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ABSTRACT

Walking on uneven terrain becomes more difficult as we age, and gait becomes less automatic. Using mobile brain 
imaging via high-density electroencephalography (EEG) can provide insight into the neural mechanisms contributing 
to reduced mobility capability with aging. The objective of this study was to quantify age differences in electrocortical 
dynamics during uneven terrain walking, both averaged across many strides and variations within a stride. We included 
31 young adults and 71 older adults for analysis. All participants walked on an uneven terrain treadmill with four levels 
of terrain difficulty at their self-selected speed. Compared with younger adults, older adults exhibited a greater 
increase in step duration variability and mediolateral sacral excursion variability as the terrain became more uneven. 
We identified multiple brain regions involved during walking on uneven terrain. Regardless of age group, walking on 
uneven terrain compared with flat terrain led to a widespread change of electrocortical dynamics in the brain, espe-
cially in the alpha (8–13 Hz) and beta (13–30 Hz) band power. In the parieto-occipital region, younger adults experi-
enced a greater reduction in alpha and beta power with increasing terrain unevenness than older adults. We also 
assessed how intra-stride power fluctuations changed with terrain unevenness and age group. Greater intra-stride 
power spectral fluctuations in the occipital area were associated with greater terrain unevenness for younger adults, 
but not for older adults. In summary, older adults showed a greater increase in gait variability than younger adults as 
the terrain became more uneven, but exhibited a lack of modulation of parieto-occipital activity in response to terrain 
unevenness. The lack of task-related power modulation may suggest reduced cortical network flexibility in older 
adults. The absence of increased parieto-occipital activity when walking on uneven versus flat surfaces in older adults 
may also indicate that, unlike younger adults, older adults already heavily rely on visual processes during flat surface 
walking and may, therefore, have reduced occipital modulation range remaining to cope with the visuomotor process-
ing demands of walking on uneven surfaces.
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1.  INTRODUCTION

One-third of older adults in the United States report mobil-
ity limitations (Musich et al., 2018), which is estimated to 
incur more than $42 billion in healthcare costs (Hardy 
et al., 2011). Walking ability is a vital indicator for assessing 
mobility limitations (Brown & Flood, 2013; Groessl et al., 
2007). Older adults walk more slowly, have reduced endur-
ance, exhibit altered kinetics and joint kinematics, and are 
at a greater fall risk than younger adults (Akyol, 2007; 
Boyer et al., 2023; Frimenko et al., 2015). When walking in 
daily life, the ability to walk safely on uneven terrain, such 
as from grass to a concrete sidewalk, is essential for 
community-dwelling older adults. Walking on uneven sur-
faces poses a greater risk of falls for older adults than 
walking on flat ground. Uneven terrain causes older adults 
to walk slower, take shorter steps, and increase their 
movement variability (Downey et  al., 2022; Marigold & 
Patla, 2008; Thies et  al., 2005). These mobility changes 
may lead to avoidance of community ambulation and 
diminish quality of life, highlighting the importance of 
understanding the mechanisms contributing to uneven 
terrain mobility limitations with aging.

The underlying neural mechanisms contributing to age 
differences in uneven terrain walking are not well under-
stood. The challenge of walking on uneven terrain 
increases with age, as walking on flat ground is already 
less automatic and relies more on cognitive control for 
older adults (Clark, 2015; Shah et al., 2023). Prior studies 
using functional near infrared spectroscopy (fNIRS) have 
reported overaction of the prefrontal cortex in older adults 
during walking, which suggests a need for greater cogni-
tive control (Belli et  al., 2021; Clark, 2015; Clark et  al., 
2014; Holtzer et al., 2011). It remains unclear how aging 
impacts activity in other brain regions, although we know 
that deterioration in motor and sensory systems, visuo-
spatial processing, and sensorimotor integration impacts 
walking function for older adults (Franz et al., 2015; Sato 
& Choi, 2022; Seidler et al., 2010).

Innovations in brain imaging using high-density elec-
troencephalography (EEG) allow the direct yet non-
invasive assessment of brain activity with high temporal 
resolution (in milliseconds) during walking and other 
behaviors (Gwin et  al., 2011; Richer et  al., 2024; 
Yokoyama et al., 2021). Each of the EEG spectral power 
bands (theta, alpha, beta) provides unique insight into 
brain function during human locomotor tasks (reviewed 
by Richer et al., 2024). Increasing demand for balance 
control is consistently associated with an increase in 
theta power (3–8 Hz) and decreases in alpha (8–13 Hz) 
and beta (13–30  Hz) power (Blum et  al., 2022; Bruijn 
et al., 2009; Liu et al., 2024; Sipp et al., 2013). Addition-
ally, intra-stride EEG power fluctuations are thought to 

reflect sensorimotor processing or integration during 
gait (Guo et al., 2024; Seeber et al., 2014). Intra-stride 
EEG power fluctuations localized to the sensorimotor 
cortex have exhibited event-related synchronization 
during the double support phase and desynchronization 
during the swing or single support phase of gait (Artoni 
et  al., 2017; Bradford et  al., 2016; Bruijn et  al., 2015;  
N. A. Jacobsen & Ferris, 2023; Liu et  al., 2024; Zhao 
et al., 2022). Such power fluctuations became more pro-
nounced when participants were asked to step on pre-
cise targets when walking on a treadmill, likely due to 
increased visuomotor processing for controlling foot 
placement (Oliveira et al., 2018; Yokoyama et al., 2021). 
Taken together, quantifying both electrocortical changes 
at different bands and the intra-stride power spectral 
fluctuations could enable a comprehensive profile of the 
influence of older age on brain dynamics during uneven 
terrain walking.

The objective of this study was to quantify age differ-
ences in electrocortical dynamics during uneven terrain 
walking. We used a high-density EEG system to quantify 
the gait-related brain activity when younger and older 
adults walked on uneven treadmill terrains with four lev-
els of difficulty at a preferred walking speed. Our hypoth-
eses were based upon our previous finding that as terrain 
unevenness increases, younger adults demonstrated a 
decrease in alpha and beta spectral power in the senso-
rimotor and posterior parietal areas and an increase in 
theta power in the mid/posterior cingulate area (Liu et al., 
2024). Here, we hypothesized that older adults would 
exhibit a greater increase in spectral power with terrain 
unevenness than younger adults in theta bands (decrease 
for alpha and beta) as older adults tend to recruit more 
neural resources during gait and balance (Hawkins et al., 
2018; Holtzer et  al., 2011). We also hypothesized that 
older adults would demonstrate greater intra-stride spec-
tral power fluctuations than younger adults in sensorimo-
tor and posterior parietal areas as terrain unevenness 
increases. This would relate to a higher demand for sen-
sorimotor processing. We also performed a whole-brain 
exploratory analysis to reveal age differences in electro-
cortical activity. Findings from this study may uncover the 
underlying neural mechanisms that contribute to mobility 
limitations in older adults and inform targeted interven-
tions to enhance mobility.

2.  METHOD

2.1.  Participants

This study is part of a larger multimodal brain imaging 
study (Mind in Motion), which investigates walking and 
mobility decline in older adults (NIH U01AG061389) 
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(Clark et  al., 2020). Here, we analyzed the cross-
sectional EEG data from the larger study. We recruited 
35 healthy younger (19 females, mean age = 24 ± 4 years, 
mean walking speed on uneven terrain tread-
mill  =  0.7 ±  0.2  m/s) and 96 older (58 females, mean 
age = 75 ± 7 years, mean walking speed on uneven ter-
rain treadmill = 0.35 ± 0.21 m/s) adults to assess their 
brain dynamics during walking on uneven terrain. Inclu-
sion criteria consisted of younger adults being aged 20–
40  years and community-dwelling older adults aged 
65 years or older with a wide range of mobility. Exclu-
sion criteria included the presence of cognitive impair-
ments assessed by Montreal Cognitive Assessment 
[MoCA] score  <  26, existing medical conditions that 
would significantly interfere with walking ability yet are 
not directly related to brain function, visual impairment 
that is not corrected, and implants with contraindica-
tions for magnetic resonance imaging (MRI). Full inclu-
sion and exclusion criteria have been described 
previously (Clark et al., 2020). This study was approved 
by the University of Florida Institutional Review Board 
(IRB 201802227). All participants provided written 
informed consent.

We included 31 younger adults and 71 older adults for 
data analysis (Table  1). A total of three younger adults 
were excluded from data analysis due to (1) gelling issues 
with braids (n = 1) and (2) technical issues (n = 2). Twenty-

five older adults were excluded for data analysis (Supple-
mentary Fig.  S1) due to (1) not completing the MRI 
session (n = 8), (2) technical issue occurring during data 
collection (n = 1), (3) not completing high-terrain condi-
tions (n  =  7), or (4) walking with a speed slower than 
0.1  m/s because these participants tended to walk 
toward the front of the treadmill, pause their walking, and 
then let the treadmill transport them toward the back 
(n = 9).

2.2.  Experimental protocol

Details of the study protocol have been previously 
reported (Clark et  al., 2020; Liu et  al., 2024) and we 
provide a summary of the procedures and setup below. 
We included one session of EEG and one session of 
MRI scans for this paper. The EEG and MRI sessions 
were conducted on separate days, with an average 
interval of 30 days between sessions (standard devia-
tion = 91 days).

Prior to the EEG session, participants walked on an 
overground version of the Flat, Low, Medium, and High 
Terrain uneven conditions on a 3.5-meter mat three times. 
The overground speed for each terrain was computed as 
the average speed to walk through the middle 3-meter 
portion. During the EEG session, participants walked on 
the custom-designed treadmill belts at a subject-specific 

Table 1.  Participant characteristics, racial background/ethnicity for younger and older adults.

