking trials and
then time warped the gait cycles from right foot-strike,
left foot-off, left foot-strike, right foot-off, and the
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subsequent right foot-strike. We then averaged across
all epochs. We calculated relative changes in power
between walking and resting conditions of every time
point in the gait at every frequency for each indepen-
dent component.

2.7. Muscle artifact correction with sPCA

We used an adapted spectral principal component analy-
sis (SPCA; N. S. J. Jacobsen et al., 2022; Seeber et al.,
2015) to obtain muscle artifacts for correction in event-
related spectral perturbations (ERSP) and power spectral
density (PSD) for each participant. We performed sPCA for
additional muscle artifact reduction in addition to iCan-
Clean because there were residual muscle artifact con-
taminations found in the frequency domain, especially for
older adults. The steps were previously described in
Salminen et al. (2025) in detail, and thus we provided a
brief summary here and in the Supplementary Figures S2
and S3. We followed the scripts provided by Jacobsen
et al. to implement the sPCA (N. S. J. Jacobsen et al.,
2022). For each participant, we first removed the eye com-
ponents identified by ICLabel (Pion-Tonachini et al., 2019)
(version: lite). We computed the relative changes in PSDs
and ERSPs during all walking trials from the resting trial for
each component. sSPCA was performed on those PSDs
and ERSPs averaged across conditions. We obtained
eigenvectors and a weighting matrix that transformed data
from component x frequency space to the principal com-
ponent space. The first principal component (PSC1) with
the largest eigenvalue was identified as muscle artifacts
and thus removed from further analysis. Similar to Seeber
et al. (2015), the spectra profile of the PSC1 was lower at
frequency 2-20 Hz but became much higher at higher fre-
quencies, suggesting that PSC1 reflected electromuscular
activity (Supplementary Fig. S4). We then back-projected
the remaining principal components using the weighting
matrix for each condition (Seeber et al., 2015). We used
the same weighting matrix for all conditions for each par-
ticipant. After obtaining the sPCA-corrected PSD, we
added the PSD from the resting condition to the sPCA-
corrected PSD (Supplementary Fig. S2; Salminen et al.,
2025) to allow the FOOOF (Fitting oscillations & one over f)
toolbox to separate the aperiodic and periodic compo-
nents (Donoghue et al., 2020).

2.8. Participant-specific volume conduction head
model and source localization

We created the participant-specific volume conduction
head model using each participant’s T1-weighted MRI
with Fieldtrip (v. 20210910, RRID:SCR_004849). After we
resliced the image, we performed tissue segmentation

using headreco from SimNIBS toolbox (v 3.2). The MRIs
were segmented into six tissue layers (scalp, skull, air,
cerebrospinal fluid, gray matter, and white matter). Then
we generated finite element hexahedral meshes following
the steps previously reported in Liu et al. (2023). We dig-
itized the fiducial locations (left/right preauricular, nasion)
on the MRI and then co-registered the digitized electrode
locations to the individual-specific head models by align-
ing the fiducial locations. We then computed the leadfield
matrix using SIMBIO toolbox with a 5 mm apart distrib-
uted source position in gray matter.

We performed EEG source localization with an equiv-
alent dipole fitting approach using ft_dipolefitting func-
tion in the Fieldtrip toolbox. We then warped the dipole
locations to the Montreal Neurological Institute (MNI)
template for both younger and older adults using ANTs
normalization (Advanced Normalization Tools, https://
github.com/ANTsX/ANTs, RRID:SCR_004757; Avants
et al., 2011). The dipole locations found in the subject-
specific head model were warped to the MNI template
using antsApplyTransformsToPoints. We retained brain
components using the following criteria: (1) ICLabel
(Pion-Tonachini et al., 2019) (version: lite) classified the
brain probability of greater or equal to 50%, (2) negative
slope of the power density spectrum for 2-40 Hz to
remove muscle components, (3) residual variance of
dipole fitting <15%, and (4) dipoles located inside the
brain. Ten older adult participants with fewer than five
brain components were removed from further analysis.
The number of remaining brain components was greater
in younger adults than in older adults (15 + 5 vs. 12 + 5,
1(88) = 2.5, p = 0.01).

2.9. K-means clustering of brain components

We clustered the brain components into 11 clusters
(k = 11) by dipole locations using robust k-means (max-
iter = 10,000 and replicate = 1,000) in EEGLAB. We used
silhouette, Calinski-Harabasz, and Davies-Bouldin
methods to evaluate the clustering outcome between
the range of 9-14 clusters, as 14 is the average number
of brain components across participants. We did not
find agreement when evaluating the clustering outcome
between k = [9, 14] using the three evaluation methods.
We chose k = 11 so that the cluster locations would be
the most comparable with our previous paper with
young adults (Liu et al., 2024). Clusters with at least half
of the younger adults (n > 16) and half of the older adults
(n > 30) were retained. Components that were 3 stan-
dard deviations away from any of the cluster centroid
were identified as outliers. Each cluster had at most one
brain component from each participant. We selected the
component with the maximum likelihood to be a brain
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component by ICLabel to prevent inflating the sample
size if multiple components per subject existed in a
cluster.

2.10. Averaging power spectral density and
normalizing event-related spectral perturbations for
each cluster

For each cluster, we averaged the power spectral den-
sity and event-related spectral perturbations after sPCA
muscle artifact correction. We used the FOOOF toolbox
to separate the aperiodic and periodic components
from the power spectral densities (Donoghue et al.,
2020). We set the FOOOF parameters as follows: range
of power spectra [3 40 Hz], peak width limits: [1 8], min-
imum peak height: 0.05, maximum number of peaks: 2.
We computed the average power for each band using
the flattened power spectral density by subtracting the
aperiodic component from each of the original power
spectral density.

We computed ERSP with two different normalization
methods. First, we normalized ERSPs to the average
spectral power across gait cycles within each condition
to investigate the power fluctuation within gait cycles or
intra-stride power fluctuations. We also obtained the
peak-to-peak ERSP for each band (theta, alpha, beta) for
each terrain condition by taking the average of the power
across all frequencies within each band throughout the
gait cycle and then computing the peak-to-peak range
for each terrain condition. However, we normalized
ERSPs to average spectral power across gait cycles for
all conditions (common baseline removal) to allow for
comparison of ERSPs across terrain conditions. We aver-
aged the ERSPs for each terrain condition and then aver-
aged across all participants for each cluster.

2.11. Statistical analysis

All statistical analyses were performed in MATLAB 2020b
(Mathworks) or Rstudio (v4.4) for linear mixed effect mod-
els. All significance levels (o) were set at 0.05. False
discovery rate (FDR) controlling procedures were imple-
mented to control for all multiple comparisons (Benjamini
& Hochberg, 1995). We first assessed the participant
characteristic differences between younger and older
adults using Welch t-tests for normally distributed contin-
uous data, Wilcoxon Rank Sum Test for non-normally
distributed continuous data, and chi-square (y?) test for
categorical data.

We used R (package: Ime4, ImerTest, emmeans) for all
linear mixed-effect analyses for behavior outcomes, as in
our previous paper (Downey et al.,, 2022). We first
assessed whether any of the behavioral measures were

affected by terrain and age. The dependent variables
included the step duration coefficient of variation and the
sacral excursion coefficient of variation in mediolateral
and anteroposterior directions. The independent vari-
ables included Terrain (Flat, Low, Medium, High), Age
group (Younger adults and Older adults), and their inter-
action. Walking speed was included as a covariate for all
mixed-effect models to control for the potential con-
founding effect. We included a random intercept to
account for unmodeled sources of between-subject vari-
ability. Post hoc analysis was performed if we found a
significant main or interaction effect using ANOVA (pack-
age: car). Effect size was reported using partial eta-
squared (n??) with 0.01 for small effect size, 0.06 for
medium effect size, and 0.14 for large effect size. If the
interaction was insignificant, we refit a linear mixed-effect
model with no interaction. Post hoc analyses were per-
formed by setting up contrast matrices and pairwise
comparisons using emmeans. False discovery rate (FDR)
controlling procedures were implemented to control for
multiple comparisons (Benjamini & Hochberg, 1995).

We used MATLAB for EEG power spectral and gait-
related spectral power fluctuation statistical tests. We
assessed whether the power spectral density for each
cluster differed across terrain and age groups. We per-
formed non-parametric permutation statistics for flat-
tened power spectral density using Fieldtrip in EEGLAB
(o = 0.05, 2,000 iterations) and corrected for multiple
comparisons across frequency using a false discovery
rate at 0.05. The non-parametric permutation statistics
could not assess the interaction effect between terrain
and age group due to the inherent limitation of this test.
We evaluated the within-stride gait-related spectral
power for each terrain condition and for each age group.
These ERSPs were normalized to the average spectral
power across all gait cycles within conditions. We per-
formed bootstrapping (o = 0.05, 4,000 iterations) for each
terrain condition in each brain cluster and corrected for
multiple comparisons across time—frequency using a
false discovery rate at 0.05.

We used MATLAB to evaluate gait-related spectral
power during different terrain conditions and examined
differences between younger and older adults. We first
quantified gait-related spectral power during uneven
terrain walking with respect to the Flat condition for
younger and older adults, respectively (AERSP =
ERSP__..— ERSP, ). We then quantified the difference
in gait-related spectral power between younger and
older adults by subtracting the younger group’s gait-
related spectral plot from the older group’s gait-related
spectral plot (AERSP - AERSP ). We conducted
statistical analyses using cluster-based permutation
tests (o = 0.05, 10,000 permutations) calculated with
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FieldTrip functions within EEGLAB (Delorme & Makeig,
2004; Maris & Oostenveld, 2007), which uses the Monte
Carlo method to estimate permutation p-values.
Cluster-based permutation testing is a robust nonpara-
metric statistical approach that corrects for multiple
comparisons across time-frequency and reduces the
potential for false negatives in high-dimensional EEG
data (Maris & Oostenveld, 2007).

We also used R for all linear mixed-effect analyses to
assess whether the average power spectral density after
FOOOF for each band (theta, alpha, and beta) and peak-
to-peak within-stride spectral power fluctuations were
affected by terrain and age group for each brain cluster
and each band. Outliers more than 8 standard deviations
from the mean were excluded from the analysis. To
account for the effect of each individual’s preferred tread-
mill speed used on uneven terrain on our outcome mea-
sures, we first tested whether average power or
peak-to-peak power fluctuations were associated with
treadmill speed. Since we did not find a significant asso-
ciation between most EEG outcome measures and tread-
mill speed, we only included treadmill speed as a
covariate in all subsequent models. The independent
variables included Terrain (Flat, Low, Med, High), Age
group (Younger adults and Older adults), and their inter-
action. We included a random intercept for each model.
The Flat condition was set as the reference for younger
adults. We performed post hoc analysis if we found a sig-
nificant main or interaction effect using ANOVA (package:
car). Effect size was reported using partial eta-squared
(n®). If the interaction was insignificant for a given band
at the given brain area, we refit a linear mixed-effect
model with no interaction. Post hoc analyses were per-
formed by setting up contrast matrices and pairwise
comparisons using emmeans. False discovery rate (FDR)
controlling procedures are implemented to control for
between-condition and between-group multiple compar-
isons (Benjamini & Hochberg, 1995).

3. RESULTS

3.1. Participant characteristics

Older adults walked significantly slower than younger
adults on the uneven terrain treadmill (Fig. 2A; Table 1). The
slower treadmill speed for older adults was due to their
slower overground walking speed on the uneven terrain
mat. Older adults also walked slower during the 400-meter
test than younger adults (Table 1) and scored lower on the
short physical performance battery test than younger
adults (Table 1). There were no differences in MoCA
between younger and older adults. Excluded older adult
participants were, on average, 3 years older than those

who were included, likely because many of the excluded
individuals who had walking speeds slower than 0.1 m/s
were older. There was no significant difference in sex distri-
bution between included and excluded participants.

