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Simple Summary

Myotonic dystrophy type 1 causes weakness, impaired movement, and myotonia. Little
is known about MRI measures that quantify muscle fat infiltration and inflammation of
the arm in these patients. We examined how these MRI measures in the forearm were
related to strength, functional ability, and myotonia. Muscle fat and inflammation were
greatest in specific muscles, and the anterior forearm had more muscle fat infiltration than
the posterior forearm. The MRI measures correlated with measures of strength, function,
and myotonia. These quantitative MRI measures in the forearm show potential to monitor
the effectiveness of treatments in these patients.

Abstract

Introduction: Myotonic dystrophy type 1 is the most prevalent muscular dystrophy in
adults, characterized by weakness, impaired functional abilities, and myotonia. However,
little is known about the relationship between quantitative MRI measures (fat fraction
and T2 relaxation time) and clinical findings of the upper extremity. This study assessed
forearm muscle structure in patients with myotonic dystrophy using quantitative MRI and
correlated these measures with strength, function, and handgrip myotonia. Materials and
Methods: Eighteen adults with myotonic dystrophy type 1 underwent MRI using three-
point Dixon and T2 spin echo imaging of the forearm. Results: The average fat fraction
and T2 relaxation time were greatest in the flexor digitorum profundus (26.7% and 55.6 ms,
respectively). Correlations were found between quantitative MRI values and clinical tests
of strength (r = −0.61 to −0.92, p < 0.01), function (r = −0.64 to −0.83, p < 0.01), and
handgrip myotonia (r = 0.48, p < 0.05). Overall, the anterior forearm fat fraction values
showed higher correlations with strength and function compared to those of the posterior
forearm. Discussion: Our results support the use of quantitative MRI measures to assess
forearm disease pathology and show potential to monitor the effectiveness of therapeutic
treatments in patients with myotonic dystrophy type 1.

Keywords: quantitative magnetic resonance imaging; fat fraction; transverse relaxation
time; upper limb; myotonic dystrophy type 1; myotonia
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1. Introduction
Myotonic dystrophy type 1 (DM1) is a highly variable multi-systemic disorder caused

by an expansion of a CTG trinucleotide repeat in the noncoding region of the DMPK
gene [1]. DM1 is the most common form of muscular dystrophy in adults, with an es-
timated prevalence of 1:8000 [2]. Patients with DM1 have shown variable age at onset,
clinical phenotypes and disease severity, which are at least partly related to the size of the
CTG-repeat expansion [3,4]. The clinical characteristics of the disease include myotonia
(sustained muscle contraction), progressive muscle weakness, cataracts, endocrine system
disturbances, arrhythmia, and central nervous system impairments [1].

Distal muscle weakness of the upper and lower extremities is a core feature of
DM1 [2,5–8]. In particular, the forearm musculature is significantly impacted by both
weakness and handgrip myotonia. These impairments often impede the performance of
activities of daily living (ADLs) such as using utensils, grasping doorknobs, putting on
clothes, and utilizing other household equipment [1,9,10]. Patients with DM1 have reported
that the most prevalent difficulties associated with the disorder were those of the hands
and arms, followed by fatigue and myotonia [11]. Therefore, it is important to evaluate the
muscle structure of the forearm to understand upper limb impairments and the impact of
potential therapeutic interventions on these features.

To determine the effectiveness of therapeutic interventions for patients with DM1, it is
essential to have outcome measures and biomarkers that are sensitive to treatment effects
and objectively quantifiable. Clinical assessments of strength and function are dependent
on a patient’s effort and motivation and lack sensitivity to small pathophysiological changes
in muscle [12]. Quantitative magnetic resonance imaging (qMRI) is more sensitive and
reliable than clinical measures, as seen in studies that have quantified disease severity
and progression in the upper and lower extremities of patients with Duchenne muscular
dystrophy [13,14]. More limited experience with qMRI in DM1 has shown that relative
to unaffected individuals, patients with DM1 demonstrate higher values for muscle fat,
inflammation, and edema, measured by fat fraction (FF) and T2 relaxation time [7,8,15].
Heskamp et al. used qMRI to assess the longitudinal changes in FF and T2 relaxation
time throughout a behavioral intervention targeting physical activity in patients with
DM1 [16]. These studies, however, focus primarily on disease severity and progression
in the lower extremities rather than the upper extremities. While imaging studies of
the lower extremities in those with DM1 are more common likely due to their role in
general mobility, qMRI studies of the upper limb muscles are urgently needed to monitor
therapeutic interventions and provide clinically meaningful endpoints in DM1, given the
impact of upper limb deficits in this disease. To our knowledge, only two previous studies
have evaluated MRI findings of the upper limbs in patients with DM1 [5,6]. However, these
clinical studies used ordinal scales or semi-quantitative MRI methods to evaluate skeletal
muscle pathology and measure overall disease severity. Further investigation using qMRI
is necessary to analyze functionally important upper extremity muscles, such as those of
the forearm.