Characteristics Included younger adults (n = 31) Included older adults (n = 71) p Value

Age (years), mean (SD) 24 (4) 75 (8) n.a
Sex, M/F 15/16 31/40 n.a
Hand dominance, Right/left/
both

28/3 65/5/1 n.a

Treadmill speed for all terrains 
(m/s), mean (SD)

0.70 (0.16) 0.39 (0.20) p < 0.001

Short physical performance 
battery (score)a, mean (SD)

12 (0) 9 (1.7) p < 0.001

400 m walk (sec), mean (SD) 326 (40.5) 389.5 (63) p < 0.001
400 m speed (m/s), mean (SD) 1.2 (0.15) 1.05 (0.17) p < 0.001
Montreal Cognitive Assessment 
(score)a, mean (SD)

28 (1.4) 27.5 (1.6) p = 0.06

Racial background/ethnicity

Included  
younger  

adults (n = 31)

Excluded  
younger  

adults (n = 4)

Included  
older adults  

(n = 71)

Excluded  
older adults  

(n = 25)

White 22 3 63 23
Black 1 1 3 2
Asian 6 0 2 0
Other 2 0 3 0
Hispanic 7 1 7 0

Average (standard deviation) age, treadmill speed, short physical performance battery, 400-meter walking duration, 400-meter walking 
speed, and Montreal Cognitive Assessment for younger and older adults.
aThese assessments were performed with 20 younger adults.
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walking speed on four different levels of uneven terrain 
(Flat, Low, Med, and High) and at four different speeds 
(0.25, 0.5, 0.75, and 1.0 m/s) on the flat surface. Subject-
specific treadmill speed for all terrains was set to 75% of 
the slowest overground speed across the terrains unless 
participants requested a slower treadmill speed. Each 
condition consisted of two walking trials, each lasting 
3 minutes. Participants also completed a 3-minute seated 
resting trial (Fig.  1A). During treadmill walking, partici-
pants wore a harness to prevent falling to the ground, but 
the harness did not provide any body weight support 
unless a fall occurred. No falls occurred during data col-
lection. We pseudorandomized the conditions with eight 
unique orders of uneven terrain conditions and speed 
conditions, respectively.

2.3.  Data acquisition

Participants wore a custom-made dual-layer EEG cap 
(ActiCAP snap sensors; Brain Products GmbH, Ger-
many), including 120 scalp electrodes and 120 mechan-
ically coupled noise electrodes, when walking on the 
treadmill. The scalp electrodes followed a 10-05 elec-
trode system. We inverted and mechanically coupled 
noise electrodes to the scalp electrodes (Fig. 1A) (Nordin 
et al., 2018; Studnicki et al., 2022). We used a conduc-
tive fabric as an artificial skin circuit and bridged the 
noise electrodes. Eight of the original 128 scalp elec-
trodes (TP9, P9, PO9, O9, O10, PO10, P10, and TP10) 
were repurposed to measure muscle activity of the ster-
nocleidomastoid and trapezius on the left and right 
sides. We kept all scalp electrode impedance values 
below 15 Kohm during the setup. Ground and reference 
electrodes were kept below 5 Kohm. We digitized the 
electrode locations using a structural scanner (ST01, 
Occipital Inc., San Francisco, CA). We used 4 LiveAmp 
64 amplifiers and logged EEG data at 500 Hz. The online 
reference and ground electrodes were at CPz and Fpz, 
respectively.

2.4.  Gait event and kinematics analyses

We analyzed kinematic and kinetic data using MAT-
LAB2020b (Mathworks, USA, RRID:SCR_001622) to 
compute behavioral variables. We defined foot strike and 
toe off based on ground reaction forces measured with 
the capacitive shoe insole sensors (loadsol 1- 184 sen-
sor, Novel Electronics Inc., St. Paul, MN, USA) with 20 N 
threshold (Downey et al., 2022). We computed the peak-
to-peak excursion of the sacrum in the anteroposterior 
and mediolateral direction using the IMU. We have previ-
ously reported the details of the algorithm and calcula-
tions (Downey et  al., 2022). We removed outliers that 

were ±2.5 standard deviations away from the mean within 
each trial (Downey et al., 2022). We calculated the vari-
ability of each of these measures as the coefficient of 
variation (standard deviation over mean).

2.5.  EEG data analyses

We processed all EEG data using custom MATLAB 
scripts, EEGLAB (v 2021.0, RRID:SCR_007292) (Delorme 
& Makeig, 2004), and the BeMoBIL pipeline (v2.0.0) (Klug 
et al., 2022) (Fig. 1B). We applied a 1 Hz high-pass filter 
(-6 dB at 0.5 Hz) with eegfiltnew on all scalp, noise, and 
muscle channels to remove drift for each trial and then 
applied a 20 Hz high-pass filter with eegfiltnew on muscle 
channels. We used the CleanLine plugin in EEGLAB to 
remove line noise at 60 and 120  Hz. We rejected bad 
channels that were 3 standard deviations away from the 
mean of EEG and noise channels, respectively. We per-
formed average reference for scalp, noise, and muscle 
channels, respectively. We then used iCanClean (Downey 
& Ferris, 2023; Gonsisko et al., 2023) to remove artifacts 
that were highly correlated with noise reference elec-
trodes (R2 = 0.65 with a 4-second moving window) and 
muscle reference electrodes (R2 = 0.4 with a 4-second 
moving window). We used clean_artifacts in EEGLAB to 
remove bad channels and noisy time frames using default 
parameters except for the following: chan_crit1  =  0.7, 
win_crit1  =  0.4, winTol  =  [-Inf, 10]. These parameters 
were selected in a preliminary analysis of a subset of the 
data, which aimed to minimize the number of channels 
and time frames rejected while maximizing a good num-
ber of brain components by ICLabel (Liu et  al., 2023; 
Pion-Tonachini et al., 2019). We retained 110 ± 6 chan-
nels after pre-processing. Scalp EEG data were re-
referenced. We performed adaptive mixture independent 
component analysis (AMICA) on the preprocessed data 
to decompose the preprocessed EEG data into statisti-
cally independent components (Palmer et al., 2011). For 
this analysis, we used all EEG data (approximately 
50 minutes), which included both terrain and speed walk-
ing trials, as well as the resting trial, for AMICA; however, 
we only used the terrain trials in subsequent data analy-
sis. We later used the independent components to per-
form source localization.

2.6.  Epoch and compute power spectral density 
and event-related spectral perturbations

For the walking trials, we segmented data into epochs of 
5.25  seconds (from 1  second before to 4.25  seconds 
after the right foot strike). The epoch length was chosen 
to accommodate participants with long step durations 
during the slowest walking condition (0.25  m/s). We 
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rejected epochs that were 3 standard deviations from the 
mean gait event time. For the resting seated trial, we also 
segmented data into epochs of 5.25 seconds.

We computed the log power spectral density (PSD) 
using spectopo from EEGLAB with default parameters 
for each independent component and normalized by 
subtracting each individual’s mean log spectral power 

density from all conditions. We then computed the time–
frequency decomposition of the resting trial with new-
timef (Morlet wavelets cycles: [3 0.8]) and averaged 
across all epochs and time. We also computed the 
time–frequency decomposition for all walking trials and 
then time warped the gait cycles from right foot-strike, 
left foot-off, left foot-strike, right foot-off, and the  

Fig. 1.  Experiment setup and processing pipeline. (A) Participants completed treadmill walking trials on four different 
levels of uneven terrain (Flat, Low, Medium, High) and other walking trials at different speeds performed on the Flat 
terrain. Participants wore a custom-made dual-layer EEG cap, an inertial measurement unit on their sacrum, and insole 
force sensors inserted in their shoes. Dual-electrode EEG setup has scalp electrodes and noise electrodes that were 
mechanically coupled. We used a conductive fabric as an artificial skin circuit to bridge the noise electrodes. (B) Data 
processing flowchart with steps for EEG pre-processing, source localization, spectral principal component analysis, and 
clustering brain components. * indicates referring to supplementary material for details.
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subsequent right foot-strike. We then averaged across 
all epochs. We calculated relative changes in power 
between walking and resting conditions of every time 
point in the gait at every frequency for each indepen-
dent component.

2.7.  Muscle artifact correction with sPCA

We used an adapted spectral principal component analy-
sis (sPCA; N. S. J. Jacobsen et al., 2022; Seeber et al., 
2015) to obtain muscle artifacts for correction in event-
related spectral perturbations (ERSP) and power spectral 
density (PSD) for each participant. We performed sPCA for 
additional muscle artifact reduction in addition to iCan-
Clean because there were residual muscle artifact con-
taminations found in the frequency domain, especially for 
older adults. The steps were previously described in 
Salminen et  al. (2025) in detail, and thus we provided a 
brief summary here and in the Supplementary Figures S2 
and S3. We followed the scripts provided by Jacobsen 
et  al. to implement the sPCA (N. S. J. Jacobsen et  al., 
2022). For each participant, we first removed the eye com-
ponents identified by ICLabel (Pion-Tonachini et al., 2019) 
(version: lite). We computed the relative changes in PSDs 
and ERSPs during all walking trials from the resting trial for 
each component. sPCA was performed on those PSDs 
and ERSPs averaged across conditions. We obtained 
eigenvectors and a weighting matrix that transformed data 
from component x frequency space to the principal com-
ponent space. The first principal component (PSC1) with 
the largest eigenvalue was identified as muscle artifacts 
and thus removed from further analysis. Similar to Seeber 
et al. (2015), the spectra profile of the PSC1 was lower at 
frequency 2–20 Hz but became much higher at higher fre-
quencies, suggesting that PSC1 reflected electromuscular 
activity (Supplementary Fig. S4). We then back-projected 
the remaining principal components using the weighting 
matrix for each condition (Seeber et al., 2015). We used 
the same weighting matrix for all conditions for each par-
ticipant. After obtaining the sPCA-corrected PSD, we 
added the PSD from the resting condition to the sPCA-
corrected PSD (Supplementary Fig.  S2; Salminen et  al., 
2025) to allow the FOOOF (Fitting oscillations & one over f) 
toolbox to separate the aperiodic and periodic compo-
nents (Donoghue et al., 2020).