3.2. Behavior measures

We only provide a summary of behavioral measures here.
All these behavioral results have been previously reported
in our previous paper with a smaller subset of the partic-
ipants (Downey et al., 2022). The current study extends
those findings by including the full participant sample
recruited for the Mind in Motion study. We reported the
variability measures here as they have high validity for
assessing gait stability (Bruijn et al., 2013). Variability was
computed as the coefficient of variation (standard devia-
tion over mean), and walking speed was added as a
covariate to control for the confounding effect for all sta-
tistical analyses. Walking on an uneven terrain treadmill
increased step duration coefficient of variation and sacral
excursion coefficient of variation in both anteroposterior
and mediolateral directions after accounting for walking
speed (Fig. 2; Supplementary Table S1). Both older adults
and younger adults increased their step duration coeffi-
cient of variation with terrain unevenness (all p_,, < 0.05),
and older adults showed a greater increase in step dura-
tion between the High terrain versus Flat terrain (p_,
0.003), High terrain versus Low terrain (p; = 0.006), and
High terrain versus Medium terrain (p.,; = 0.027) condi-
tions. Both groups also increased the sacral excursion
coefficient of variation in the anteroposterior direction (all
Peor < 0.001), with older adults demonstrating greater
coefficient of variation in all conditions (p < 0.001). Older
adults increased the sacral excursion coefficient of varia-
tion in the mediolateral direction with terrain unevenness
(@ll pps < 0.01), while younger adults only increased the
coefficient of variation between the Medium terrain ver-
sus Flat terrain (p.; < 0.002), High terrain versus Flat ter-
rain (p.,z < 0.001), and High terrain versus Low terrain
(Pepr = 0.006). Older adults also showed a greater
increase in the mediolateral sacral excursion coefficient
of variation in the Medium terrain versus Flat terrain than
younger adults (p.,; = 0.004). Full statistical results,
including multiple comparisons, are provided in Supple-
mentary Tables S1-S4. In summary, older adults demon-
strated a greater increase in step duration variability and
mediolateral sacral excursion variability with terrain
unevenness than younger adults.

3.3. EEG source analysis

We identified nine brain source clusters (Fig. 3; Table 2).
The dipole clusters were located at the left sensorimotor,
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Fig. 2. Violin plots show the behavioral measures during walking on the uneven terrain treadmill. (A) Uneven terrain
treadmill walking speed for younger adults (YA) and older adults (OA). (B) Step duration coefficient of variation (CoV) at
different terrains. Sacral excursion coefficient of variation (CoV) in the anteroposterior (C) and mediolateral (D) direction.
The shaded regions represent data distribution across participants by estimating the probability density function. The
triangle and circle markers represent the median of the data. The darker shaded region represents the 25th to 75th
percentiles of the data. TSignificant interactions, *Significant comparison between terrain conditions within each group,

#Significant age group effect for a specific terrain condition.

right sensorimotor, left posterior parietal, right posterior
parietal, left pre-supplementary motor, right premotor,
precuneus, mid-cingulate, and temporal area. The tem-
poral area was excluded from further analysis, as we did
not have a hypothesis related to this area.

3.4. EEG power spectral density

We found significant effects of terrain unevenness
(p < 0.05) on EEG power spectral density at all brain clus-
ters using non-parametric permutation statistics (Fig. 4;
Supplementary Fig. S5). Theta band power was higher
with increased terrain unevenness in the sensorimotor,
posterior parietal, and occipital areas. Alpha band power
was lower with increased terrain unevenness in bilateral
sensorimotor, bilateral posterior parietal, mid-cingulate,
occipital area, and right premotor area. We also observed
lower beta band power with increased terrain uneven-
ness in all brain clusters.

We also found significant effects of age (p < 0.05) in
the bilateral sensorimotor, right posterior parietal, occipi-
tal, and mid-cingulate clusters (Fig. 4; Supplementary
Fig. S5). Pooled theta band power was generally greater
in younger adults than in older adults in bilateral senso-
rimotor, right posterior parietal, and mid-cingulate clus-
ter, but it was the opposite in the occipital cluster. Alpha
band power was greater in younger adults than in older
adults in the right sensorimotor cluster and right posterior
parietal cluster. Lastly, beta band power was greater in
older adults than in younger adults in the sensorimotor
and mid-cingulate cluster, but it was the opposite in the
occipital cluster.

3.5. Age and terrain unevenness on average EEG
power

We tested whether average theta power, alpha power,
and beta power were affected by age, terrain, and inter-
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Fig. 3. Dipole location for all participants (top row) and centroid of each cluster (bottom row) in sagittal, coronal, and
axial planes. We identified clusters located at right sensorimotor area, left sensorimotor area, left posterior parietal, right
posterior parietal, occipital area, mid-cingulate, left pre-supplementary motor, right premotor, and left temporal area. Brain
sources in this figure represent spatial localization defined by ICA methods rather than the brain sources that showed
differences across uneven terrain conditions.

Table 2. Montreal Neurological Institute (MNI) coordinates, and anatomical atlas labels for regions of interest (ROIs).

Anatomical label of the

Cluster centroid location Color No. participants MNI coordinates centroid
Sensorimotor (L) Blue 27 younger/49 older -23 -29 64 Postcentral L2
Sensorimotor (R) Purple 23 younger/41 older 30 -37 57 Postcentral R?
Posterior parietal (L) Aqua 27 younger/43 older -31-5535 Angular L2
Posterior parietal (R) Yellow 25 younger/33 older 32 -64 28 No label?
Occipital Orange 26 younger/50 older 4-7144 Precuneus?
Mid-cingulate Pink 21 younger/39 older -5-824 No label®
Pre-supplementary Motor (L) Dark Green 24 younger/35 older -11 24 47 Frontal_Sup_L?
Premotor (R) Lime 22 younger/38 older 23354 Frontal_Sup_R®
Premotor®
Temporal (L) Red 19 younger/32 older -36 -17 -7 No Label?

aAnatomical location of the cluster centroid was labeled based on Tzourio-Mazoyer et al. (2002).
bAnatomical location of the cluster centroid was labeled based on Mayka et al. (2006).
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Fig. 4. Dipole location plotted on the Montreal Neurological Institute template, scalp topography, and average flattened
power spectrum densities (PSDs) changed with terrain unevenness for younger and older adults for bilateral sensorimotor
clusters, bilateral posterior parietal clusters, mid-cingulate, and occipital cluster. Shaded colored areas indicate standard
error of PSDs across components in the cluster. Vertical black dashed lines indicate main frequency bands of interest—
theta (4-8 Hz), alpha (8-13 Hz), and beta (13-30 Hz). The very right panel indicates the significant terrain and age effect on
PSD at each frequency (pink: terrain, blue: age). In this non-parametric statistical analysis, only main effects were tested
due to the limitation of this test.
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Fig. 5. Significant effects of age, terrain, and interaction on theta, alpha, and beta average power (p < 0.05). The
analyses were controlled with the effect of treadmill walking speed. Only centroids of each cluster where significant results

were found are plotted.

action for each cluster after controlling for treadmill walk-
ing speed (Fig. 5). Full statistical analysis results are
reported in Supplementary Tables S5-S12.

3.5.1. Interaction effect

The effect of terrain on EEG alpha power depends on
the age group in the parietal-occipital region (Fig. 6).
When walking on uneven terrain, younger adults exhib-
ited a significant reduction in alpha power compared
with walking on a flat surface, whereas older adults
showed little to no reduction. An interaction effect of
age and terrain on average alpha power was found in
the bilateral posterior parietal (left: F(3, 204) = 9.26,
p < 0.001, n?* = 0.12, right: F(3, 168) = 3.63, p = 0.014,
n% = 0.061) and occipital clusters (F(3, 222) = 5.86,
p < 0.001, n?* = 0.073; Fig. 6A). A main effect of terrain
was also found in these clusters (all p < 0.001). At the
left posterior parietal cluster, older adults had less alpha
power reduction compared with younger adults in the

High terrain versus Flat terrain (p.,, < 0.001), Medium

12

terrain versus Flat terrain (p_,, < 0.001), and Low terrain
versus Flat terrain (p.,; = 0.017). Additionally, younger
adults exhibited alpha reduction at greater terrain
unevenness in all pairwise comparisons (all p.,; < 0.01)
except the High terrain versus Medium terrain, while
older adults only exhibited alpha reduction at High ter-
rain versus Flat terrain (p,, = 0.001). At the right poste-
rior parietal cluster, older adults had less alpha power
reduction in the High terrain versus Flat terrain (

0.036) and Medium terrain versus Flat terrain (p.; =
0.016) compared with younger adults. Younger adults
exhibited significant alpha reduction at High terrain ver-
sus Flat terrain, Medium terrain versus Flat terrain, and
Low terrain versus Flat terrain (all p,; < 0.001). Older
adults only exhibited alpha reduction at High terrain ver-
sus Flat terrain (p,; = 0.022). At the occipital cluster,
older adults had less difference in alpha power reduc-
tion in the High terrain versus Flat terrain (p.,; = 0.001),
Medium terrain versus Flat terrain (p.,, = 0.002), and
Low terrain versus Flat terrain (p_,, = 0.027) compared
with younger adults. Younger adults exhibited signifi-

Pror =
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Fig. 6. Violin plots of the average alpha power (A) and beta power (B) for each terrain and age group for the
corresponding brain clusters with a significant age and terrain interaction effect. YA: younger adults, OA: older adults.
*Indicates significant differences between terrain conditions. fIndicates significant interaction effects between terrain and
age group. 1: High versus Flat, 2: Medium versus Flat, 3: Low versus Flat, 4: High versus Low, 5: Medium versus Low, 6:
High versus Medium. Circle and triangle markers indicate median across participants.

cant alpha reduction at High terrain versus Flat terrain,
Medium terrain versus Flat terrain, and Low terrain ver-
sus Flat terrain (all p.,; < 0.01), but no alpha reduction
was found in older adults. While the left pre-
supplementary cluster also had significant interaction
(F(8, 171) = 2.83, p = 0.04), none of the pairwise com-
parisons was significant after false discovery rate
adjustment.

The effect of terrain on EEG beta power depends on
the age group in the parietal-occipital region (Fig. 6B).

13

The interaction effect of age and terrain on average beta
power was found in the right posterior parietal (F(3,
168) = 3.38, p = 0.02, n? = 0.057) and occipital clusters
(F(3, 222) = 6.36, p < 0.001, n? = 0.079). The main effect
of terrain was also found in these clusters (both p < 0.001).
At the right posterior parietal cluster, younger adults
exhibited beta power reduction at greater terrain uneven-
ness in all pairwise comparisons (all p_,, < 0.001) except
for High terrain versus Medium terrain, while older adults
exhibited beta power reduction only at High terrain
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versus Flat terrain, Medium terrain versus Flat terrain,
and Low terrain versus Flat terrain (p,; < 0.001). At the
occipital cluster, older adults had less difference in beta
band power reduction at High terrain versus Flat terrain
(Pepr = 0.002) and Medium terrain versus Flat terrain
(Pepr < 0.001) compared with younger adults. Addition-
ally, both younger and older adults exhibited beta power
reduction at High versus Flat, Medium versus Flat, and

Low versus Flat (p.,; < 0.001).

3.5.2. Age effect

Main effects of age on average theta band power were
found in the sensorimotor clusters (left: F(1, 73) = 5.25,
p = 0.025, n? = 0.067; right: F(1, 61) = 5.85, p = 0.019,
n? = 0.087), and mid-cingulate cluster (F(1, 57) = 5.38,
p = 0.024, n?* = 0.086) with older adults having lower
theta band power than younger adults after controlling
for walking speed (Supplementary Fig. S6A). Main effect
of age on average beta band power was found in the
mid-cingulate cluster (F(1, 57) 471, p 0.034,
n? = 0.076) with older adults having greater beta power
than younger adults (Supplementary Fig. S6B).