The objective of this study was to assess forearm muscle pathology in patients with
DM1 using qMRI and determine how these qMRI measures (FF and T2 relaxation time)
correlate with measures of function, strength, and handgrip myotonia. Based on the
aforementioned studies, we hypothesized that FF and T2 relaxation time would negatively
correlate with forearm muscle strength and function assessments and positively correlate
with the severity of handgrip myotonia [5,6]. We also believed that FF and T2 values
would be greater in the anterior forearm compared to the posterior forearm. Lastly, we
hypothesized that forearm muscle pathology assessed by both FF and T2 relaxation time
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would positively correlate with the size of CTG repeat expansion as has been reported with
semiquantitative MRI [5].

2. Materials and Methods
Individuals with a confirmed diagnosis of DM1 within the age range of 18–55 years

were invited to participate in the study through clinic visits and advertisements. We
collected clinical data including age, sex, age at diagnosis, age at symptom onset, body
mass index (BMI), and number of CTG repeats (Table 1). To determine CTG-repeat length, a
blood sample of approximately 8 mL was taken from each patient and analyzed by Athena
Diagnostics (Marlborough, MA, USA). Direct testing for the repeat expansion mutation
was performed by PCR amplification of the repeat region followed by high-resolution
electrophoresis to determine the number of repeats. Southern blot analysis was used, as
necessary, to confirm the homozygosity of normal alleles and to detect the number of
repeats in expanded alleles.

Table 1. Patient demographics.

Subject Sex Age
(Years)

Age of Diagnosis
(Years)

Age of Symptom
Onset (Years)

BMI
(kg/m2) CTG Repeat

1 M 25.7 18.0 12.5 29.2 553
2 M 51.7 40.0 37.0 21.5 153
3 M 22.7 17.0 12.0 21.9 270
4 F 42.3 37.0 29.0 26.7 443
5 F 35.1 32.0 23.0 22.5 590
6 M 31.2 16.5 16.5 30.2 n.a.
7 F 26.2 19.0 18.0 20.5 393
8 M 42.9 37.0 20.0 29.5 n.a.
9 F 47.4 36.0 25.0 21.5 740

10 F 35.1 18.0 13.0 18.9 1033
11 F 21.1 19.0 15.5 22.7 513
12 M 48.2 32.0 29.0 24.5 134
13 F 55.9 25.0 40.0 26.7 973
14 F 18.7 10.0 12.5 18.1 440
15 F 54.4 n.a. 34.0 25.7 111
16 F 26.5 15.0 11.5 34.1 n.a.
17 M 42.5 11.0 9.0 18.6 953
18 F 23.3 22.0 17.0 31.8 440

Mean 36.2 23.8 20.8 24.7 515.9
SD 12.3 9.8 9.5 4.8 299.8

n.a.—Not available.

Exclusion criteria included: (i) other neurologic or psychiatric disorders; (ii) coexis-
tence of other neuromuscular disorders; (iii) untreated thyroid dysfunction; (iv) liver or
kidney disease; (v) treatments with supplemental anabolic hormones, such as testosterone;
(vi) treatment with an anti-myotonia medication (i.e., mexiletine) within the previous
8 weeks; and/or (vii) drug or alcohol abuse. We also excluded female participants who
were pregnant or trying to become pregnant, and all patients with any contraindication to
MRI (e.g., pacemakers, metal implants in the upper extremities, and claustrophobia).

The study protocol was approved by the Institutional Review Board of the University
of Florida and written informed consent was obtained from all participants.
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2.1. Clinical Assessments

All patients underwent clinical tests to assess muscle strength using quantitative
muscle testing (QMT) [17–19] and degree of myotonia in the hand using video hand
opening time (vHOT) [20,21]. Additionally, the Upper Extremity Functional Index (UEFI)
questionnaire was given to each patient to evaluate functional abilities [22,23].

Measurements of strength by QMT included the long finger flexor (LFF) and handgrip
(HG) tests using a handgrip dynamometer [17,19]. For the LFF and HG strength tests,
each patient was seated with shoulder neutral, elbow in 90 degrees of flexion and wrist
neutral. The handgrip Jamar was positioned at the second and last position for the HG
and LFF tests, respectively. For both tests, the patient was asked to perform two separate
maximal muscle contractions for 3–5 s with approximately a 10-s rest between each trial,
and the strongest force generated was used for further analysis. Predicted strength for
handgrip was also calculated as a percentage based on the maximal values from each
subject’s handgrip relative to normative data [24].