2.8.  Participant-specific volume conduction head 
model and source localization

We created the participant-specific volume conduction 
head model using each participant’s T1-weighted MRI 
with Fieldtrip (v. 20210910, RRID:SCR_004849). After we 
resliced the image, we performed tissue segmentation 

using headreco from SimNIBS toolbox (v 3.2). The MRIs 
were segmented into six tissue layers (scalp, skull, air, 
cerebrospinal fluid, gray matter, and white matter). Then 
we generated finite element hexahedral meshes following 
the steps previously reported in Liu et al. (2023). We dig-
itized the fiducial locations (left/right preauricular, nasion) 
on the MRI and then co-registered the digitized electrode 
locations to the individual-specific head models by align-
ing the fiducial locations. We then computed the leadfield 
matrix using SIMBIO toolbox with a 5 mm apart distrib-
uted source position in gray matter.

We performed EEG source localization with an equiv-
alent dipole fitting approach using ft_dipolefitting func-
tion in the Fieldtrip toolbox. We then warped the dipole 
locations to the Montreal Neurological Institute (MNI) 
template for both younger and older adults using ANTs 
normalization (Advanced Normalization Tools, https://
github​.com​/ANTsX​/ANTs, RRID:SCR_004757; Avants 
et al., 2011). The dipole locations found in the subject-
specific head model were warped to the MNI template 
using antsApplyTransformsToPoints. We retained brain 
components using the following criteria: (1) ICLabel 
(Pion-Tonachini et  al., 2019) (version: lite) classified the 
brain probability of greater or equal to 50%, (2) negative 
slope of the power density spectrum for 2–40  Hz to 
remove muscle components, (3) residual variance of 
dipole fitting <15%, and (4) dipoles located inside the 
brain. Ten older adult participants with fewer than five 
brain components were removed from further analysis. 
The number of remaining brain components was greater 
in younger adults than in older adults (15 ± 5 vs. 12 ± 5, 
t(88) = 2.5, p = 0.01).

2.9.  K-means clustering of brain components

We clustered the brain components into 11 clusters 
(k = 11) by dipole locations using robust k-means (max-
iter = 10,000 and replicate = 1,000) in EEGLAB. We used 
silhouette, Calinski-Harabasz, and Davies-Bouldin 
methods to evaluate the clustering outcome between 
the range of 9–14 clusters, as 14 is the average number 
of brain components across participants. We did not 
find agreement when evaluating the clustering outcome 
between k = [9, 14] using the three evaluation methods. 
We chose k = 11 so that the cluster locations would be 
the most comparable with our previous paper with 
young adults (Liu et al., 2024). Clusters with at least half 
of the younger adults (n ≥ 16) and half of the older adults 
(n ≥ 30) were retained. Components that were 3 stan-
dard deviations away from any of the cluster centroid 
were identified as outliers. Each cluster had at most one 
brain component from each participant. We selected the 
component with the maximum likelihood to be a brain 

https://github.com/ANTsX/ANTs
https://github.com/ANTsX/ANTs
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component by ICLabel to prevent inflating the sample 
size if multiple components per subject existed in a 
cluster.

2.10.  Averaging power spectral density and 
normalizing event-related spectral perturbations for 
each cluster

For each cluster, we averaged the power spectral den-
sity and event-related spectral perturbations after sPCA 
muscle artifact correction. We used the FOOOF toolbox 
to separate the aperiodic and periodic components 
from the power spectral densities (Donoghue et  al., 
2020). We set the FOOOF parameters as follows: range 
of power spectra [3 40 Hz], peak width limits: [1 8], min-
imum peak height: 0.05, maximum number of peaks: 2. 
We computed the average power for each band using 
the flattened power spectral density by subtracting the 
aperiodic component from each of the original power 
spectral density.

We computed ERSP with two different normalization 
methods. First, we normalized ERSPs to the average 
spectral power across gait cycles within each condition 
to investigate the power fluctuation within gait cycles or 
intra-stride power fluctuations. We also obtained the 
peak-to-peak ERSP for each band (theta, alpha, beta) for 
each terrain condition by taking the average of the power 
across all frequencies within each band throughout the 
gait cycle and then computing the peak-to-peak range 
for each terrain condition. However, we normalized 
ERSPs to average spectral power across gait cycles for 
all conditions (common baseline removal) to allow for 
comparison of ERSPs across terrain conditions. We aver-
aged the ERSPs for each terrain condition and then aver-
aged across all participants for each cluster.

2.11.  Statistical analysis

All statistical analyses were performed in MATLAB 2020b 
(Mathworks) or Rstudio (v4.4) for linear mixed effect mod-
els. All significance levels (α) were set at 0.05. False  
discovery rate (FDR) controlling procedures were imple-
mented to control for all multiple comparisons (Benjamini 
& Hochberg, 1995). We first assessed the participant 
characteristic differences between younger and older 
adults using Welch t-tests for normally distributed contin-
uous data, Wilcoxon Rank Sum Test for non-normally 
distributed continuous data, and chi-square (χ2) test for 
categorical data.

We used R (package: lme4, lmerTest, emmeans) for all 
linear mixed-effect analyses for behavior outcomes, as in 
our previous paper (Downey et  al., 2022). We first 
assessed whether any of the behavioral measures were 

affected by terrain and age. The dependent variables 
included the step duration coefficient of variation and the 
sacral excursion coefficient of variation in mediolateral 
and anteroposterior directions. The independent vari-
ables included Terrain (Flat, Low, Medium, High), Age 
group (Younger adults and Older adults), and their inter-
action. Walking speed was included as a covariate for all 
mixed-effect models to control for the potential con-
founding effect. We included a random intercept to 
account for unmodeled sources of between-subject vari-
ability. Post hoc analysis was performed if we found a 
significant main or interaction effect using ANOVA (pack-
age: car). Effect size was reported using partial eta-
squared (η²p) with 0.01 for small effect size, 0.06 for 
medium effect size, and 0.14 for large effect size. If the 
interaction was insignificant, we refit a linear mixed-effect 
model with no interaction. Post hoc analyses were per-
formed by setting up contrast matrices and pairwise 
comparisons using emmeans. False discovery rate (FDR) 
controlling procedures were implemented to control for 
multiple comparisons (Benjamini & Hochberg, 1995).

We used MATLAB for EEG power spectral and gait-
related spectral power fluctuation statistical tests. We 
assessed whether the power spectral density for each 
cluster differed across terrain and age groups. We per-
formed non-parametric permutation statistics for flat-
tened power spectral density using Fieldtrip in EEGLAB 
(α  =  0.05, 2,000 iterations) and corrected for multiple 
comparisons across frequency using a false discovery 
rate at 0.05. The non-parametric permutation statistics 
could not assess the interaction effect between terrain 
and age group due to the inherent limitation of this test. 
We evaluated the within-stride gait-related spectral 
power for each terrain condition and for each age group. 
These ERSPs were normalized to the average spectral 
power across all gait cycles within conditions. We per-
formed bootstrapping (α = 0.05, 4,000 iterations) for each 
terrain condition in each brain cluster and corrected for 
multiple comparisons across time–frequency using a 
false discovery rate at 0.05.

We used MATLAB to evaluate gait-related spectral 
power during different terrain conditions and examined 
differences between younger and older adults. We first 
quantified gait-related spectral power during uneven 
terrain walking with respect to the Flat condition for 
younger and older adults, respectively (ΔERSP = 
ERSPuneven – ERSPFlat). We then quantified the difference 
in gait-related spectral power between younger and 
older adults by subtracting the younger group’s gait-
related spectral plot from the older group’s gait-related 
spectral plot (ΔERSPyoung – ΔERSPold). We conducted 
statistical analyses using cluster-based permutation 
tests (α  =  0.05, 10,000 permutations) calculated with 
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FieldTrip functions within EEGLAB (Delorme & Makeig, 
2004; Maris & Oostenveld, 2007), which uses the Monte 
Carlo method to estimate permutation p-values. 
Cluster-based permutation testing is a robust nonpara-
metric statistical approach that corrects for multiple 
comparisons across time–frequency and reduces the 
potential for false negatives in high-dimensional EEG 
data (Maris & Oostenveld, 2007).

We also used R for all linear mixed-effect analyses to 
assess whether the average power spectral density after 
FOOOF for each band (theta, alpha, and beta) and peak-
to-peak within-stride spectral power fluctuations were 
affected by terrain and age group for each brain cluster 
and each band. Outliers more than 8 standard deviations 
from the mean were excluded from the analysis. To 
account for the effect of each individual’s preferred tread-
mill speed used on uneven terrain on our outcome mea-
sures, we first tested whether average power or 
peak-to-peak power fluctuations were associated with 
treadmill speed. Since we did not find a significant asso-
ciation between most EEG outcome measures and tread-
mill speed, we only included treadmill speed as a 
covariate in all subsequent models. The independent 
variables included Terrain (Flat, Low, Med, High), Age 
group (Younger adults and Older adults), and their inter-
action. We included a random intercept for each model. 
The Flat condition was set as the reference for younger 
adults. We performed post hoc analysis if we found a sig-
nificant main or interaction effect using ANOVA (package: 
car). Effect size was reported using partial eta-squared 
(η²p). If the interaction was insignificant for a given band 
at the given brain area, we refit a linear mixed-effect 
model with no interaction. Post hoc analyses were per-
formed by setting up contrast matrices and pairwise 
comparisons using emmeans. False discovery rate (FDR) 
controlling procedures are implemented to control for 
between-condition and between-group multiple compar-
isons (Benjamini & Hochberg, 1995).

3.  RESULTS

3.1.  Participant characteristics

Older adults walked significantly slower than younger 
adults on the uneven terrain treadmill (Fig. 2A; Table 1). The 
slower treadmill speed for older adults was due to their 
slower overground walking speed on the uneven terrain 
mat. Older adults also walked slower during the 400-meter 
test than younger adults (Table 1) and scored lower on the 
short physical performance battery test than younger 
adults (Table  1). There were no differences in MoCA 
between younger and older adults. Excluded older adult 
participants were, on average, 3  years older than those 

who were included, likely because many of the excluded 
individuals who had walking speeds slower than 0.1 m/s 
were older. There was no significant difference in sex distri-
bution between included and excluded participants.