3.5.3. Terrain effect only

In the absence of a significant interaction effect for a
given brain cluster, we reran our linear mixed effect
models to include only terrain and age group as main
effects. A main terrain effect on the average theta
power was found in the bilateral posterior parietal
(left: F(3, 207) = 5.86, p = 0.001, n? = 0.078; right:
F(@3, 171) = 3.97, p = 0.009, n# = 0.065), mid-cingulate
(F(3, 177) = 3.59, p = 0.015, n?* = 0.057), and occipital
cluster (F(3, 225) =29.46, p < 0.001, n?* = 0.282; Fig. 7A).
Greater theta power was associated with greater terrain
unevenness. Both younger and older adult groups had
greater theta power in High terrain versus Flat terrain
(Pepr = 0.008), High terrain versus Low terrain (
0.001), and High terrain versus Medium terrain (p.,; =
0.044) at the left posterior parietal area. Both groups
showed greater theta power in High terrain versus Flat
terrain (p,; = 0.007) at the right posterior parietal, High
terrain versus Flat terrain (p.,; = 0.021) at the mid-
cingulate cluster. Both younger and older adult groups
also showed significantly greater theta power at the
occipital cluster during uneven terrain walking for all lev-
els of comparisons (p.,; < 0.01) except between High
versus Medium terrain.

A terrain main effect on the average alpha power was
found in the bilateral sensorimotor (left: F(3, 225) = 18.31,
p < 0.001, n% = 0.20, right: F(3, 189) = 18.85, p < 0.001,

Peor =
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n? = 0.23), mid-cingulate (F(3, 177) = 4.16, p = 0.007,
n? = 0.066), and right premotor (F(3,177)=5.7, p = 0.001,
n? = 0.088) clusters (Fig. 7B). Lower alpha power was
associated with greater terrain unevenness. Both younger
and older adults had significantly lower alpha power in
High terrain versus Flat terrain (p,, < 0.001), Medium ter-
rain versus Flat terrain (p.,; < 0.001), Low terrain versus
Flat terrain (p.,; < 0.01), and High terrain versus Low ter-
rain (pgp < 0.01) in bilateral sensorimotor areas. Both age
groups also had lower alpha power in High terrain versus
Flat terrain (p.,, = 0.005) in mid-cingulate area and lower
alpha power in High terrain versus Flat terrain (p .,
0.001), Medium terrain versus Flat terrain (p_,, = 0.022),
and Low terrain versus Flat terrain (| = 0.034) in the
right premotor area.

Main terrain effect on average beta power was
found in the bilateral sensorimotor (left: F(3, 225) =
27.42, p < 0.001, n? = 0.268; right: F(3, 189) = 19.14,
p < 0.001, n? = 0.233), bilateral posterior parietal (left:
F(3, 207) = 37.37, p < 0.001, n% = 0.351; right: F(3,
168) = 43.32, p < 0.001, n? = 0.436), mid-cingulate
(F(8, 177) = 20.81, p < 0.001, n?* = 0.261), left pre-
supplementary (F(3, 174) = 8.64, p < 0.001, n?* = 0.13),
and right premotor (F(3, 177) 7.86, p < 0.001,
n? = 0.118) clusters (Fig. 7C). Lower beta power was
associated with greater terrain unevenness. At bilateral
sensorimotor clusters, both younger and older adults
had significantly lower beta power in High terrain ver-
sus Flat terrain (both p_,; < 0.001), Medium terrain ver-
sus Flat terrain (both p.,; < 0.001), Low terrain versus
Flat terrain (both p. . < 0.001), High terrain versus Low
terrain (both p_,; < 0.05), Medium terrain versus Flat
terrain (both p_,, = 0.044), and additional lower beta
power in Medium terrain versus Low terrain (p.,,
0.040) at the left sensorimotor cluster. At the left poste-
rior parietal cluster, both age groups exhibited lower
beta power reduction at greater terrain unevenness in
all pairwise comparisons (all p.,; < 0.005) except for
High terrain versus Medium terrain. At the mid-cingulate
cluster, both age groups also exhibited lower beta
power reduction at greater terrain unevenness in all
pairwise comparisons (all p.,, < 0.01) except for
Medium terrain versus Low terrain. At the left pre-
supplementary cluster, both younger and older adults
exhibited significant beta reduction at High terrain ver-
sus Flat terrain (p.,, < 0.001), High terrain versus Low
terrain ( = 0.013), and Medium terrain versus Flat
terrain (p.,, = 0.006). Lastly, at the right premotor clus-
ter, both younger and older adults exhibited significant
beta reduction at High terrain versus Flat terrain
(Pepr < 0.001) and Medium terrain versus Flat terrain
(Pepr = 0.002).

pFDF!

pFDR
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Fig. 7. Raincloud plots of the average theta power (A), alpha power (B), and beta (C) power for each terrain and age
group for the corresponding brain clusters without an interaction effect. YA: younger adults, OA: older adults. *Indicates
significant differences (p < 0.05) between terrain conditions with 1: High versus Flat, 2: Medium versus Flat, 3: Low versus
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3.6. Intra-stride ERSP

We computed the event-related spectral perturbations
(ERSPs) tied to gait events and normalized to the average
power at each frequency across the gait cycle for each
condition. We also obtained the peak-to-peak ERSP for
each band (theta, alpha, beta) for each terrain condition
for younger and older adults (Figs. 8-10; Supplementary
Fig. S7).

3.6.1. Sensorimotor cluster

There was lateralization in the alpha and beta bands for
left and right sensorimotor clusters for both younger and
older adults (Fig. 8). Younger adults demonstrated alpha
and beta desynchronization during contralateral swing
phase and the subsequent double support phase, while
alpha and beta synchronization during the contralateral
single limb stance phase and push-off. Older adults pri-
marily demonstrated such synchronization and desyn-
chronization in the beta band but not in the alpha band.

3.6.2. Posterior parietal cluster

We also observed within-stride ERSPs modulation in
bilateral posterior parietal areas (Fig. 9). There was theta
and alpha power desynchronization during the swing
phase and synchronization during the double support
phase for both younger and older adults. Qualitatively, as
the terrain becomes uneven, we observed more desyn-
chronization during the contralateral swing phase com-
pared with Flat terrain. For older adults, we mainly
observed theta band modulation with desynchronization
during the mid-swing and synchronization during the
double support phase.

3.6.3. Mid-cingulate cluster

At the mid-cingulate area, we observed within-stride
ERSPs modulation in mid-cingulate area as theta and
alpha power desynchronized during the swing phase and
synchronized during the double support phase for both
younger and older adults (Fig. 10A, B).

3.6.4. Occipital cluster

At the occipital area, we observed broadband (theta,
alpha, and beta) synchronization during the double sup-
port phase and desynchronization around the mid-swing
during uneven terrain walking for younger adults, whereas
the broadband spectral fluctuations were less prominent
during Flat surface walking (Fig. 10C, D). For older adults,
we also found significant broadband synchronization
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mainly during the double support phase and desynchro-
nization during the mid-swing phase.

3.7. Age and terrain unevenness on peak-to-peak
ERSP

We tested whether theta intra-stride power fluctuations,
alpha power fluctuations, and beta power fluctuations
were affected by age, terrain, and interaction for each
cluster after controlling for treadmill walking speed
(Fig. 11). Full statistical analysis results are reported in
Supplementary Tables S13-S15.

3.7.1. Interaction effect

The effect of terrain on EEG power fluctuations depends
on age group primarily in the occipital cluster (Fig. 12A).
Significant interaction effect of age and terrain on peak-
to-peak theta band power fluctuations was found in
the occipital cluster (F(3, 221) = 4.8, p = 0.003, n? =
0.061) after controlling for treadmill walking speed.
Compared with younger adults, older adults had less
power fluctuation in High terrain versus Flat terrain
(Pepg = 0.016), Medium terrain versus Flat terrain (|
0.003), and Low terrain versus Flat terrain (p.,, = 0.047).
Additionally, younger adults demonstrated greater
power fluctuations at greater terrain unevenness at
High versus Flat (p.,, = 0.007) and Medium versus Flat
(Pepr = 0.009). Theta power fluctuation was greater in
younger adults than in older adults at Medium terrain
(Prpg = 0.027).

A significant interaction effect of age and terrain on
beta power fluctuations was found in the occipital
cluster (F(3, 221) = 3.24, p = 0.023, n?" = 0.042) with a
significant main effect of age (F(3, 73) = 13.36, p < 0.001,
n? = 0.16; Fig. 12B) after accounting for walking speed.
Compared with younger adults, older adults had less
difference in power fluctuation in High terrain versus
Flat terrain (p.,,; = 0.021). Additionally, younger adults
had less power fluctuation in High terrain versus Flat
terrain (p.,; = 0.028), while older adults did not exhibit
any changes in power fluctuation between terrains.
Younger adults also had greater power fluctuations than
older adults in High, Medium, and Low terrain (all
< 0.01).

Pror =

pFDR

3.7.2. Age effect

There was a significant age effect on theta power fluctu-
ations at the right sensorimotor cluster (F(1, 61) = 4.24,
p = 0.044, n? = 0.065), with greater alpha power fluctua-
tions in younger adults than in older adults (Supplemen-
tary Fig. S8A). We also found a significant age effect on
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Intra-stride event-related spectral perturbations (ERSPs) with respect to the average of condition at different
terrains for younger and older adults at left sensorimotor area (A) and right sensorimotor area (B), average intra-stride

Fig. 8.

power fluctuations for each band at the left sensorimotor area (C) and right sensorimotor area (D). (A, C) The ERSPs were
displayed with the gait cycle on the x-axis (RFS: right foot strike; LFO: left foot off; LFS: left foot strike; RFO: right foot off).

All unmasked colors are statistically significant spectral power fluctuations relative to the mean power within the same

condition. Colors indicate significant increases (red, synchronization) and decreases (blue, desynchronization) in spectral
power from the average spectrum for all gait cycles to visualize intra-stride changes in the spectrograms. These data

are significance masked (p < 0.05) through nonparametric bootstrapping with multiple comparison correction using false

discovery rate. (B, D) Average spectral perturbations for each band (theta, alpha, beta) across the gait cycle for younger

and older adults. YA: younger adults. OA: older adults.
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Fig. 9.

terrains for younger and older adults at left (A) and right posterior parietal area (B), average intra-stride power fluctuations
for each band at the left (C) and right posterior parietal area (D). (A, C) The ERSPs were displayed with the gait cycle on

the x-axis (RFS: right foot strike; LTO: left toe off; LFO: left foot off; RFO: right foot off). All unmasked colors are statistically
significant spectral power fluctuations relative to the mean power within the same condition. Colors indicate significant

increases (red,

synchronization) and decreases (blue, desynchronization) in spectral power from the average spectrum for

all gait cycles to visualize intra-stride changes in the spectrograms. These data are significance masked (p < 0.05) through

nonparametric bootstrapping with multiple comparison corrections using false discovery rate. (B, D) Average spectral

perturbations for each band (theta, alpha, beta) across the gait cycle for younger and older adults. YA: younger adults. OA:

older adults.

18



Imaging Neuroscience, Volume 3, 2025

C. Liu, E.M. Pliner, J. Salminen et al.

“““““““““““““““““““ %
L N S -1 (U [ | A X
o P Y 1 TTd &

Oo\V
) o e} ) [t} o) S 0w
o o o o o SR
D << D - S . S B
A
...... __ <] _____| R A - 2
:
v TTTe& 71 TTTTT | %C\V
@ o ) 9 0 o o 0 %
(ap) 1emod ¢ (gp) somog © (ap) 1emod ¢
B " (ap)iemod v n n (gp)iamod v n
o o < IS o <
[ ——e— ] [ ——— ]
S
S
OzVs
P e At N Rl — &
DSL—glF e [ e — %
= » -
Q
||||| " i A i Y
R
&
o o m [ee] < o o m © <
un m — n m —
&@
o}

L3t ety [S_Z % <

© | E| g N NG

— O

e R e s ——— — == V>

&

(@)) o o M © < o o mn <+ &

n n m — n m — 6

— c\&\

&) . o

|||||||||||||||| W
- &

C 2" s [~ " 8

—— =2 .‘ — 4

= | (———- o[ e Mov

%
o o m [ee] < o o m 0 <
n m — n m —
S
IIIIIIIIIIIIIIII o
BNy - SN Ly o eSS i
- auvv
IIIIIIIIIIIIIII O,V\V
&
2R a° v g 0 %
EEms o EEmS o
(zH) Aouanbaiy (zH) Aouanbaiy
cEXxEnN 0O E m
w .w 1] k) .w I
><Z O«2z

ipital

Occ

(ap) 1amod ¢

n (@p)iamod v

(gp) 1amod ©

(ap) 1amod ¢

" (gp)iamod v 0

high

%%

|||||||| %%,
||||||||||awxv

|||||||| O/v\v

[\
< %

%

flat

D

Older

%)
=
3
S
<

Intra-stride event-related spectral perturbations (ERSPs) with respect to the average of condition at different

Fig. 10.

terrains for younger and older adults at mid-cingulate (A) and occipital area (B), average intra-stride power fluctuations

for each band at the mid-cingulate (C) and occipital area (D). (A, C) The ERSPs were displayed with the gait cycle on the
x-axis (RFS: right foot strike; LFO: left foot off; LFS: left foot strike; RFO: right foot off). All unmasked colors are statistically

significant spectral power fluctuations relative to the mean power within the same condition. Colors indicate significant

increases (red, synchronization) and decreases (blue, desynchronization) in spectral power from the average spectrum for

all gait cycles to visualize intra-stride changes in the spectrograms. These data are significance masked (p < 0.05) through

nonparametric bootstrapping with multiple comparison corrections using false discovery rate. (B, D) Average spectral

perturbations for each band (theta, alpha, beta) across the gait cycle for younger and older adults. YA: younger adults. OA:

older adults.
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Significant effects of age, terrain, and interaction on theta, alpha, and beta band intra-stride power fluctuations

(p < 0.05). The analyses were controlled for the effect of treadmill walking speed. Only the centroids of each cluster were

plotted.

alpha power fluctuations at the right sensorimotor cluster
(F(1,61) =16.2, p < 0.001, n2* = 0.21) and right posterior
parietal cluster (F(1, 55) = 4.77, p = 0.033, n% = 0.08),
with greater alpha power fluctuations in younger adults
than in older adults (Supplementary Fig. S8B). There was
also a significant age effect on beta power fluctuations at
the left posterior parietal cluster (F(1, 67) =4.97, p = 0.029,
n? = 0.069) and right posterior parietal cluster (F(1,
55) = 12.18, p = 0.001, n% = 0.181) with greater beta
power fluctuations in younger adults than in older adults
(Supplementary Fig. S8C).

3.7.3. Terrain effect

Only left sensorimotor cluster had a significant terrain
effect on beta power fluctuations (F(3, 225) = 5.78,
p = 0.001, n? = 0.072). Pooled groups showed greater
beta power fluctuations at High terrain versus Flat ter-
rain (p,z = 0.004), Medium terrain versus Flat (
0.002), and Low terrain versus Flat terrain (|
Fig. 13).

pFDR

=0.013;

pFDR
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3.8. Age and terrain unevenness on ERSP

3.8.1. Sensorimotor area

We found significant differences in ERSP using boot-
strapping between uneven terrain and flat terrain in
almost all brain areas (Fig. 14; Supplementary Fig. S9).
We only found significant age-related differences in spec-
tral fluctuations during uneven terrain walking in the left
sensorimotor area, left posterior parietal, and occipital
area (Fig. 14). Red indicates neural synchronization and
blue indicates neural desynchronization.

We observed significant spectral fluctuations in the
sensorimotor areas both within age groups and between
groups (Fig. 14). With respect to Flat terrain, younger
adults showed a significant increase in theta power
during the double support phase during the High terrain
condition in the right sensorimotor area, and older adults
showed an increase in theta power in all uneven terrain
conditions. Younger adults showed beta desynchroniza-
tion during Medium and High terrain primarily during the
contralateral swing phase while older adults demon-
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Age and Terrain Interaction Effect: Intra-stride Power Fluctuations
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Fig. 12. Violin plots of the average theta power fluctuations (A) and beta power fluctuations (B) for each terrain and

age group for the corresponding brain clusters with a significant interaction effect. YA: younger adults, OA: older adults.
#Indicates significant group differences between two terrain conditions, *Indicates significant differences (p < 0.05)
between terrain conditions. fIndicates significant interaction effects between terrain and age group. 1: High versus Flat, 2:
Medium versus Flat, 3: Low versus Flat, 4: High versus Low, 5: Medium versus Low, 6: High versus Medium. Circle and
triangle marker indicate median across participants.
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Fig. 13. Violin plot of the beta power fluctuations with terrain unevenness at the left sensorimotor cluster. YA: younger
adults, OA: older adults. *Indicates significant differences (p<0.05) between terrain conditions.

>
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Fig. 14. Average event-related spectral perturbations with respect to the Flat terrain condition for each group and the
difference between groups in the bilateral sensorimotor area, bilateral posterior parietal, mid-cingulate, and occipital area.
All unmasked colors are statistically significant spectral power fluctuations relative to the mean power within the same
condition. Colors indicate significant increases (red, synchronization) and decreases (blue, desynchronization) in spectral
power from the average spectrum for all gait cycles. The x-axes of the ERSPs represent time in the gait cycle (RFS: right
foot strike; LFO: left foot off; LFS: left foot strike; RFO: right foot off).
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strated alpha and beta desynchronization throughout the
gait cycle during all uneven terrain surfaces in both left
and right sensorimotor areas. Younger adults showed
less alpha desynchronization from the contralateral sin-
gle support phase to the contralateral swing phase for all
uneven terrains than older adults, but only during the Low
and High terrain were there significant differences
between groups. There was no age group difference in
the theta band.

3.8.2. Posterior parietal area

There were significant spectral fluctuations in the posterior
parietal areas both within age groups and between groups
(Fig. 14). With respect to Flat terrain, younger adults
showed alpha desynchronization in Low, Medium, and
High terrain conditions and beta desynchronization in
Medium and High terrain conditions. Younger adults also
exhibited theta synchronization during High terrain condi-
tion only at the left posterior parietal area. However, older
adults demonstrated strong beta desynchronization
throughout the gait cycle during all uneven terrain surfaces
and a strong alpha desynchronization during the High ter-
rain condition. When comparing older and younger adults,
younger adults showed greater alpha desynchronization
throughout the gait cycle during Medium and High ter-
rains, but only during Medium terrain did it reach signifi-
cance in the left posterior parietal area.

3.8.3. Mid-cingulate

The mid-cingulate area demonstrated only a significant
effect of terrain on spectral fluctuations (Fig. 14). Both
younger and older adults showed significant theta syn-
chronization during Medium and High terrain conditions
compared with Flat terrain, with additional beta desyn-
chronization during High terrain. There was no evident
difference between younger and older adults.

3.8.4. Occipital area

There were significant spectral fluctuations in the occipi-
tal area both within age groups and between groups
(Fig. 14). With respect to Flat terrain, younger adults
showed theta synchronization and alpha/beta desyn-
chronization throughout the gait cycle in Low, Medium,
and High terrain conditions. Older adults demonstrated
theta synchronization and beta desynchronization
throughout the gait cycle during all uneven terrain sur-
faces. They also exhibited alpha desynchronization
during the double support phase during the Medium and
High terrain conditions. When comparing older and
younger adults, younger adults showed greater alpha

23

and lower beta band desynchronization throughout the
gait cycle during Medium and High terrain conditions.

3.9. Pre-supplementary and premotor area

For left pre-supplementary and right premotor area, we
observed significant spectral fluctuations within age
groups only (Supplementary Fig. S9). At the left pre-
supplementary area and right premotor area, younger
adults showed theta synchronization during the double
support phase and beta desynchronization at High ter-
rain conditions compared with Flat terrain conditions.
Older adults only showed theta synchronization at
Medium and High terrain conditions at the left pre-
supplementary area. There was no evident difference
across terrain unevenness.

4. DISCUSSION

This study’s primary objective was to determine whether
there are age differences in electrocortical activity mea-
sured by EEG during walking on parametrically varied
uneven terrain. Our results showed that, compared with
younger adults, older adults walked slower on uneven
terrain and had greater increases in step duration vari-
ability and mediolateral sacral excursion variability with
terrain unevenness. Contrary to our hypothesis, younger
adults experienced a greater reduction in alpha and beta
power in the parietal-occipital region than older adults
when terrain unevenness increased. Additionally, our
results demonstrated that walking on uneven terrain
leads to widespread changes in electrocortical dynamics
in the brain, especially in alpha and beta band power. We
also assessed how intra-stride power fluctuations
changed with terrain unevenness and age. Gait-related
fluctuations in the occipital theta and beta bands
increased with terrain unevenness in younger adults but
not in older adults. Older adults had smaller intra-stride
theta and alpha band power fluctuations than younger
adults in the right sensorimotor area and smaller intra-
stride beta band power fluctuations at the posterior pari-
etal areas.

Gait-related spectral perturbations also revealed sev-
eral age differences in intra-stride power fluctuations.
The greatest age difference was in the occipital area,
where older adults showed less alpha and beta desyn-
chronization within walking strides on an uneven surface
compared with on a flat surface. At the left sensorimotor
area, alpha desynchronization at Low terrain and High
unevenness was greater in older adults than in younger
adults, while at the left posterior parietal area, beta
desynchronization at Medium terrain unevenness versus
Flat terrain was less in older adults. In summary, older
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adults showed a greater increase in gait variability with
greater terrain unevenness than younger adults but
exhibited a lack of modulation of parieto-occipital activity
in response to terrain unevenness. This lack of neural
response may reflect a reduced capacity to enhance
visuomotor processing on uneven terrain, potentially
resulting in poorer gait performance.

It is worth noting that since older adults walked slower
than younger adults, speed may have affected the EEG
spectral measures and masked age-related changes. To
disentangle the effect of walking speed on EEG power,
our recent paper used the same cohort of participants to
examine the effect of walking speed (0.25 m/s to 1.0 m/s)
and age on EEG spectral power. First, older adults only
showed a greater increase in left posterior parietal theta
band power with speed than younger adults among all
brain areas. This brain area and band do not overlap with
our main finding that in the parieto-occipital region, alpha
and beta band power showed the largest age differences
in response to changes in terrain unevenness. Addition-
ally, there is widespread alpha and beta band power
reduction with faster walking speed in both younger and
older adults. The reduction of EEG power was about
0.071 dB for a walking speed of 0.39 m/s (average walk-
ing speed for older adults) to 0.70 m/s (average walking
speed for younger adults). However, the age-related dif-
ferences in parieto-occipital EEG power between terrain
conditions are at least 10-20 times larger than the effect
of walking speed. Therefore, it is unlikely that walking
speed is the main contributor to changes in EEG power
spectral densities.

4.1. Widespread effect of terrain on theta, alpha,
and beta band power

Theta spectral power slightly increased with terrain
unevenness for both younger and older adults at the mid-
cingulate and posterior parietal areas (mostly between the
High terrain vs. Flat terrain) but sharply increased with ter-
rain unevenness at the occipital area (Fig. 7). The observed
mid-cingulate theta band activity is consistent with the evi-
dence that mid-frontal theta activity is associated with
error detection and monitoring (Cohen, 2014; Ficarella
et al., 2019). The occipital theta band power increases with
terrain unevenness. Our results may be explained by the
fact that greater occipital theta band power is associated
with greater heterogeneity in the whole visual field
(Feldmann-Wostefeld et al., 2017). Since the rigid pucks at
greater terrain unevenness were more variable or hetero-
geneous in height, this could contribute to the observed
increase in theta band power. In contrast, Yokoyama et al.
found an opposite direction of change in theta band power
in that participants reduced theta band activity when
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instructed to place their foot on visual targets during walk-
ing compared with normal walking (Yokoyama et al., 2021).
The discrepancies between our results and that reported
in Yokoyama et al. suggest that the rigid pucks on the
treadmill may serve as distractors since they are not
designed to be targets for foot placement. Future studies
may be designed to investigate occipital theta band activ-
ity by dissociating distractors in the visual field and volun-
tary choice of stepping targets.