3.2.  Behavior measures

We only provide a summary of behavioral measures here. 
All these behavioral results have been previously reported 
in our previous paper with a smaller subset of the partic-
ipants (Downey et al., 2022). The current study extends 
those findings by including the full participant sample 
recruited for the Mind in Motion study. We reported the 
variability measures here as they have high validity for 
assessing gait stability (Bruijn et al., 2013). Variability was 
computed as the coefficient of variation (standard devia-
tion over mean), and walking speed was added as a 
covariate to control for the confounding effect for all sta-
tistical analyses. Walking on an uneven terrain treadmill 
increased step duration coefficient of variation and sacral 
excursion coefficient of variation in both anteroposterior 
and mediolateral directions after accounting for walking 
speed (Fig. 2; Supplementary Table S1). Both older adults 
and younger adults increased their step duration coeffi-
cient of variation with terrain unevenness (all pFDR < 0.05), 
and older adults showed a greater increase in step dura-
tion between the High terrain versus Flat terrain (pFDR = 
0.003), High terrain versus Low terrain (pFDR = 0.006), and 
High terrain versus Medium terrain (pFDR = 0.027) condi-
tions. Both groups also increased the sacral excursion 
coefficient of variation in the anteroposterior direction (all 
pFDR  <  0.001), with older adults demonstrating greater 
coefficient of variation in all conditions (p < 0.001). Older 
adults increased the sacral excursion coefficient of varia-
tion in the mediolateral direction with terrain unevenness 
(all pFDR < 0.01), while younger adults only increased the 
coefficient of variation between the Medium terrain ver-
sus Flat terrain (pFDR < 0.002), High terrain versus Flat ter-
rain (pFDR < 0.001), and High terrain versus Low terrain 
(pFDR  =  0.006). Older adults also showed a greater 
increase in the mediolateral sacral excursion coefficient 
of variation in the Medium terrain versus Flat terrain than 
younger adults (pFDR  =  0.004). Full statistical results, 
including multiple comparisons, are provided in Supple-
mentary Tables S1–S4. In summary, older adults demon-
strated a greater increase in step duration variability and 
mediolateral sacral excursion variability with terrain 
unevenness than younger adults.

3.3.  EEG source analysis

We identified nine brain source clusters (Fig. 3; Table 2). 
The dipole clusters were located at the left sensorimotor, 
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right sensorimotor, left posterior parietal, right posterior 
parietal, left pre-supplementary motor, right premotor, 
precuneus, mid-cingulate, and temporal area. The tem-
poral area was excluded from further analysis, as we did 
not have a hypothesis related to this area.

3.4.  EEG power spectral density

We found significant effects of terrain unevenness 
(p < 0.05) on EEG power spectral density at all brain clus-
ters using non-parametric permutation statistics (Fig. 4; 
Supplementary Fig.  S5). Theta band power was higher 
with increased terrain unevenness in the sensorimotor, 
posterior parietal, and occipital areas. Alpha band power 
was lower with increased terrain unevenness in bilateral 
sensorimotor, bilateral posterior parietal, mid-cingulate, 
occipital area, and right premotor area. We also observed 
lower beta band power with increased terrain uneven-
ness in all brain clusters.

We also found significant effects of age (p < 0.05) in 
the bilateral sensorimotor, right posterior parietal, occipi-
tal, and mid-cingulate clusters (Fig.  4; Supplementary 
Fig. S5). Pooled theta band power was generally greater 
in younger adults than in older adults in bilateral senso-
rimotor, right posterior parietal, and mid-cingulate clus-
ter, but it was the opposite in the occipital cluster. Alpha 
band power was greater in younger adults than in older 
adults in the right sensorimotor cluster and right posterior 
parietal cluster. Lastly, beta band power was greater in 
older adults than in younger adults in the sensorimotor 
and mid-cingulate cluster, but it was the opposite in the 
occipital cluster.

3.5.  Age and terrain unevenness on average EEG 
power

We tested whether average theta power, alpha power, 
and beta power were affected by age, terrain, and inter-

Fig. 2.  Violin plots show the behavioral measures during walking on the uneven terrain treadmill. (A) Uneven terrain 
treadmill walking speed for younger adults (YA) and older adults (OA). (B) Step duration coefficient of variation (CoV) at 
different terrains. Sacral excursion coefficient of variation (CoV) in the anteroposterior (C) and mediolateral (D) direction. 
The shaded regions represent data distribution across participants by estimating the probability density function. The 
triangle and circle markers represent the median of the data. The darker shaded region represents the 25th to 75th 
percentiles of the data. †Significant interactions, *Significant comparison between terrain conditions within each group, 
#Significant age group effect for a specific terrain condition.
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Fig. 3.  Dipole location for all participants (top row) and centroid of each cluster (bottom row) in sagittal, coronal, and 
axial planes. We identified clusters located at right sensorimotor area, left sensorimotor area, left posterior parietal, right 
posterior parietal, occipital area, mid-cingulate, left pre-supplementary motor, right premotor, and left temporal area. Brain 
sources in this figure represent spatial localization defined by ICA methods rather than the brain sources that showed 
differences across uneven terrain conditions.

Table 2.  Montreal Neurological Institute (MNI) coordinates, and anatomical atlas labels for regions of interest (ROIs).

Cluster centroid location Color No. participants MNI coordinates
Anatomical label of the 

centroid

Sensorimotor (L) Blue 27 younger/49 older -23 -29 64 Postcentral La

Sensorimotor (R) Purple 23 younger/41 older 30 -37 57 Postcentral Ra

Posterior parietal (L) Aqua 27 younger/43 older -31 -55 35 Angular La

Posterior parietal (R) Yellow 25 younger/33 older 32 -64 28 No labela

Occipital Orange 26 younger/50 older 4 -71 44 Precuneusa

Mid-cingulate Pink 21 younger/39 older -5 -8 24 No labela

Pre-supplementary Motor (L) Dark Green 24 younger/35 older -11 24 47 Frontal_Sup_La

Premotor (R) Lime 22 younger/38 older 23 3 54 Frontal_Sup_Ra

Premotorb

Temporal (L) Red 19 younger/32 older -36 -17 -7 No Labela

aAnatomical location of the cluster centroid was labeled based on Tzourio-Mazoyer et al. (2002).
bAnatomical location of the cluster centroid was labeled based on Mayka et al. (2006).
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Fig. 4.  Dipole location plotted on the Montreal Neurological Institute template, scalp topography, and average flattened 
power spectrum densities (PSDs) changed with terrain unevenness for younger and older adults for bilateral sensorimotor 
clusters, bilateral posterior parietal clusters, mid-cingulate, and occipital cluster. Shaded colored areas indicate standard 
error of PSDs across components in the cluster. Vertical black dashed lines indicate main frequency bands of interest—
theta (4–8 Hz), alpha (8–13 Hz), and beta (13–30 Hz). The very right panel indicates the significant terrain and age effect on 
PSD at each frequency (pink: terrain, blue: age). In this non-parametric statistical analysis, only main effects were tested 
due to the limitation of this test.
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action for each cluster after controlling for treadmill walk-
ing speed (Fig.  5). Full statistical analysis results are 
reported in Supplementary Tables S5–S12.

3.5.1.  Interaction effect

The effect of terrain on EEG alpha power depends on 
the age group in the parietal–occipital region (Fig.  6). 
When walking on uneven terrain, younger adults exhib-
ited a significant reduction in alpha power compared 
with walking on a flat surface, whereas older adults 
showed little to no reduction. An interaction effect of 
age and terrain on average alpha power was found in 
the bilateral posterior parietal (left: F(3, 204)  =  9.26, 
p < 0.001, η²p = 0.12, right: F(3, 168) = 3.63, p = 0.014, 
η²p  =  0.061) and occipital clusters (F(3, 222)  =  5.86, 
p < 0.001, η²p = 0.073; Fig. 6A). A main effect of terrain 
was also found in these clusters (all p < 0.001). At the 
left posterior parietal cluster, older adults had less alpha 
power reduction compared with younger adults in the 
High terrain versus Flat terrain (pFDR < 0.001), Medium 

terrain versus Flat terrain (pFDR < 0.001), and Low terrain 
versus Flat terrain (pFDR = 0.017). Additionally, younger 
adults exhibited alpha reduction at greater terrain 
unevenness in all pairwise comparisons (all pFDR < 0.01) 
except the High terrain versus Medium terrain, while 
older adults only exhibited alpha reduction at High ter-
rain versus Flat terrain (pFDR = 0.001). At the right poste-
rior parietal cluster, older adults had less alpha power 
reduction in the High terrain versus Flat terrain (pFDR = 
0.036) and Medium terrain versus Flat terrain (pFDR  = 
0.016) compared with younger adults. Younger adults 
exhibited significant alpha reduction at High terrain ver-
sus Flat terrain, Medium terrain versus Flat terrain, and 
Low terrain versus Flat terrain (all pFDR < 0.001). Older 
adults only exhibited alpha reduction at High terrain ver-
sus Flat terrain (pFDR  =  0.022). At the occipital cluster, 
older adults had less difference in alpha power reduc-
tion in the High terrain versus Flat terrain (pFDR = 0.001), 
Medium terrain versus Flat terrain (pFDR  =  0.002), and 
Low terrain versus Flat terrain (pFDR = 0.027) compared 
with younger adults. Younger adults exhibited signifi-

Fig. 5.  Significant effects of age, terrain, and interaction on theta, alpha, and beta average power (p < 0.05). The 
analyses were controlled with the effect of treadmill walking speed. Only centroids of each cluster where significant results 
were found are plotted.
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cant alpha reduction at High terrain versus Flat terrain, 
Medium terrain versus Flat terrain, and Low terrain ver-
sus Flat terrain (all pFDR < 0.01), but no alpha reduction 
was found in older adults. While the left pre-
supplementary cluster also had significant interaction 
(F(3, 171) = 2.83, p = 0.04), none of the pairwise com-
parisons was significant after false discovery rate 
adjustment.