Alpha and beta spectral power decreased when walk-
ing on uneven terrains versus a flat surface for both
younger and older adults in widespread brain areas,
including sensorimotor, mid-cingulate, posterior parietal,
and occipital areas (Figs. 7B, C and 14). During the rest-
ing condition, alpha and beta oscillations are thought to
be in the “idling” state (Pfurtscheller et al., 1996a, 1996b).
At the sensorimotor area, the reduction in beta power
indicates greater cortical involvement for motor execu-
tion during uneven terrain walking than during walking on
a flat surface. These findings in the sensorimotor region
are consistent with prior research that found beta band
power reduction during more balance-challenging walk-
ing tasks, such as walking on a narrow beam (Sipp et al.,
2013) and following immediate exposure to split-belt
walking (N. A. Jacobsen & Ferris, 2023). Greater cortical
involvement during balance-challenging walking tasks
may be related to muscle co-contraction to increase joint
stiffness for stability. Although there is no study that has
directly investigated such a relationship, prior studies
support the possibility. Greater cortico-muscular coher-
ence in beta bands was observed when balance was per-
turbed for both younger and older adults compared with
pre-perturbation quiet standing (Ozdemir et al., 2018),
and muscle co-contraction became greater during dual-
task walking, a paradigm with a higher cognitive load (Lo
et al., 2017). Together, these findings suggest a potential
connection between muscle co-contraction and cortical
beta-band activity, but future study is needed.

At the posterior parietal area, reduction in alpha and
beta band power was prominent throughout the gait
cycle during uneven terrain walking compared with walk-
ing on flat surfaces (Fig. 14). The posterior parietal cortex
is responsible for sensory integration and visuospatial
processing to aid whole-body motor planning (Drew &
Marigold, 2015; Nordin et al., 2019). Here, we found that
older adults also demonstrated sustained alpha and beta
desynchronization throughout the gait cycle when walk-
ing on uneven surfaces, although the alpha band desyn-
chronization was smaller than that of younger adults. This
sustained alpha and beta desynchronization suggests a
greater need for cortical processing of multi-sensory inte-
gration and greater attention to maintain balance on
uneven surfaces (Liu et al., 2024).
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4.2. Parieto-occipital region alpha and beta bands
exhibited the largest age-related differences in
response to changes in terrain unevenness

Parietal-occipital region alpha and beta bands exhibited
age differences in response to changes in terrain uneven-
ness. Older adults had less reduction in parieto-occipital
region alpha and beta band power when walking onto
uneven terrain versus flat surface, when comparing with
younger adults (Fig. 6). These results suggest that older
adults had less of an increase in the posterior parietal and
occipital involvement walking over uneven terrain from a
flat surface. While this does not align with our initial
hypothesis, there are several explanations for what we
observe. First, our results may fit into the posterior-
anterior shift in aging (PASA) model, which states that
less posterior activity is associated with greater frontal
activity as we age (Davis et al., 2008). Although our results
cannot directly infer such an association, as we did not
identify a prefrontal cluster, a previous paper from our
large Mind in Motion project using functional near-infrared
spectroscopy (fNIRS) at the prefrontal region reported
that older adults had greater prefrontal activation than
younger adults throughout all terrain conditions (Hwang
et al., 2024). Therefore, future research may aim to inves-
tigate whether the PASA model can be generalized to the
motor domain, especially during walking.

Second, it is possible that older adults had greater reli-
ance on vision to guide their foot placement even when
walking on a flat surface, while younger adults did not
rely as much on vision during typical walking. This is con-
gruent with the observation that at the occipital area,
alpha desynchronization occurred throughout the gait
cycle when walking on uneven terrain versus flat terrain
for younger adults, but for older adults, alpha desynchro-
nization was not as prominent (Figs. 6A and 14). Prior
studies suggested that a reduction in occipital alpha
power is associated with the neural processing of visual
input, as occipital alpha power was reduced when partic-
ipants walked in a light condition compared with dark
condition (Cao et al., 2020). Additionally, alpha-band
desynchronizations occur in the occipital area in response
to visual optical flow when seated (Vilhelmsen et al.,
2015). Because we did not observe a reduction in occip-
ital alpha power in older adults while walking on uneven
surfaces, we speculate that older adults already rely
heavily on visual input during walking on flat surfaces. If
older adults engage parieto-occipital activity more than
younger adults when walking on flat surfaces, there
would be less range available for modulation as terrain
unevenness increases. In contrast, younger adults may
only start to rely on visual input when walking on uneven
surfaces.
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In contrast to our hypothesis, we did not find age dif-
ferences in sensorimotor power when walking on uneven
terrains versus a flat surface. Previous work found greater
beta power desynchronization in older adults than in
younger adults during wrist flexion/extension movement
using the non-dominant hand (Espenhahn et al., 2019)
and during button pressing (Bardouille & Bailey, 2019),
although only a very small variance was explained
(R® = 0.064) between event-related beta desynchroniza-
tion at motor cortex and age. Another study found that
under a dual-task paradigm combining walking with a
visual reaction time task, older adults had smaller beta
power desynchronization change from sitting to walking
than younger adults (Protzak & Gramann, 2021). One
potential reason why we did not observe age differences
in the sensorimotor area could be that we had partici-
pants walk at their self-selected walking speed across
varying terrain conditions and controlled for walking
speed in our statistical analysis. Since older adults
walked slower than younger adults, speed may have
affected the sensorimotor area and masked age-related
changes (Alcock et al., 2023), although our recent analy-
sis also did not find age differences in sensorimotor
activity modulated by walking speed using the same
cohort of participants (Salminen et al., 2025).

4.3. Intra-stride spectral power fluctuations change
with terrain and age group

While the overall band power change may reflect a sus-
tained movement-related neuronal state during many gait
cycles, power fluctuations within the gait cycle may rep-
resent a gait phase-dependent local neuronal population
activity associated with sensorimotor processing and
integration (Seeber et al., 2014). Both groups of partici-
pants demonstrated an increase in intra-stride power
fluctuations in the sensorimotor beta band (Fig. 13). The
event-related synchronization during the contralateral
stance phase and desynchronization during contralateral
leg swing increased with terrain unevenness. This may be
because stepping on taller pucks alters foot pressure,
leading to increased sensory feedback from the sole of
the foot.

Additionally, the occipital area demonstrated the larg-
est age differences in power fluctuations (Fig. 12). Spec-
tral fluctuations changed with terrain unevenness for
younger adults at occipital theta and beta bands. Theta
and beta fluctuations increased with terrain unevenness
in younger adults but not in older adults. One possibility
is that the lack of task-related power modulation may
indicate reduced cortical network flexibility in older
adults, as they may struggle to adapt to walking on novel
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uneven surfaces (Darna et al., 2025). It is also likely that
smaller intra-stride power fluctuations in older adults
than in younger adults in the occipital area are related to
greater reliance on vision. These findings also suggest
that older adults already heavily rely on vision during flat
surface walking and thus might be unable to modulate
brain activity to cope with the visuomotor processing
demands of walking on uneven surfaces. Overall, our
findings suggest that with greater terrain difficulty,
increased intra-stride power fluctuations in sensorimotor
regions may reflect a higher need for step adaptation,
while those in the occipital area reflect greater reliance on
visual information.

There appears to be a phase shift in gait-related power
when comparing the flat condition and uneven terrains,
especially for older adults (Fig. 10D). When walking on
uneven surfaces, the alpha-band showed synchroniza-
tion during the double support and desynchronization
during the single support phase. When walking on a flat
surface, alpha synchronization occurred following foot
off, while desynchronization occurred during double sup-
port. This result suggests that the visual processing tim-
ing may be different for flat versus uneven terrain walking
for both younger and older adults. Future research should
investigate the connectivity between the occipital area
and sensorimotor region to delineate how the neural
oscillations at different regions coordinate to facilitate
walking.

Multiple motor-related regions showed greater power
fluctuations in younger adults than in older adults, includ-
ing right sensorimotor theta and alpha-band fluctuations,
right posterior parietal alpha-band fluctuations, and bilat-
eral posterior parietal beta-band fluctuations, after
adjusting for walking speed (Supplementary Fig. S8).
Combined with the slower walking speeds in our older
adults, this finding is consistent with the literature that
demonstrated people with mobility deficits had reduced
intra-stride fluctuations (Guo et al., 2024). For example,
people with Parkinson’s Disease demonstrated reduced
intra-stride power fluctuations in the alpha and beta
bands compared with control participants (Guo et al.,
2024). Since greater gait variability in stride length and
stride time is associated with smaller alpha band fluctua-
tions, it is possible that the smaller alpha power fluctua-
tions in older adults also result from greater gait variability
in older adults than in younger adults (Downey et al.,
2022).

5. LIMITATIONS

There are several limitations to our study, including the
inherently relatively low spatial resolution of EEG com-
pared with other imaging modalities such as fMRI and the
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lack of gaze data to fully understand visuospatial pro-
cessing during uneven terrain walking (Liu et al., 2024).
Interestingly, we found that older adults had fewer brain
components than younger adults. Almost 10% of older
adults do not have brain components or have <5 brain
components, resulting in more participants having to be
dropped from the analysis. Several factors may explain
the age differences in the number of brain components.
Dry or thickened scalp skin due to aging may increase the
EEG impedance. Heavy breathing and neck or facial mus-
cle activity due to task difficulty can lead to greater con-
tamination of the brain signal. It is possible that ICLabel
mislabeled brain components for older adults, as this
toolbox was primarily trained on data from younger adults.
Another explanation is that older adults demonstrate non-
selective recruitment of brain regions relative to younger
adults (Bunzeck et al., 2024; Seidler et al., 2010). For
example, when performing motor tasks with the dominant
hand, older adults activated both contralateral and ipsilat-
eral brain regions during simple motor tasks, whereas
younger adults show largely contralateral motor cortical
activation (Riecker et al., 2006). It is possible that EEG
source separation had difficulty with bilateral brain
sources for older adults that had unilateral sources in
younger adults, leading to a reduced number of brain
components in the older adults.

Another limitation is the imbalance in sample sizes
between young (n = 31) and older adults (n = 71) when
forming brain clusters using K-means. Although our sta-
tistical analyses for power spectral densities and event-
related spectral perturbations accounted for this unequal
sample size, the K-means clustering used to form brain
clusters may have been biased toward dipole locations
from older adults. Consequently, the resulting cluster
centroids likely reflected a greater influence from the
older adult group. Future studies could address this by
using a weighted K-means approach to account for
unequal group sizes.

In the present study, we did not identify a cluster of
brain sources in the prefrontal area, despite prior findings
using functional near-infrared spectroscopy showing
increased prefrontal activity in older adults during walk-
ing on more uneven terrain (Hwang et al., 2024). Prefron-
tal activity can be difficult to obtain with mobile EEG
using ICA due to ocular artifacts and facial muscle activ-
ities. Additionally, ICA only recovers the strongest brain
sources in EEG data averaged across many gait cycles.
Since our study did not incorporate a cognitively inten-
sive task during walking, prefrontal sources may not be
sufficiently strong compared with the ongoing rhythmic
electrocortical fluctuations dominant during steady state
gait. If there was a series of arrhythmic and discrete pre-
frontal neural activations involved in gait adjustments to
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the uneven terrain, it would produce a robust fNIRS sig-
nal but a relatively weak electrocortical signature when
viewed in comparison with the strong electrocortical
rhythms that occur during steady state gait. This is reflec-
tive of the differences in neural metrics used by fNIRS
and EEG (Richer et al., 2024).

6. CONCLUSION

Walking on uneven terrain led to greater gait variability
and widespread changes of electrocortical dynamics in
the brain for both younger and older adults. We found the
most prominent age differences in response to uneven
terrain walking in the parieto-occipital region alpha and
beta bands. Younger adults demonstrated a greater
reduction in alpha and beta power with greater terrain
unevenness than older adults. Intra-stride power spectral
fluctuations only changed with terrain unevenness for
younger adults at the occipital area, but did not change
with terrain unevenness for older adults. To summarize,
older adults showed a greater increase in gait variability
with greater terrain unevenness than younger adults but
exhibited a lack of modulation of parieto-occipital activity
in response to terrain unevenness. The lack of task-
related EEG power modulation may indicate reduced
cortical flexibility in older adults, resulting in poorer gait
performance. These findings may also suggest that older
adults already heavily rely on vision during flat surface
walking and are thus unable to modulate brain activity to
cope with the visuomotor processing demands of walk-
ing on uneven surfaces. Our future study will systemati-
cally investigate the association between behavioral
changes and EEG spectral measures to determine
whether this lack of modulation reflects neural compen-
sation to maintain gait performance while walking on
uneven terrain.

DATA AND CODE AVAILABILITY

Data for younger adults are available via OpenNeuro:
https://openneuro.org/datasets/ds004625/versions/1.0
.2. Data for older adults are available via OpenNeuro:
https://openneuro.org/datasets/ds006095. Code is avail-
able via GitHub Repo: https://github.com/changliu-99
/MindInMotion_AgeDifferences_UnevenTerrain.

AUTHOR CONTRIBUTIONS

Chang Liu: Methodology, Software, Formal Analysis,
Investigation, Data Curation, Writing—Original Draft,
Visualization. Erika M. Pliner, Jungyun Hwang, and
Natalie Richer: Methodology, Investigation, Data Cura-
tion, Writing—Review & Editing. Jacob Salminen and

27

Ryan J. Downey: Methodology, Software, Formal Analy-
sis, Investigation, Data Curation, Writing—Review & Edit-
ing. Arkaprava Roy: Formal Analysis, Investigation,
Writing—Review & Editing. Ryland Swearinger: Data
Curation, Investigation, Writing—Review & Editing. Chris
J. Hass, David J. Clark, Todd M. Manini, and Rachael D.
Seidler: Conceptualization, Methodology, Investigation,
Resources, Writing—Review & Editing, Project Adminis-
tration, Funding Acquisition. Yenisel Cruz-Almeida: Con-
ceptualization, Methodology, Investigation, Resources,
Writing—Review & Editing, Funding Acquisition. Daniel P.
Ferris: Conceptualization, Methodology, Investigation,
Resources, Writing— Review & Editing, Supervision, Proj-
ect Administration, Funding Acquisition.

FUNDING

This study was supported by the National Institute of
Health (UO1AG061389) for all authors. National Institute
of Health grants F32AG072808 and T32AG062728
supported author E.M.P. American Heart Association
Fellowship (23POST1011634, doi.org/10.58275/AHA
.23P0OST1011634.pc.gr.161292)  partially = supported
author C.L. D.P.F. was also supported by National Insti-
tutes of Health (ROTNS104772). A portion of this work
was performed in the McKnight Brain Institute, which is
supported by National Science Foundation Cooperative
Agreement No. DMR-1644779 and the State of Florida,
and in part by an NIH award, S10 OD021726, for High
End Instrumentation. The funders had no role in study
design, data collection and analysis, decision to publish,
or preparation of the manuscript.

DECLARATION OF COMPETING INTEREST

The authors have no commercial conflicts of interest rel-
evant to this manuscript.

ETHICS STATEMENT

The studies involving humans were approved by the insti-
tutional review board (IRB) at the University of Florida
(IRB 201802227). The studies were conducted in accor-
dance with the local legislation and institutional require-
ments. The participants provided their written informed
consent to participate in this study.

ACKNOWLEDGEMENTS

We would like to thank Human Neuromechanics Lab
members for their assistance with data collection: Mad-
ison Tenerowicz, Quinlan Degnan, Sydney Irwin, Sofia
Arvelo Rojas, Tyler Irby, and Sai Shrestha, and other


https://openneuro.org/datasets/ds004625/versions/1.0.2
https://openneuro.org/datasets/ds004625/versions/1.0.2
https://openneuro.org/datasets/ds006095
https://github.com/changliu-99/MindInMotion_AgeDifferences_UnevenTerrain
https://github.com/changliu-99/MindInMotion_AgeDifferences_UnevenTerrain
http://doi.org/10.58275/AHA.23POST1011634.pc.gr.161292
http://doi.org/10.58275/AHA.23POST1011634.pc.gr.161292

C. Liu, E.M. Pliner, J. Salminen et al.

Imaging Neuroscience, Volume 3, 2025

laboratory members for the insightful discussion that
helped improve the paper. We would also like to thank
our study coordinators for recruiting participants and
maintaining the study database.

SUPPLEMENTARY MATERIALS

Supplementary material for this article is available with
the online version here: https://doi.org/10.1162/IMAG.a
.1039.

REFERENCES

Akyol, A. D. (2007). Falls in the elderly: What can be done?
International Nursing Review, 54(2), 191-196. https://doi
.org/10.1111/j.1466-7657.2007.00505.x

Alcock, L., Vitério, R., Stuart, S., Rochester, L., & Pantall,
A. (2023). Faster walking speeds require greater activity
from the primary motor cortex in older adults compared
to younger adults. Sensors (Basel, Switzerland), 23(15),
6921. https://doi.org/10.3390/s23156921

Artoni, F.,, Fanciullacci, C., Bertolucci, F., Panarese,

A., Makeig, S., Micera, S., & Chisari, C. (2017).
Unidirectional brain to muscle connectivity reveals motor
cortex control of leg muscles during stereotyped walking.
Neurolmage, 159, 403-416. https://doi.org/10.1016/j
.neuroimage.2017.07.013

Avants, B. B., Tustison, N. J., Song, G., Cook, P. A., Klein,
A., & Gee, J. C. (2011). A reproducible evaluation of ANTs
similarity metric performance in brain image registration.
Neurolmage, 54(3), 2033-2044. https://doi.org/10.1016/j
.neuroimage.2010.09.025

Bardouille, T., & Bailey, L. (2019). Evidence for age-related
changes in sensorimotor neuromagnetic responses
during cued button pressing in a large open-access
dataset. Neurolmage, 1983, 25-34. https://doi.org/10
.1016/j.neuroimage.2019.02.065

Belli, V. de, Orcioli-Silva, D., Beretta, V. S., Vitério, R.,
Zampier, V. C., Nobrega-Sousa, P., Conceicado, N. R. da,
& Gobbi, L. T. B. (2021). Prefrontal cortical activity during
preferred and fast walking in young and older adults: An
fNIRS study. Neuroscience, 473, 81-89. https://doi.org
/10.1016/j.neuroscience.2021.08.019

Benjamini, Y., & Hochberg, Y. (1995). Controlling the false
discovery rate: A practical and powerful approach to
multiple testing. Journal of the Royal Statistical Society:
Series B (Methodological), 57(1), 289-300. https://doi.org
/10.1111/j.2517-6161.1995.tb02031.x

Blum, S., Scanlon, J. E. M., Witt, K., & Debener, S. (2022).
Mobile electroencephalography captures differences of
walking over even and uneven terrain but not of single
and dual-task gait. Frontiers in Sports and Active Living,
4, 945341. https://doi.org/10.3389/fspor.2022.945341

Boyer, K. A., Hayes, K. L., Umberger, B. R., Adamczyk,

P. G,, Bean, J. F, Brach, J. S., Clark, B. C., Clark,

D. J., Ferrucci, L., Finley, J., Franz, J. R., Golightly,

Y. M., Hortobagyi, T., Hunter, S., Narici, M., Nicklas,

B., Roberts, T., Sawicki, G., Simonsick, E., & Kent,

J. A. (2023). Age-related changes in gait biomechanics
and their impact on the metabolic cost of walking:
Report from a National Institute on Aging workshop.
Experimental Gerontology, 173, 112102. https://doi.org
/10.1016/j.exger.2023.112102

Bradford, J. C., Lukos, J. R., & Ferris, D. P. (2016).
Electrocortical activity distinguishes between uphill and

28

level walking in humans. Journal of Neurophysiology,
115(2), 958-966. https://doi.org/10.1152/jn.00089.2015

Brown, C. J., & Flood, K. L. (2013). Mobility limitation in the
older patient: A clinical review. JAMA, 370(11), 1168-
1177. https://doi.org/10.1001/jama.2013.276566

Bruijn, S. M., Meijer, O. G., Beek, P. J., & van Dieen, J. H.
(2013). Assessing the stability of human locomotion: A
review of current measures. Journal of the Royal Society
Interface, 10(83), 20120999. https://doi.org/10.1098/rsif
.2012.0999

Bruijn, S. M., Van Dieén, J. H., & Daffertshofer, A. (2015).
Beta activity in the premotor cortex is increased during
stabilized as compared to normal walking. Frontiers in
Human Neuroscience, 9, 593. https://doi.org/10.3389
/fnhum.2015.00593

Bruijn, S. M., Van Dieén, J. H., Meijer, O. G., & Beek, P. J.
(2009). Statistical precision and sensitivity of measures of
dynamic gait stability. Journal of Neuroscience Methods,
178(2), 327-333. https://doi.org/10.1016/j.jneumeth.2008
.12.015

Bunzeck, N., Steiger, T. K., Kramer, U. M., Luedtke, K.,
Marshall, L., Obleser, J., & Tune, S. (2024). Trajectories
and contributing factors of neural compensation
in healthy and pathological aging. Neuroscience &
Biobehavioral Reviews, 156, 105489. https://doi.org/10
.1016/j.neubiorev.2023.105489

Cao, L., Chen, X., & Haendel, B. F. (2020). Overground
walking decreases alpha activity and entrains
eye movements in humans. Frontiers in Human
Neuroscience, 14, 561755. https://doi.org/10.3389
/fnhum.2020.561755

Clark, D. J. (2015). Automaticity of walking: Functional
significance, mechanisms, measurement and
rehabilitation strategies. Frontiers in Human
Neuroscience, 9, 246. https://doi.org/10.3389/fnhum
.2015.00246

Clark, D. J., Christou, E. A, Ring, S. A., Williamson, J. B.,
& Doty, L. (2014). Enhanced somatosensory feedback
reduces prefrontal cortical activity during walking in older
adults. The Journals of Gerontology Series A: Biological
Sciences and Medical Sciences, 69(11), 1422-1428.
https://doi.org/10.1093/gerona/glu125

Clark, D. J., Manini, T. M., Ferris, D. P, Hass, C. J.,
Brumback, B. A., Cruz-Almeida, Y., Pahor, M., Reuter-
Lorenz, P. A., & Seidler, R. D. (2020). Multimodal
imaging of brain activity to investigate walking and
mobility decline in older adults (mind in motion study):
Hypothesis, theory, and methods. Frontiers in Aging
Neuroscience, 11, 358. https://www.frontiersin.org/article
/10.3389/fnagi.2019.00358

Cohen, M. X. (2014). A neural microcircuit for
cognitive conflict detection and signaling. Trends in
Neurosciences, 37(9), 480-490. https://doi.org/10.1016/j
.tins.2014.06.004

Darna, M., Stolz, C., Jauch, H.-S., Strumpf, H., Hopf, J.-M.,
Seidenbecher, C. |., Schott, B. H., & Richter, A. (2025).
Frontal theta oscillations and cognitive flexibility: Age-
related modulations in EEG activity. bioRxiv. https://doi
.org/10.1101/2024.07.05.602082

Davis, S. W., Dennis, N. A., Daselaar, S. M., Fleck, M. S.,
& Cabeza, R. (2008). Qué PASA? The posterior—anterior
shift in aging. Cerebral Cortex, 18(5), 1201-1209. https://
doi.org/10.1093/cercor/bhm155