The effect of terrain on EEG beta power depends on 
the age group in the parietal–occipital region (Fig.  6B). 

The interaction effect of age and terrain on average beta 
power was found in the right posterior parietal (F(3, 
168) = 3.38, p = 0.02, η²p = 0.057) and occipital clusters 
(F(3, 222) = 6.36, p < 0.001, η²p = 0.079). The main effect 
of terrain was also found in these clusters (both p < 0.001). 
At the right posterior parietal cluster, younger adults 
exhibited beta power reduction at greater terrain uneven-
ness in all pairwise comparisons (all pFDR < 0.001) except 
for High terrain versus Medium terrain, while older adults 
exhibited beta power reduction only at High terrain  

Fig. 6.  Violin plots of the average alpha power (A) and beta power (B) for each terrain and age group for the 
corresponding brain clusters with a significant age and terrain interaction effect. YA: younger adults, OA: older adults.  
*Indicates significant differences between terrain conditions. †Indicates significant interaction effects between terrain and 
age group. 1: High versus Flat, 2: Medium versus Flat, 3: Low versus Flat, 4: High versus Low, 5: Medium versus Low, 6: 
High versus Medium. Circle and triangle markers indicate median across participants.
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versus Flat terrain, Medium terrain versus Flat terrain, 
and Low terrain versus Flat terrain (pFDR < 0.001). At the 
occipital cluster, older adults had less difference in beta 
band power reduction at High terrain versus Flat terrain 
(pFDR  =  0.002) and Medium terrain versus Flat terrain 
(pFDR < 0.001) compared with younger adults. Addition-
ally, both younger and older adults exhibited beta power 
reduction at High versus Flat, Medium versus Flat, and 
Low versus Flat (pFDR < 0.001).

3.5.2.  Age effect

Main effects of age on average theta band power were 
found in the sensorimotor clusters (left: F(1, 73) = 5.25, 
p = 0.025, η²p = 0.067; right: F(1, 61) = 5.85, p = 0.019, 
η²p = 0.087), and mid-cingulate cluster (F(1, 57) = 5.38, 
p  =  0.024, η²p  =  0.086) with older adults having lower 
theta band power than younger adults after controlling 
for walking speed (Supplementary Fig. S6A). Main effect 
of age on average beta band power was found in the 
mid-cingulate cluster (F(1, 57)  =  4.71, p  =  0.034, 
η²p = 0.076) with older adults having greater beta power 
than younger adults (Supplementary Fig. S6B).

3.5.3.  Terrain effect only

In the absence of a significant interaction effect for a 
given brain cluster, we reran our linear mixed effect 
models to include only terrain and age group as main 
effects. A main terrain effect on the average theta 
power was found in the bilateral posterior parietal  
(left: F(3, 207)  =  5.86, p  =  0.001, η²p  =  0.078; right:  
F(3, 171) = 3.97, p = 0.009, η²p = 0.065), mid-cingulate 
(F(3, 177) = 3.59, p = 0.015, η²p = 0.057), and occipital 
cluster (F(3, 225) = 29.46, p < 0.001, η²p = 0.282; Fig. 7A). 
Greater theta power was associated with greater terrain 
unevenness. Both younger and older adult groups had 
greater theta power in High terrain versus Flat terrain 
(pFDR = 0.008), High terrain versus Low terrain (pFDR  = 
0.001), and High terrain versus Medium terrain (pFDR = 
0.044) at the left posterior parietal area. Both groups 
showed greater theta power in High terrain versus Flat 
terrain (pFDR = 0.007) at the right posterior parietal, High 
terrain versus Flat terrain (pFDR  =  0.021) at the mid-
cingulate cluster. Both younger and older adult groups 
also showed significantly greater theta power at the 
occipital cluster during uneven terrain walking for all lev-
els of comparisons (pFDR < 0.01) except between High 
versus Medium terrain.

A terrain main effect on the average alpha power was 
found in the bilateral sensorimotor (left: F(3, 225) = 18.31, 
p < 0.001, η²p = 0.20, right: F(3, 189) = 18.85, p < 0.001, 

η²p = 0.23), mid-cingulate (F(3, 177) = 4.16, p = 0.007, 
η²p = 0.066), and right premotor (F(3, 177) = 5.7, p = 0.001, 
η²p = 0.088) clusters (Fig. 7B). Lower alpha power was 
associated with greater terrain unevenness. Both younger 
and older adults had significantly lower alpha power in 
High terrain versus Flat terrain (pFDR < 0.001), Medium ter-
rain versus Flat terrain (pFDR < 0.001), Low terrain versus 
Flat terrain (pFDR < 0.01), and High terrain versus Low ter-
rain (pFDR < 0.01) in bilateral sensorimotor areas. Both age 
groups also had lower alpha power in High terrain versus 
Flat terrain (pFDR = 0.005) in mid-cingulate area and lower 
alpha power in High terrain versus Flat terrain (pFDR  = 
0.001), Medium terrain versus Flat terrain (pFDR = 0.022), 
and Low terrain versus Flat terrain (pFDR = 0.034) in the 
right premotor area.

Main terrain effect on average beta power was 
found in the bilateral sensorimotor (left: F(3, 225)  = 
27.42, p < 0.001, η²p = 0.268; right: F(3, 189) = 19.14, 
p < 0.001, η²p = 0.233), bilateral posterior parietal (left: 
F(3, 207)  = 37.37, p  <  0.001, η²p  =  0.351; right: F(3, 
168)  =  43.32, p  <  0.001, η²p  =  0.436), mid-cingulate 
(F(3, 177)  =  20.81, p  <  0.001, η²p  =  0.261), left pre-
supplementary (F(3, 174) = 8.64, p < 0.001, η²p = 0.13), 
and right premotor (F(3, 177)  =  7.86, p  <  0.001, 
η²p = 0.118) clusters (Fig. 7C). Lower beta power was 
associated with greater terrain unevenness. At bilateral 
sensorimotor clusters, both younger and older adults 
had significantly lower beta power in High terrain ver-
sus Flat terrain (both pFDR < 0.001), Medium terrain ver-
sus Flat terrain (both pFDR < 0.001), Low terrain versus 
Flat terrain (both pFDR < 0.001), High terrain versus Low 
terrain (both pFDR  <  0.05), Medium terrain versus Flat 
terrain (both pFDR  =  0.044), and additional lower beta 
power in Medium terrain versus Low terrain (pFDR  = 
0.040) at the left sensorimotor cluster. At the left poste-
rior parietal cluster, both age groups exhibited lower 
beta power reduction at greater terrain unevenness in 
all pairwise comparisons (all pFDR  <  0.005) except for 
High terrain versus Medium terrain. At the mid-cingulate 
cluster, both age groups also exhibited lower beta 
power reduction at greater terrain unevenness in all 
pairwise comparisons (all pFDR  <  0.01) except for 
Medium terrain versus Low terrain. At the left pre-
supplementary cluster, both younger and older adults 
exhibited significant beta reduction at High terrain ver-
sus Flat terrain (pFDR < 0.001), High terrain versus Low 
terrain (pFDR  =  0.013), and Medium terrain versus Flat 
terrain (pFDR = 0.006). Lastly, at the right premotor clus-
ter, both younger and older adults exhibited significant 
beta reduction at High terrain versus Flat terrain 
(pFDR  <  0.001) and Medium terrain versus Flat terrain 
(pFDR = 0.002).
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Fig. 7.  Raincloud plots of the average theta power (A), alpha power (B), and beta (C) power for each terrain and age 
group for the corresponding brain clusters without an interaction effect. YA: younger adults, OA: older adults. *Indicates 
significant differences (p < 0.05) between terrain conditions with 1: High versus Flat, 2: Medium versus Flat, 3: Low versus 
Flat, 4: High versus Low, 5: Medium versus Low, 6: High versus Medium. Circle and triangle markers indicate median 
across participants. #Significant comparison between age groups for a specific terrain condition.
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3.6.  Intra-stride ERSP

We computed the event-related spectral perturbations 
(ERSPs) tied to gait events and normalized to the average 
power at each frequency across the gait cycle for each 
condition. We also obtained the peak-to-peak ERSP for 
each band (theta, alpha, beta) for each terrain condition 
for younger and older adults (Figs. 8–10; Supplementary 
Fig. S7).

3.6.1.  Sensorimotor cluster

There was lateralization in the alpha and beta bands for 
left and right sensorimotor clusters for both younger and 
older adults (Fig. 8). Younger adults demonstrated alpha 
and beta desynchronization during contralateral swing 
phase and the subsequent double support phase, while 
alpha and beta synchronization during the contralateral 
single limb stance phase and push-off. Older adults pri-
marily demonstrated such synchronization and desyn-
chronization in the beta band but not in the alpha band.

3.6.2.  Posterior parietal cluster

We also observed within-stride ERSPs modulation in 
bilateral posterior parietal areas (Fig. 9). There was theta 
and alpha power desynchronization during the swing 
phase and synchronization during the double support 
phase for both younger and older adults. Qualitatively, as 
the terrain becomes uneven, we observed more desyn-
chronization during the contralateral swing phase com-
pared with Flat terrain. For older adults, we mainly 
observed theta band modulation with desynchronization 
during the mid-swing and synchronization during the 
double support phase.

3.6.3.  Mid-cingulate cluster

At the mid-cingulate area, we observed within-stride 
ERSPs modulation in mid-cingulate area as theta and 
alpha power desynchronized during the swing phase and 
synchronized during the double support phase for both 
younger and older adults (Fig. 10A, B).

3.6.4.  Occipital cluster

At the occipital area, we observed broadband (theta, 
alpha, and beta) synchronization during the double sup-
port phase and desynchronization around the mid-swing 
during uneven terrain walking for younger adults, whereas 
the broadband spectral fluctuations were less prominent 
during Flat surface walking (Fig. 10C, D). For older adults, 
we also found significant broadband synchronization 

mainly during the double support phase and desynchro-
nization during the mid-swing phase.

3.7.  Age and terrain unevenness on peak-to-peak 
ERSP

We tested whether theta intra-stride power fluctuations, 
alpha power fluctuations, and beta power fluctuations 
were affected by age, terrain, and interaction for each 
cluster after controlling for treadmill walking speed 
(Fig.  11). Full statistical analysis results are reported in 
Supplementary Tables S13–S15.

3.7.1.  Interaction effect

The effect of terrain on EEG power fluctuations depends 
on age group primarily in the occipital cluster (Fig. 12A). 
Significant interaction effect of age and terrain on peak-
to-peak theta band power fluctuations was found in 
the occipital cluster (F(3, 221) = 4.8, p = 0.003, η²p = 
0.061) after controlling for treadmill walking speed. 
Compared with younger adults, older adults had less 
power fluctuation in High terrain versus Flat terrain 
(pFDR = 0.016), Medium terrain versus Flat terrain (pFDR = 
0.003), and Low terrain versus Flat terrain (pFDR = 0.047). 
Additionally, younger adults demonstrated greater 
power fluctuations at greater terrain unevenness at 
High versus Flat (pFDR = 0.007) and Medium versus Flat 
(pFDR = 0.009). Theta power fluctuation was greater in 
younger adults than in older adults at Medium terrain 
(pFDR = 0.027).

A significant interaction effect of age and terrain on 
beta power fluctuations was found in the occipital 
cluster (F(3, 221) = 3.24, p = 0.023, η²p = 0.042) with a 
significant main effect of age (F(3, 73) = 13.36, p < 0.001, 
η²p = 0.16; Fig. 12B) after accounting for walking speed. 
Compared with younger adults, older adults had less 
difference in power fluctuation in High terrain versus 
Flat terrain (pFDR = 0.021). Additionally, younger adults 
had less power fluctuation in High terrain versus Flat 
terrain (pFDR = 0.028), while older adults did not exhibit 
any changes in power fluctuation between terrains. 
Younger adults also had greater power fluctuations than 
older adults in High, Medium, and Low terrain (all 
pFDR < 0.01).

3.7.2.  Age effect

There was a significant age effect on theta power fluctu-
ations at the right sensorimotor cluster (F(1, 61) = 4.24, 
p = 0.044, η²p = 0.065), with greater alpha power fluctua-
tions in younger adults than in older adults (Supplemen-
tary Fig. S8A). We also found a significant age effect on 
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Fig. 8.  Intra-stride event-related spectral perturbations (ERSPs) with respect to the average of condition at different 
terrains for younger and older adults at left sensorimotor area (A) and right sensorimotor area (B), average intra-stride 
power fluctuations for each band at the left sensorimotor area (C) and right sensorimotor area (D). (A, C) The ERSPs were 
displayed with the gait cycle on the x-axis (RFS: right foot strike; LFO: left foot off; LFS: left foot strike; RFO: right foot off). 
All unmasked colors are statistically significant spectral power fluctuations relative to the mean power within the same 
condition. Colors indicate significant increases (red, synchronization) and decreases (blue, desynchronization) in spectral 
power from the average spectrum for all gait cycles to visualize intra-stride changes in the spectrograms. These data 
are significance masked (p < 0.05) through nonparametric bootstrapping with multiple comparison correction using false 
discovery rate. (B, D) Average spectral perturbations for each band (theta, alpha, beta) across the gait cycle for younger 
and older adults. YA: younger adults. OA: older adults.
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Fig. 9.  Intra-stride event-related spectral perturbations (ERSPs) with respect to the average of condition at different 
terrains for younger and older adults at left (A) and right posterior parietal area (B), average intra-stride power fluctuations 
for each band at the left (C) and right posterior parietal area (D). (A, C) The ERSPs were displayed with the gait cycle on 
the x-axis (RFS: right foot strike; LTO: left toe off; LFO: left foot off; RFO: right foot off). All unmasked colors are statistically 
significant spectral power fluctuations relative to the mean power within the same condition. Colors indicate significant 
increases (red, synchronization) and decreases (blue, desynchronization) in spectral power from the average spectrum for 
all gait cycles to visualize intra-stride changes in the spectrograms. These data are significance masked (p < 0.05) through 
nonparametric bootstrapping with multiple comparison corrections using false discovery rate. (B, D) Average spectral 
perturbations for each band (theta, alpha, beta) across the gait cycle for younger and older adults. YA: younger adults. OA: 
older adults.
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Fig. 10.  Intra-stride event-related spectral perturbations (ERSPs) with respect to the average of condition at different 
terrains for younger and older adults at mid-cingulate (A) and occipital area (B), average intra-stride power fluctuations 
for each band at the mid-cingulate (C) and occipital area (D). (A, C) The ERSPs were displayed with the gait cycle on the 
x-axis (RFS: right foot strike; LFO: left foot off; LFS: left foot strike; RFO: right foot off). All unmasked colors are statistically 
significant spectral power fluctuations relative to the mean power within the same condition. Colors indicate significant 
increases (red, synchronization) and decreases (blue, desynchronization) in spectral power from the average spectrum for 
all gait cycles to visualize intra-stride changes in the spectrograms. These data are significance masked (p < 0.05) through 
nonparametric bootstrapping with multiple comparison corrections using false discovery rate. (B, D) Average spectral 
perturbations for each band (theta, alpha, beta) across the gait cycle for younger and older adults. YA: younger adults. OA: 
older adults.
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alpha power fluctuations at the right sensorimotor cluster 
(F(1, 61) = 16.2, p < 0.001, η²p = 0.21) and right posterior 
parietal cluster (F(1, 55) = 4.77, p = 0.033, η²p = 0.08), 
with greater alpha power fluctuations in younger adults 
than in older adults (Supplementary Fig. S8B). There was 
also a significant age effect on beta power fluctuations at 
the left posterior parietal cluster (F(1, 67) = 4.97, p = 0.029, 
η²p  =  0.069) and right posterior parietal cluster (F(1, 
55)  =  12.18, p  =  0.001, η²p  =  0.181) with greater beta 
power fluctuations in younger adults than in older adults 
(Supplementary Fig. S8C).

3.7.3.  Terrain effect

Only left sensorimotor cluster had a significant terrain 
effect on beta power fluctuations (F(3, 225)  =  5.78, 
p = 0.001, η²p = 0.072). Pooled groups showed greater 
beta power fluctuations at High terrain versus Flat ter-
rain (pFDR  =  0.004), Medium terrain versus Flat (pFDR  = 
0.002), and Low terrain versus Flat terrain (pFDR = 0.013; 
Fig. 13).

3.8.  Age and terrain unevenness on ERSP

3.8.1.  Sensorimotor area

We found significant differences in ERSP using boot-
strapping between uneven terrain and flat terrain in 
almost all brain areas (Fig. 14; Supplementary Fig. S9). 
We only found significant age-related differences in spec-
tral fluctuations during uneven terrain walking in the left 
sensorimotor area, left posterior parietal, and occipital 
area (Fig. 14). Red indicates neural synchronization and 
blue indicates neural desynchronization.

We observed significant spectral fluctuations in the 
sensorimotor areas both within age groups and between 
groups (Fig.  14). With respect to Flat terrain, younger 
adults showed a significant increase in theta power 
during the double support phase during the High terrain 
condition in the right sensorimotor area, and older adults 
showed an increase in theta power in all uneven terrain 
conditions. Younger adults showed beta desynchroniza-
tion during Medium and High terrain primarily during the 
contralateral swing phase while older adults demon-

Fig. 11.  Significant effects of age, terrain, and interaction on theta, alpha, and beta band intra-stride power fluctuations 
(p < 0.05). The analyses were controlled for the effect of treadmill walking speed. Only the centroids of each cluster were 
plotted.
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Fig. 12.  Violin plots of the average theta power fluctuations (A) and beta power fluctuations (B) for each terrain and 
age group for the corresponding brain clusters with a significant interaction effect. YA: younger adults, OA: older adults. 
#Indicates significant group differences between two terrain conditions, *Indicates significant differences (p < 0.05) 
between terrain conditions. †Indicates significant interaction effects between terrain and age group. 1: High versus Flat, 2: 
Medium versus Flat, 3: Low versus Flat, 4: High versus Low, 5: Medium versus Low, 6: High versus Medium. Circle and 
triangle marker indicate median across participants.

Fig. 13.  Violin plot of the beta power fluctuations with terrain unevenness at the left sensorimotor cluster. YA: younger 
adults, OA: older adults. *Indicates significant differences (p<0.05) between terrain conditions.

Fig. 14.  Average event-related spectral perturbations with respect to the Flat terrain condition for each group and the 
difference between groups in the bilateral sensorimotor area, bilateral posterior parietal, mid-cingulate, and occipital area. 
All unmasked colors are statistically significant spectral power fluctuations relative to the mean power within the same 
condition. Colors indicate significant increases (red, synchronization) and decreases (blue, desynchronization) in spectral 
power from the average spectrum for all gait cycles. The x-axes of the ERSPs represent time in the gait cycle (RFS: right 
foot strike; LFO: left foot off; LFS: left foot strike; RFO: right foot off).
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strated alpha and beta desynchronization throughout the 
gait cycle during all uneven terrain surfaces in both left 
and right sensorimotor areas. Younger adults showed 
less alpha desynchronization from the contralateral sin-
gle support phase to the contralateral swing phase for all 
uneven terrains than older adults, but only during the Low 
and High terrain were there significant differences 
between groups. There was no age group difference in 
the theta band.