Delorme, A., & Makeig, S. (2004). EEGLAB: An open
source toolbox for analysis of single-trial EEG dynamics
including independent component analysis. Journal of
Neuroscience Methods, 134(1), 9-21. https://doi.org/10
.1016/j.jneumeth.2003.10.009


https://doi.org/10.1162/IMAG.a.1039
https://doi.org/10.1162/IMAG.a.1039
https://doi.org/10.1111/j.1466-7657.2007.00505.x
https://doi.org/10.1111/j.1466-7657.2007.00505.x
https://doi.org/10.3390/s23156921
https://doi.org/10.1016/j.neuroimage.2017.07.013
https://doi.org/10.1016/j.neuroimage.2017.07.013
https://doi.org/10.1016/j.neuroimage.2010.09.025
https://doi.org/10.1016/j.neuroimage.2010.09.025
https://doi.org/10.1016/j.neuroimage.2019.02.065
https://doi.org/10.1016/j.neuroimage.2019.02.065
https://doi.org/10.1016/j.neuroscience.2021.08.019
https://doi.org/10.1016/j.neuroscience.2021.08.019
https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
https://doi.org/10.3389/fspor.2022.945341
https://doi.org/10.1016/j.exger.2023.112102
https://doi.org/10.1016/j.exger.2023.112102
https://doi.org/10.1152/jn.00089.2015
https://doi.org/10.1001/jama.2013.276566
https://doi.org/10.1098/rsif.2012.0999
https://doi.org/10.1098/rsif.2012.0999
https://doi.org/10.3389/fnhum.2015.00593
https://doi.org/10.3389/fnhum.2015.00593
https://doi.org/10.1016/j.jneumeth.2008.12.015
https://doi.org/10.1016/j.jneumeth.2008.12.015
https://doi.org/10.1016/j.neubiorev.2023.105489
https://doi.org/10.1016/j.neubiorev.2023.105489
https://doi.org/10.3389/fnhum.2020.561755
https://doi.org/10.3389/fnhum.2020.561755
https://doi.org/10.3389/fnhum.2015.00246
https://doi.org/10.3389/fnhum.2015.00246
https://doi.org/10.1093/gerona/glu125
https://www.frontiersin.org/article/10.3389/fnagi.2019.00358
https://www.frontiersin.org/article/10.3389/fnagi.2019.00358
https://doi.org/10.1016/j.tins.2014.06.004
https://doi.org/10.1016/j.tins.2014.06.004
https://doi.org/10.1101/2024.07.05.602082
https://doi.org/10.1101/2024.07.05.602082
https://doi.org/10.1093/cercor/bhm155
https://doi.org/10.1093/cercor/bhm155
https://doi.org/10.1016/j.jneumeth.2003.10.009
https://doi.org/10.1016/j.jneumeth.2003.10.009

C. Liu, E.M. Pliner, J. Salminen et al.

Imaging Neuroscience, Volume 3, 2025

Donoghue, T., Haller, M., Peterson, E. J., Varma, P,,
Sebastian, P, Gao, R., Noto, T., Lara, A. H., Wallis,
J. D., Knight, R. T., Shestyuk, A., & Voytek, B. (2020).
Parameterizing neural power spectra into periodic and
aperiodic components. Nature Neuroscience, 23(12),
Article 12. https://doi.org/10.1038/s41593-020-00744-x

Downey, R. J., & Ferris, D. P. (2023). iCanClean removes
motion, muscle, eye, and line-noise artifacts from
phantom EEG. Sensors, 23(19), Article 19. https://doi.org
/10.3390/s23198214

Downey, R. J., Richer, N., Gupta, R., Liu, C., Pliner, E. M.,
Roy, A., Hwang, J., Clark, D. J., Hass, C. J., Manini,
T. M., Seidler, R. D., & Ferris, D. P. (2022). Uneven terrain
treadmill walking in younger and older adults. PLoS One,
17(12), e0278646. https://doi.org/10.1371/journal.pone
.0278646

Drew, T., & Marigold, D. S. (2015). Taking the next step:
Cortical contributions to the control of locomotion.
Current Opinion in Neurobiology, 33, 25-33. https://doi
.org/10.1016/j.conb.2015.01.011

Espenhahn, S., van Wijk, B. C. M., Rossiter, H. E., de
Berker, A. O., Redman, N. D., Rondina, J., Diedrichsen,
J., & Ward, N. S. (2019). Cortical beta oscillations are
associated with motor performance following visuomotor
learning. Neurolmage, 195, 340-353. https://doi.org/10
.1016/j.neuroimage.2019.03.079

Feldmann-Widstefeld, T., Miyakoshi, M., Petilli, M. A.,
Schubd, A., & Makeig, S. (2017). Reduced visual
attention in heterogeneous textures is reflected in
occipital alpha and theta band activity. PLoS One, 12(12),
e0187763. https://doi.org/10.1371/journal.pone.0187763

Ficarella, S. C., Rochet, N., & Burle, B. (2019). Becoming
aware of subliminal responses: An EEG/EMG study on
partial error detection and correction in humans. Cortex,
120, 443-456. https://doi.org/10.1016/j.cortex.2019.07
.007

Franz, J. R., Francis, C. A., Allen, M. S., O’Connor, S. M.,
& Thelen, D. G. (2015). Advanced age brings a greater
reliance on visual feedback to maintain balance during
walking. Human Movement Science, 40, 381. https://doi
.org/10.1016/j.humov.2015.01.012

Frimenko, R., Goodyear, C., & Bruening, D. (2015).
Interactions of sex and aging on spatiotemporal metrics
in non-pathological gait: A descriptive meta-analysis.
Physiotherapy, 101(3), 266-272. https://doi.org/10.1016/j
.physio.2015.01.003

Gonsisko, C. B., Ferris, D. P, & Downey, R. J. (2023).
iCanClean improves independent component analysis of
mobile brain imaging with EEG. Sensors, 23(2), Article 2.
https://doi.org/10.3390/s23020928

Groessl, E. J., Kaplan, R. M., Rejeski, W. J., Katula, J. A,
King, A. C., Frierson, G., Glynn, N. W., Hsu, F.-C.,
Walkup, M., & Pahor, M. (2007). Health-related quality of
life in older adults at risk for disability. American Journal
of Preventive Medicine, 33(3), 214-218. https://doi.org
/10.1016/j.amepre.2007.04.031

Guo, X., Zhao, S., Yu, L., Wang, H., Acquah, M. E. E.,
Chen, W., & Gu, D. (2024). Neural correlates of abnormal
cortical gait control in Parkinson’s disease: A whole-
gait-cycle EEG study. IEEE Transactions on Biomedical
Engineering, 71(2), 400-409. https://doi.org/10.1109
/TBME.2023.3301528

Gwin, J. T., Gramann, K., Makeig, S., & Ferris, D. P. (2011).
Electrocortical activity is coupled to gait cycle phase
during treadmill walking. Neurolmage, 54(2), 1289-1296.
https://doi.org/10.1016/j.neuroimage.2010.08.066

Hardy, S. E., Kang, Y., Studenski, S. A., & Degenholtz,
H. B. (2011). Ability to walk 1/4 mile predicts subsequent

29

disability, mortality, and health care costs. Journal of
General Internal Medicine, 26(2), 130-135. https://doi.org
/10.1007/s11606-010-1543-2

Hawkins, K. A., Fox, E. J., Daly, J. J., Rose, D. K., Christou,
E. A., McGuirk, T. E., Otzel, D. M., Butera, K. A,
Chatterjee, S. A., & Clark, D. J. (2018). Prefrontal over-
activation during walking in people with mobility deficits:
Interpretation and functional implications. Human
Movement Science, 59, 46-55. https://doi.org/10.1016/j
.humov.2018.03.010

Holtzer, R., Mahoney, J. R., Izzetoglu, M., Izzetoglu, K.,
Onaral, B., & Verghese, J. (2011). fNIRS study of walking
and walking while talking in young and old individuals.
The Journals of Gerontology: Series A, 66A(8), 879-887.
https://doi.org/10.1093/gerona/glr068

Hwang, J., Liu, C., Winesett, S. P, Chatterjee, S. A,,
Gruber, A. D., Swanson, C. W., Manini, T. M., Hass,
C. J., Seidler, R. D., Ferris, D. P, Roy, A., & Clark, D. J.
(2024). Prefrontal cortical activity during uneven terrain
walking in younger and older adults. Frontiers in Aging
Neuroscience, 16, 1389488. https://doi.org/10.3389
/fnagi.2024.1389488

Jacobsen, N. A., & Ferris, D. P. (2023). Electrocortical
activity correlated with locomotor adaptation during
split-belt treadmill walking. The Journal of Physiology,
601(17), 3921-3944. https://doi.org/10.1113/JP284505

Jacobsen, N. S. J., Blum, S., Scanlon, J. E. M., Witt, K.,
& Debener, S. (2022). Mobile electroencephalography
captures differences of walking over even and uneven
terrain but not of single and dual-task gait. Frontiers in
Sports and Active Living, 4, 945341. https://doi.org/10
.3389/fspor.2022.945341

Klug, M., Jeung, S., Wunderlich, A., Gehrke, L., Protzak,
J., Djebbara, Z., Argubi-Wollesen, A., Wollesen, B.,
& Gramann, K. (2022). The BeMoBIL Pipeline for
automated analyses of multimodal mobile brain and
body imaging data. bioRxiv. https://doi.org/10.1101/2022
.09.29.510051

Liu, C., Downey, R. J., Mu, Y., Richer, N., Hwang, J., Shah,
V. A., Sato, S. D., Clark, D. J., Hass, C. J., Manini, T. M.,
Seidler, R. D., & Ferris, D. P. (2023). Comparison of EEG
source localization using simplified and anatomically
accurate head models in younger and older adults.
IEEE Transactions on Neural Systems and Rehabilitation
Engineering, 31, 2591-2602. https://doi.org/10.1109
/TNSRE.2023.3281356

Liu, C., Downey, R. J., Salminen, J. S., Arvelo Rojas, S.,
Richer, N., Pliner, E. M., Hwang, J., Cruz-Almeida, Y.,
Manini, T. M., Hass, C. J., Seidler, R. D., Clark, D. J., &
Ferris, D. P. (2024). Electrical brain activity during human
walking with parametric variations in terrain unevenness
and walking speed. Imaging Neuroscience, 2, 1-33.
https://doi.org/10.1162/imag_a_00097

Lo, J., Lo, O.-Y., Olson, E. A., Habtemariam, D., lloputaife,
I., Gagnon, M. M., Manor, B., & Lipsitz, L. A. (2017).
Functional implications of muscle co-contraction during
gait in advanced age. Gait & Posture, 53, 110-114.
https://doi.org/10.1016/j.gaitpost.2017.01.010

Marigold, D. S., & Patla, A. E. (2008). Age-related changes
in gait for multi-surface terrain. Gait & Posture, 27(4),
689-696. https://doi.org/10.1016/j.gaitpost.2007.09.005

Maris, E., & Oostenveld, R. (2007). Nonparametric statistical
testing of EEG- and MEG-data. Journal of Neuroscience
Methods, 164(1), 177-190. https://doi.org/10.1016/j
.jneumeth.2007.03.024

Mayka, M. A., Corcos, D. M., Leurgans, S. E., &
Vaillancourt, D. E. (2006). Three-dimensional locations
and boundaries of motor and premotor cortices as


https://doi.org/10.1038/s41593-020-00744-x
https://doi.org/10.3390/s23198214
https://doi.org/10.3390/s23198214
https://doi.org/10.1371/journal.pone.0278646
https://doi.org/10.1371/journal.pone.0278646
https://doi.org/10.1016/j.conb.2015.01.011
https://doi.org/10.1016/j.conb.2015.01.011
https://doi.org/10.1016/j.neuroimage.2019.03.079
https://doi.org/10.1016/j.neuroimage.2019.03.079
https://doi.org/10.1371/journal.pone.0187763
https://doi.org/10.1016/j.cortex.2019.07.007
https://doi.org/10.1016/j.cortex.2019.07.007
https://doi.org/10.1016/j.humov.2015.01.012
https://doi.org/10.1016/j.humov.2015.01.012
https://doi.org/10.1016/j.physio.2015.01.003
https://doi.org/10.1016/j.physio.2015.01.003
https://doi.org/10.3390/s23020928
https://doi.org/10.1016/j.amepre.2007.04.031
https://doi.org/10.1016/j.amepre.2007.04.031
https://doi.org/10.1109/TBME.2023.3301528
https://doi.org/10.1109/TBME.2023.3301528
https://doi.org/10.1016/j.neuroimage.2010.08.066
https://doi.org/10.1007/s11606-010-1543-2
https://doi.org/10.1007/s11606-010-1543-2
https://doi.org/10.1016/j.humov.2018.03.010
https://doi.org/10.1016/j.humov.2018.03.010
https://doi.org/10.1093/gerona/glr068
https://doi.org/10.3389/fnagi.2024.1389488
https://doi.org/10.3389/fnagi.2024.1389488
https://doi.org/10.1113/JP284505
https://doi.org/10.3389/fspor.2022.945341
https://doi.org/10.3389/fspor.2022.945341
https://doi.org/10.1101/2022.09.29.510051
https://doi.org/10.1101/2022.09.29.510051
https://doi.org/10.1109/TNSRE.2023.3281356
https://doi.org/10.1109/TNSRE.2023.3281356
https://doi.org/10.1162/imag_a_00097
https://doi.org/10.1016/j.gaitpost.2017.01.010
https://doi.org/10.1016/j.gaitpost.2007.09.005
https://doi.org/10.1016/j.jneumeth.2007.03.024
https://doi.org/10.1016/j.jneumeth.2007.03.024