3.8.2.  Posterior parietal area

There were significant spectral fluctuations in the posterior 
parietal areas both within age groups and between groups 
(Fig.  14). With respect to Flat terrain, younger adults 
showed alpha desynchronization in Low, Medium, and 
High terrain conditions and beta desynchronization in 
Medium and High terrain conditions. Younger adults also 
exhibited theta synchronization during High terrain condi-
tion only at the left posterior parietal area. However, older 
adults demonstrated strong beta desynchronization 
throughout the gait cycle during all uneven terrain surfaces 
and a strong alpha desynchronization during the High ter-
rain condition. When comparing older and younger adults, 
younger adults showed greater alpha desynchronization 
throughout the gait cycle during Medium and High ter-
rains, but only during Medium terrain did it reach signifi-
cance in the left posterior parietal area.

3.8.3.  Mid-cingulate

The mid-cingulate area demonstrated only a significant 
effect of terrain on spectral fluctuations (Fig.  14). Both 
younger and older adults showed significant theta syn-
chronization during Medium and High terrain conditions 
compared with Flat terrain, with additional beta desyn-
chronization during High terrain. There was no evident 
difference between younger and older adults.

3.8.4.  Occipital area

There were significant spectral fluctuations in the occipi-
tal area both within age groups and between groups 
(Fig.  14). With respect to Flat terrain, younger adults 
showed theta synchronization and alpha/beta desyn-
chronization throughout the gait cycle in Low, Medium, 
and High terrain conditions. Older adults demonstrated 
theta synchronization and beta desynchronization 
throughout the gait cycle during all uneven terrain sur-
faces. They also exhibited alpha desynchronization 
during the double support phase during the Medium and 
High terrain conditions. When comparing older and 
younger adults, younger adults showed greater alpha 

and lower beta band desynchronization throughout the 
gait cycle during Medium and High terrain conditions.

3.9.  Pre-supplementary and premotor area

For left pre-supplementary and right premotor area, we 
observed significant spectral fluctuations within age 
groups only (Supplementary Fig.  S9). At the left pre-
supplementary area and right premotor area, younger 
adults showed theta synchronization during the double 
support phase and beta desynchronization at High ter-
rain conditions compared with Flat terrain conditions. 
Older adults only showed theta synchronization at 
Medium and High terrain conditions at the left pre-
supplementary area. There was no evident difference 
across terrain unevenness.

4.  DISCUSSION

This study’s primary objective was to determine whether 
there are age differences in electrocortical activity mea-
sured by EEG during walking on parametrically varied 
uneven terrain. Our results showed that, compared with 
younger adults, older adults walked slower on uneven 
terrain and had greater increases in step duration vari-
ability and mediolateral sacral excursion variability with 
terrain unevenness. Contrary to our hypothesis, younger 
adults experienced a greater reduction in alpha and beta 
power in the parietal–occipital region than older adults 
when terrain unevenness increased. Additionally, our 
results demonstrated that walking on uneven terrain 
leads to widespread changes in electrocortical dynamics 
in the brain, especially in alpha and beta band power. We 
also assessed how intra-stride power fluctuations 
changed with terrain unevenness and age. Gait-related 
fluctuations in the occipital theta and beta bands 
increased with terrain unevenness in younger adults but 
not in older adults. Older adults had smaller intra-stride 
theta and alpha band power fluctuations than younger 
adults in the right sensorimotor area and smaller intra-
stride beta band power fluctuations at the posterior pari-
etal areas.

Gait-related spectral perturbations also revealed sev-
eral age differences in intra-stride power fluctuations. 
The greatest age difference was in the occipital area, 
where older adults showed less alpha and beta desyn-
chronization within walking strides on an uneven surface 
compared with on a flat surface. At the left sensorimotor 
area, alpha desynchronization at Low terrain and High 
unevenness was greater in older adults than in younger 
adults, while at the left posterior parietal area, beta 
desynchronization at Medium terrain unevenness versus 
Flat terrain was less in older adults. In summary, older 
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adults showed a greater increase in gait variability with 
greater terrain unevenness than younger adults but 
exhibited a lack of modulation of parieto-occipital activity 
in response to terrain unevenness. This lack of neural 
response may reflect a reduced capacity to enhance 
visuomotor processing on uneven terrain, potentially 
resulting in poorer gait performance.

It is worth noting that since older adults walked slower 
than younger adults, speed may have affected the EEG 
spectral measures and masked age-related changes. To 
disentangle the effect of walking speed on EEG power, 
our recent paper used the same cohort of participants to 
examine the effect of walking speed (0.25 m/s to 1.0 m/s) 
and age on EEG spectral power. First, older adults only 
showed a greater increase in left posterior parietal theta 
band power with speed than younger adults among all 
brain areas. This brain area and band do not overlap with 
our main finding that in the parieto-occipital region, alpha 
and beta band power showed the largest age differences 
in response to changes in terrain unevenness. Addition-
ally, there is widespread alpha and beta band power 
reduction with faster walking speed in both younger and 
older adults. The reduction of EEG power was about 
0.071 dB for a walking speed of 0.39 m/s (average walk-
ing speed for older adults) to 0.70 m/s (average walking 
speed for younger adults). However, the age-related dif-
ferences in parieto-occipital EEG power between terrain 
conditions are at least 10–20 times larger than the effect 
of walking speed. Therefore, it is unlikely that walking 
speed is the main contributor to changes in EEG power 
spectral densities.

4.1.  Widespread effect of terrain on theta, alpha, 
and beta band power

Theta spectral power slightly increased with terrain 
unevenness for both younger and older adults at the mid-
cingulate and posterior parietal areas (mostly between the 
High terrain vs. Flat terrain) but sharply increased with ter-
rain unevenness at the occipital area (Fig. 7). The observed 
mid-cingulate theta band activity is consistent with the evi-
dence that mid-frontal theta activity is associated with 
error detection and monitoring (Cohen, 2014; Ficarella 
et al., 2019). The occipital theta band power increases with 
terrain unevenness. Our results may be explained by the 
fact that greater occipital theta band power is associated 
with greater heterogeneity in the whole visual field 
(Feldmann-Wüstefeld et al., 2017). Since the rigid pucks at 
greater terrain unevenness were more variable or hetero-
geneous in height, this could contribute to the observed 
increase in theta band power. In contrast, Yokoyama et al. 
found an opposite direction of change in theta band power 
in that participants reduced theta band activity when 

instructed to place their foot on visual targets during walk-
ing compared with normal walking (Yokoyama et al., 2021). 
The discrepancies between our results and that reported 
in Yokoyama et  al. suggest that the rigid pucks on the 
treadmill may serve as distractors since they are not 
designed to be targets for foot placement. Future studies 
may be designed to investigate occipital theta band activ-
ity by dissociating distractors in the visual field and volun-
tary choice of stepping targets.

Alpha and beta spectral power decreased when walk-
ing on uneven terrains versus a flat surface for both 
younger and older adults in widespread brain areas, 
including sensorimotor, mid-cingulate, posterior parietal, 
and occipital areas (Figs. 7B, C and 14). During the rest-
ing condition, alpha and beta oscillations are thought to 
be in the “idling” state (Pfurtscheller et al., 1996a, 1996b). 
At the sensorimotor area, the reduction in beta power 
indicates greater cortical involvement for motor execu-
tion during uneven terrain walking than during walking on 
a flat surface. These findings in the sensorimotor region 
are consistent with prior research that found beta band 
power reduction during more balance-challenging walk-
ing tasks, such as walking on a narrow beam (Sipp et al., 
2013) and following immediate exposure to split-belt 
walking (N. A. Jacobsen & Ferris, 2023). Greater cortical 
involvement during balance-challenging walking tasks 
may be related to muscle co-contraction to increase joint 
stiffness for stability. Although there is no study that has 
directly investigated such a relationship, prior studies 
support the possibility. Greater cortico-muscular coher-
ence in beta bands was observed when balance was per-
turbed for both younger and older adults compared with 
pre-perturbation quiet standing (Ozdemir et  al., 2018), 
and muscle co-contraction became greater during dual-
task walking, a paradigm with a higher cognitive load (Lo 
et al., 2017). Together, these findings suggest a potential 
connection between muscle co-contraction and cortical 
beta-band activity, but future study is needed.

At the posterior parietal area, reduction in alpha and 
beta band power was prominent throughout the gait 
cycle during uneven terrain walking compared with walk-
ing on flat surfaces (Fig. 14). The posterior parietal cortex 
is responsible for sensory integration and visuospatial 
processing to aid whole-body motor planning (Drew & 
Marigold, 2015; Nordin et al., 2019). Here, we found that 
older adults also demonstrated sustained alpha and beta 
desynchronization throughout the gait cycle when walk-
ing on uneven surfaces, although the alpha band desyn-
chronization was smaller than that of younger adults. This 
sustained alpha and beta desynchronization suggests a 
greater need for cortical processing of multi-sensory inte-
gration and greater attention to maintain balance on 
uneven surfaces (Liu et al., 2024).
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4.2.  Parieto-occipital region alpha and beta bands 
exhibited the largest age-related differences in 
response to changes in terrain unevenness

Parietal-occipital region alpha and beta bands exhibited 
age differences in response to changes in terrain uneven-
ness. Older adults had less reduction in parieto-occipital 
region alpha and beta band power when walking onto 
uneven terrain versus flat surface, when comparing with 
younger adults (Fig. 6). These results suggest that older 
adults had less of an increase in the posterior parietal and 
occipital involvement walking over uneven terrain from a 
flat surface. While this does not align with our initial 
hypothesis, there are several explanations for what we 
observe. First, our results may fit into the posterior–
anterior shift in aging (PASA) model, which states that 
less posterior activity is associated with greater frontal 
activity as we age (Davis et al., 2008). Although our results 
cannot directly infer such an association, as we did not 
identify a prefrontal cluster, a previous paper from our 
large Mind in Motion project using functional near-infrared 
spectroscopy (fNIRS) at the prefrontal region reported 
that older adults had greater prefrontal activation than 
younger adults throughout all terrain conditions (Hwang 
et al., 2024). Therefore, future research may aim to inves-
tigate whether the PASA model can be generalized to the 
motor domain, especially during walking.