C. Liu, E.M. Pliner, J. Salminen et al.

Imaging Neuroscience, Volume 3, 2025

defined by functional brain imaging: A meta-analysis.
Neurolmage, 31(4), 1453-1474. https://doi.org/10.1016/j
.neuroimage.2006.02.004

Musich, S., Wang, S. S., Ruiz, J., Hawkins, K., & Wicker,
E. (2018). The impact of mobility limitations on health
outcomes among older adults. Geriatric Nursing, 39(2),
162-169. https://doi.org/10.1016/j.gerinurse.2017.08.002

Nordin, A. D., Hairston, W. D., & Ferris, D. P. (2018).
Dual-electrode motion artifact cancellation for mobile
electroencephalography. Journal of Neural Engineering,
15(5), 056024. https://doi.org/10.1088/1741-2552
/aad7d7

Nordin, A. D., Hairston, W. D., & Ferris, D. P. (2019). Human
electrocortical dynamics while stepping over obstacles.
Scientific Reports, 9(1), Article 1. https://doi.org/10.1038
/s41598-019-41131-2

Oliveira, A. S., Arguissain, F. G., & Andersen, O. K. (2018).
Cognitive processing for step precision increases beta
and gamma band modulation during overground walking.
Brain Topography, 31(4), 661-671. https://doi.org/10
.1007/s10548-018-0633-z

Ozdemir, R. A., Contreras-Vidal, J. L., & Paloski, W. H.
(2018). Cortical control of upright stance in elderly.
Mechanisms of Ageing and Development, 169, 19-31.
https://doi.org/10.1016/j.mad.2017.12.004

Palmer, J., Kreutz-Delgado, K., & Makeig, S. (2011).
AMICA: An Adaptive Mixture of Independent Component
Analyzers with Shared Components. https://www
.semanticscholar.org/paper/AMICA-%3A-An-Adaptive
-Mixture-of-Independent-with-Palmer-Kreutz-Delgado/57
74e€96ad450c228400dc311f16caf1f20967¢c10

Pfurtscheller, G., Stancak, A., & Neuper, C. (1996a). Event-
related synchronization (ERS) in the alpha band—An
electrophysiological correlate of cortical idling: A
review. International Journal of Psychophysiology:
Official Journal of the International Organization of
Psychophysiology, 24(1-2), 39-46. https://doi.org/10
.1016/s0167-8760(96)00066-9

Pfurtscheller, G., Stancak, A., & Neuper, C. (1996b).
Post-movement beta synchronization. A correlate of an
idling motor area? Electroencephalography and Clinical
Neurophysiology, 98(4), 281-293. https://doi.org/10.1016
/0013-4694(95)00258-8

Pion-Tonachini, L., Kreutz-Delgado, K., & Makeig, S.
(2019). ICLabel: An automated electroencephalographic
independent component classifier, dataset, and website.
Neurolmage, 198, 181-197. https://doi.org/10.1016/j
.neuroimage.2019.05.026

Protzak, J., & Gramann, K. (2021). EEG beta-modulations
reflect age-specific motor resource allocation during
dual-task walking. Scientific Reports, 11(1), Article 1.
https://doi.org/10.1038/s41598-021-94874-2

Richer, N., Bradford, J. C., & Ferris, D. P. (2024). Mobile
neuroimaging: What we have learned about the neural
control of human walking, with an emphasis on EEG-
based research. Neuroscience & Biobehavioral Reviews,
162, 105718. https://doi.org/10.1016/j.neubiorev.2024
.105718

Riecker, A., Groschel, K., Ackermann, H., Steinbrink, C.,
Witte, O., & Kastrup, A. (2006). Functional significance
of age-related differences in motor activation patterns.
Neurolmage, 32(3), 1345-1354. https://doi.org/10.1016/j
.neuroimage.2006.05.021

Salminen, J., Liu, C., Pliner, E. M., Tenerowicz, M., Roy, A.,
Richer, N., Hwang, J., Hass, C. J., Clark, D. J., Seidler,
R. D., Manini, T. M., Cruz-Almeida, Y., & Ferris, D. P.
(2025). Gait speed related changes in electrocortical
activity in younger and older adults. Journal of

30

Neurophysiology, 133(6), 1761-1794. https://doi.org/10
.1152/jn.00544.2024

Sato, S., & Choi, J. T. (2022). Neural control of human
locomotor adaptation: Lessons about changes with
aging. The Neuroscientist, 28(5), 469-484. https://doi.org
/10.1177/10738584211013723

Seeber, M., Scherer, R., Wagner, J., Solis-Escalante, T.,
& Mdller-Putz, G. R. (2014). EEG beta suppression and
low gamma modulation are different elements of human
upright walking. Frontiers in Human Neuroscience, 8,
485. https://doi.org/10.3389/fnhum.2014.00485

Seeber, M., Scherer, R., Wagner, J., Solis-Escalante, T.,
& Muller-Putz, G. R. (2015). High and low gamma EEG
oscillations in central sensorimotor areas are conversely
modulated during the human gait cycle. Neurolmage,
112, 318-326. https://doi.org/10.1016/j.neuroimage.2015
.03.045

Seidler, R. D., Bernard, J. A., Burutolu, T. B., Fling, B. W,
Gordon, M. T., Gwin, J. T., Kwak, Y., & Lipps, D. B.
(2010). Motor control and aging: Links to age-related
brain structural, functional, and biochemical effects.
Neuroscience and Biobehavioral Reviews, 34(5), 721-
733. https://doi.org/10.1016/j.neubiorev.2009.10.005

Shah, V. A,, Cruz-Almeida, Y., Roy, A., Cenko, E., Downey,
R. J., Ferris, D. P, Hass, C. J., Reuter-Lorenz, P. A.,
Clark, D. J., Manini, T. M., & Seidler, R. D. (2023).
Uneven terrain versus dual-task walking: Differential
challenges imposed on walking behavior in older adults
are predicted by cognitive and sensorimotor function.
bioRxiv. https://doi.org/10.1101/2023.03.14.531779

Sipp, A. R., Gwin, J. T., Makeig, S., & Ferris, D. P. (2013).
Loss of balance during balance beam walking elicits a
multifocal theta band electrocortical response. Journal of
Neurophysiology, 110(9), 2050-2060. https://doi.org/10
.1152/jn.00744.2012

Studnicki, A., Downey, R. J., & Ferris, D. P. (2022).
Characterizing and removing artifacts using dual-layer
EEG during table tennis. Sensors (Basel, Switzerland),
22(15), 5867. https://doi.org/10.3390/s22155867

Thies, S. B., Richardson, J. K., & Ashton-Miller, J. A.
(2005). Effects of surface irregularity and lighting on step
variability during gait: A study in healthy young and older
women. Gait & Posture, 22(1), 26-31. https://doi.org/10
.1016/j.gaitpost.2004.06.004

Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D.,
Crivello, F, Etard, O., Delcroix, N., Mazoyer, B., & Joliot,
M. (2002). Automated anatomical labeling of activations
in SPM using a macroscopic anatomical parcellation of
the MNI MRI single-subject brain. Neurolmage, 15(1),
273-289. https://doi.org/10.1006/nimg.2001.0978

Vilhelmsen, K., van der Weel, F. R. (Ruud), & van der Meer,
A. L. H. (2015). A high-density EEG study of differences
between three high speeds of simulated forward motion
from optic flow in adult participants. Frontiers in Systems
Neuroscience, 9, 146. https://doi.org/10.3389/fnsys.2015
.00146

Yokoyama, H., Kaneko, N., Masugi, Y., Ogawa, T,,
Watanabe, K., & Nakazawa, K. (2021). Gait-phase-
dependent and gait-phase-independent cortical
activity across multiple regions involved in voluntary
gait modifications in humans. European Journal of
Neuroscience, 54(12), 8092-8105. https://doi.org/10
.1111/ejn.14867

Zhao, M., Bonassi, G., Samogin, J., Taberna, G. A., Pelosin,
E., Nieuwboer, A., Avanzino, L., & Mantini, D. (2022).
Frequency-dependent modulation of neural oscillations
across the gait cycle. Human Brain Mapping, 43(11),
3404-3415. https://doi.org/10.1002/hbm.25856


https://doi.org/10.1016/j.neuroimage.2006.02.004
https://doi.org/10.1016/j.neuroimage.2006.02.004
https://doi.org/10.1016/j.gerinurse.2017.08.002
https://doi.org/10.1088/1741-2552/aad7d7
https://doi.org/10.1088/1741-2552/aad7d7
https://doi.org/10.1038/s41598-019-41131-2
https://doi.org/10.1038/s41598-019-41131-2
https://doi.org/10.1007/s10548-018-0633-z
https://doi.org/10.1007/s10548-018-0633-z
https://doi.org/10.1016/j.mad.2017.12.004
https://www.semanticscholar.org/paper/AMICA-%3A-An-Adaptive-Mixture-of-Independent-with-Palmer-Kreutz-Delgado/5774e96ad450c228400dc311f16caf1f20967c10
https://www.semanticscholar.org/paper/AMICA-%3A-An-Adaptive-Mixture-of-Independent-with-Palmer-Kreutz-Delgado/5774e96ad450c228400dc311f16caf1f20967c10
https://www.semanticscholar.org/paper/AMICA-%3A-An-Adaptive-Mixture-of-Independent-with-Palmer-Kreutz-Delgado/5774e96ad450c228400dc311f16caf1f20967c10
https://www.semanticscholar.org/paper/AMICA-%3A-An-Adaptive-Mixture-of-Independent-with-Palmer-Kreutz-Delgado/5774e96ad450c228400dc311f16caf1f20967c10
https://doi.org/10.1016/s0167-8760(96)00066-9
https://doi.org/10.1016/s0167-8760(96)00066-9
https://doi.org/10.1016/0013-4694(95)00258-8
https://doi.org/10.1016/0013-4694(95)00258-8
https://doi.org/10.1016/j.neuroimage.2019.05.026
https://doi.org/10.1016/j.neuroimage.2019.05.026
https://doi.org/10.1038/s41598-021-94874-2
https://doi.org/10.1016/j.neubiorev.2024.105718
https://doi.org/10.1016/j.neubiorev.2024.105718
https://doi.org/10.1016/j.neuroimage.2006.05.021
https://doi.org/10.1016/j.neuroimage.2006.05.021
https://doi.org/10.1152/jn.00544.2024
https://doi.org/10.1152/jn.00544.2024
https://doi.org/10.1177/10738584211013723
https://doi.org/10.1177/10738584211013723
https://doi.org/10.3389/fnhum.2014.00485
https://doi.org/10.1016/j.neuroimage.2015.03.045
https://doi.org/10.1016/j.neuroimage.2015.03.045
https://doi.org/10.1016/j.neubiorev.2009.10.005
https://doi.org/10.1101/2023.03.14.531779
https://doi.org/10.1152/jn.00744.2012
https://doi.org/10.1152/jn.00744.2012
https://doi.org/10.3390/s22155867
https://doi.org/10.1016/j.gaitpost.2004.06.004
https://doi.org/10.1016/j.gaitpost.2004.06.004
https://doi.org/10.1006/nimg.2001.0978
https://doi.org/10.3389/fnsys.2015.00146
https://doi.org/10.3389/fnsys.2015.00146
https://doi.org/10.1111/ejn.14867
https://doi.org/10.1111/ejn.14867
https://doi.org/10.1002/hbm.25856