Second, it is possible that older adults had greater reli-
ance on vision to guide their foot placement even when 
walking on a flat surface, while younger adults did not 
rely as much on vision during typical walking. This is con-
gruent with the observation that at the occipital area, 
alpha desynchronization occurred throughout the gait 
cycle when walking on uneven terrain versus flat terrain 
for younger adults, but for older adults, alpha desynchro-
nization was not as prominent (Figs.  6A and 14). Prior 
studies suggested that a reduction in occipital alpha 
power is associated with the neural processing of visual 
input, as occipital alpha power was reduced when partic-
ipants walked in a light condition compared with dark 
condition (Cao et  al., 2020). Additionally, alpha-band 
desynchronizations occur in the occipital area in response 
to visual optical flow when seated (Vilhelmsen et  al., 
2015). Because we did not observe a reduction in occip-
ital alpha power in older adults while walking on uneven 
surfaces, we speculate that older adults already rely 
heavily on visual input during walking on flat surfaces. If 
older adults engage parieto-occipital activity more than 
younger adults when walking on flat surfaces, there 
would be less range available for modulation as terrain 
unevenness increases. In contrast, younger adults may 
only start to rely on visual input when walking on uneven 
surfaces.

In contrast to our hypothesis, we did not find age dif-
ferences in sensorimotor power when walking on uneven 
terrains versus a flat surface. Previous work found greater 
beta power desynchronization in older adults than in 
younger adults during wrist flexion/extension movement 
using the non-dominant hand (Espenhahn et  al., 2019) 
and during button pressing (Bardouille & Bailey, 2019), 
although only a very small variance was explained 
(R2 = 0.064) between event-related beta desynchroniza-
tion at motor cortex and age. Another study found that 
under a dual-task paradigm combining walking with a 
visual reaction time task, older adults had smaller beta 
power desynchronization change from sitting to walking 
than younger adults (Protzak & Gramann, 2021). One 
potential reason why we did not observe age differences 
in the sensorimotor area could be that we had partici-
pants walk at their self-selected walking speed across 
varying terrain conditions and controlled for walking 
speed in our statistical analysis. Since older adults 
walked slower than younger adults, speed may have 
affected the sensorimotor area and masked age-related 
changes (Alcock et al., 2023), although our recent analy-
sis also did not find age differences in sensorimotor 
activity modulated by walking speed using the same 
cohort of participants (Salminen et al., 2025).

4.3.  Intra-stride spectral power fluctuations change 
with terrain and age group

While the overall band power change may reflect a sus-
tained movement-related neuronal state during many gait 
cycles, power fluctuations within the gait cycle may rep-
resent a gait phase-dependent local neuronal population 
activity associated with sensorimotor processing and 
integration (Seeber et al., 2014). Both groups of partici-
pants demonstrated an increase in intra-stride power 
fluctuations in the sensorimotor beta band (Fig. 13). The 
event-related synchronization during the contralateral 
stance phase and desynchronization during contralateral 
leg swing increased with terrain unevenness. This may be 
because stepping on taller pucks alters foot pressure, 
leading to increased sensory feedback from the sole of 
the foot.

Additionally, the occipital area demonstrated the larg-
est age differences in power fluctuations (Fig. 12). Spec-
tral fluctuations changed with terrain unevenness for 
younger adults at occipital theta and beta bands. Theta 
and beta fluctuations increased with terrain unevenness 
in younger adults but not in older adults. One possibility 
is that the lack of task-related power modulation may 
indicate reduced cortical network flexibility in older 
adults, as they may struggle to adapt to walking on novel 
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uneven surfaces (Darna et al., 2025). It is also likely that 
smaller intra-stride power fluctuations in older adults 
than in younger adults in the occipital area are related to 
greater reliance on vision. These findings also suggest 
that older adults already heavily rely on vision during flat 
surface walking and thus might be unable to modulate 
brain activity to cope with the visuomotor processing 
demands of walking on uneven surfaces. Overall, our 
findings suggest that with greater terrain difficulty, 
increased intra-stride power fluctuations in sensorimotor 
regions may reflect a higher need for step adaptation, 
while those in the occipital area reflect greater reliance on 
visual information.

There appears to be a phase shift in gait-related power 
when comparing the flat condition and uneven terrains, 
especially for older adults (Fig.  10D). When walking on 
uneven surfaces, the alpha-band showed synchroniza-
tion during the double support and desynchronization 
during the single support phase. When walking on a flat 
surface, alpha synchronization occurred following foot 
off, while desynchronization occurred during double sup-
port. This result suggests that the visual processing tim-
ing may be different for flat versus uneven terrain walking 
for both younger and older adults. Future research should 
investigate the connectivity between the occipital area 
and sensorimotor region to delineate how the neural 
oscillations at different regions coordinate to facilitate 
walking.

Multiple motor-related regions showed greater power 
fluctuations in younger adults than in older adults, includ-
ing right sensorimotor theta and alpha-band fluctuations, 
right posterior parietal alpha-band fluctuations, and bilat-
eral posterior parietal beta-band fluctuations, after 
adjusting for walking speed (Supplementary Fig.  S8). 
Combined with the slower walking speeds in our older 
adults, this finding is consistent with the literature that 
demonstrated people with mobility deficits had reduced 
intra-stride fluctuations (Guo et al., 2024). For example, 
people with Parkinson’s Disease demonstrated reduced 
intra-stride power fluctuations in the alpha and beta 
bands compared with control participants (Guo et  al., 
2024). Since greater gait variability in stride length and 
stride time is associated with smaller alpha band fluctua-
tions, it is possible that the smaller alpha power fluctua-
tions in older adults also result from greater gait variability 
in older adults than in younger adults (Downey et  al., 
2022).

5.  LIMITATIONS

There are several limitations to our study, including the 
inherently relatively low spatial resolution of EEG com-
pared with other imaging modalities such as fMRI and the 

lack of gaze data to fully understand visuospatial pro-
cessing during uneven terrain walking (Liu et  al., 2024). 
Interestingly, we found that older adults had fewer brain 
components than younger adults. Almost 10% of older 
adults do not have brain components or have <5 brain 
components, resulting in more participants having to be 
dropped from the analysis. Several factors may explain 
the age differences in the number of brain components. 
Dry or thickened scalp skin due to aging may increase the 
EEG impedance. Heavy breathing and neck or facial mus-
cle activity due to task difficulty can lead to greater con-
tamination of the brain signal. It is possible that ICLabel 
mislabeled brain components for older adults, as this 
toolbox was primarily trained on data from younger adults. 
Another explanation is that older adults demonstrate non-
selective recruitment of brain regions relative to younger 
adults (Bunzeck et  al., 2024; Seidler et  al., 2010). For 
example, when performing motor tasks with the dominant 
hand, older adults activated both contralateral and ipsilat-
eral brain regions during simple motor tasks, whereas 
younger adults show largely contralateral motor cortical 
activation (Riecker et  al., 2006). It is possible that EEG 
source separation had difficulty with bilateral brain 
sources for older adults that had unilateral sources in 
younger adults, leading to a reduced number of brain 
components in the older adults.

Another limitation is the imbalance in sample sizes 
between young (n = 31) and older adults (n = 71) when 
forming brain clusters using K-means. Although our sta-
tistical analyses for power spectral densities and event-
related spectral perturbations accounted for this unequal 
sample size, the K-means clustering used to form brain 
clusters may have been biased toward dipole locations 
from older adults. Consequently, the resulting cluster 
centroids likely reflected a greater influence from the 
older adult group. Future studies could address this by 
using a weighted K-means approach to account for 
unequal group sizes.

In the present study, we did not identify a cluster of 
brain sources in the prefrontal area, despite prior findings 
using functional near-infrared spectroscopy showing 
increased prefrontal activity in older adults during walk-
ing on more uneven terrain (Hwang et al., 2024). Prefron-
tal activity can be difficult to obtain with mobile EEG 
using ICA due to ocular artifacts and facial muscle activ-
ities. Additionally, ICA only recovers the strongest brain 
sources in EEG data averaged across many gait cycles. 
Since our study did not incorporate a cognitively inten-
sive task during walking, prefrontal sources may not be 
sufficiently strong compared with the ongoing rhythmic 
electrocortical fluctuations dominant during steady state 
gait. If there was a series of arrhythmic and discrete pre-
frontal neural activations involved in gait adjustments to 
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the uneven terrain, it would produce a robust fNIRS sig-
nal but a relatively weak electrocortical signature when 
viewed in comparison with the strong electrocortical 
rhythms that occur during steady state gait. This is reflec-
tive of the differences in neural metrics used by fNIRS 
and EEG (Richer et al., 2024).

6.  CONCLUSION

Walking on uneven terrain led to greater gait variability 
and widespread changes of electrocortical dynamics in 
the brain for both younger and older adults. We found the 
most prominent age differences in response to uneven 
terrain walking in the parieto-occipital region alpha and 
beta bands. Younger adults demonstrated a greater 
reduction in alpha and beta power with greater terrain 
unevenness than older adults. Intra-stride power spectral 
fluctuations only changed with terrain unevenness for 
younger adults at the occipital area, but did not change 
with terrain unevenness for older adults. To summarize, 
older adults showed a greater increase in gait variability 
with greater terrain unevenness than younger adults but 
exhibited a lack of modulation of parieto-occipital activity 
in response to terrain unevenness. The lack of task-
related EEG power modulation may indicate reduced 
cortical flexibility in older adults, resulting in poorer gait 
performance. These findings may also suggest that older 
adults already heavily rely on vision during flat surface 
walking and are thus unable to modulate brain activity to 
cope with the visuomotor processing demands of walk-
ing on uneven surfaces. Our future study will systemati-
cally investigate the association between behavioral 
changes and EEG spectral measures to determine 
whether this lack of modulation reflects neural compen-
sation to maintain gait performance while walking on 
uneven terrain.
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