Each patient completed the UEFI questionnaire to assess their upper limb functional
ability [22,23]. The UEFI consists of 20 questions relating to physical or daily activities, each
with a 5-point scale (0 = Extremely difficult or unable to perform activity to 4 = No difficulty
performing the specific activity). The highest score possible is 80 points, indicating best
functional status.

Myotonia of the hand was assessed by vHOT [20,21]. In brief after a 10-min rest, the
patients placed their right hand on a flat surface and were asked to make a tight fist for
3 s and then open the hand as quickly as possible. Two trials were performed by each
participant with each trial being video recorded. The time required for hand opening
until all fingers and the thumb had actively extended as far as possible was determined
by a single rater from the video recordings. The first trial was chosen to be used for
scoring purposes unless it was deemed unacceptable due to the patient not following the
instructions appropriately (i.e., opening the hand too early, moving the forearm and/or
wrist excessively when opening the hand, etc.). If the first trial was not deemed acceptable,
the second trial was then used for scoring purposes.

2.2. MRI Acquisition

All MRI measurements were performed using a 3.0-T whole body MRI scanner (Philips
Achieva Quasar Dual 3T). The subjects laid in the scanner in the head-first supine position,
with the right forearm in a neutral position. Padded supports were used to maintain a fixed
position of the forearm and to ensure the patient was comfortable throughout the scans.
An 8-channel flexible surface coil was placed optimally at the largest cross-sectional area of
the forearm with the proximal field of view set at the radial head.

Multi-slice T2 spin echo axial images were used to assess muscle composition. T2 MRI
is influenced by inflammation/edema and fatty tissue infiltration and has been used to
detect subclinical changes in patients with muscular dystrophy [25,26]. Five equally spaced
TEs from 20 to 100 ms, a TR of 3000 ms, and 7 mm slice thickness were used for 10 slices.
In addition, multi-slice three-point Dixon images were acquired to quantify fat fraction.
These images used a 2D multi-slice, single echo, gradient echo sequence run three times
each with a different echo time (TE1 = 4.6 ms, TE2 = 5.6 ms, TE3 = 6.6 ms), a flip angle
of 20 degrees, and 4 mm slice thickness for 25 slices. Images were acquired with a long
repetition time (TR = 430 ms) to minimize the effects of T1-weighting. The validity of these
sequences for FF determination has been previously confirmed in dystrophic muscle [27].
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2.3. MRI Image Analysis

To produce T2 values, pixel-by-pixel T2 maps of the forearm muscles were created
for each slice by using a monoexponential decay model [28] with custom-written software
(Interactive Data Language, IDL). Regions of interest (ROI) were manually drawn on the T2

maps while staying ~1–2 mm inside the image border for five forearm muscles: flexor digi-
torum profundus (FDP), flexor digitorum superficialis (FDS), flexor pollicis longus (FPL),
extensor pollicis brevis (EPB), and abductor pollicis longus (APL). For each muscle, the
most proximal to most distal slices that had a clear representation and identifiable muscle
boundaries were chosen for analysis (average number of slices for all five muscles = 5.5).
Mean T2 values for each of the five forearm muscles were then calculated within each of the
five ROIs, and the average across all the slices was determined for each muscle. Separate
ROIs were drawn for the anterior and posterior forearm as well.

FF analyses included custom-written IDL software generating pixel-wise FF maps
from the water and fat images. For the same five forearm muscles analyzed for the
T2 measures, ROIs were drawn on the FF maps while staying 1–2 mm inside the image
border to avoid including intermuscular tissue. For each muscle, the most proximal to
most distal slices which had a clear representation and identifiable muscle boundaries were
chosen for analyses (average number of slices for all five muscles = 12.1). The average FF
was determined for all pixels within the ROI, and the average across all slices was used for
each muscle’s FF.

2.4. Statistical Analysis

Statistical analyses were performed using IBM SPSS Statistics Version 30.0. Given the
expected limited sample size from a patient population with a rare disease (n < 30), non-
parametric Spearman rank correlation coefficients were determined for FF and T2 values of
the forearm muscles with clinical strength and function results. Statistical significance was
specified as p < 0.05. Data are presented as mean ± SD.

3. Results
3.1. Demographics and Clinical Assessments

We evaluated the right upper extremity of eighteen patients with DM1 (7 males
and 11 females with one of the females being left-hand dominant). The mean age was
36.2 ± 12.3 years, and the mean age of symptom onset was 20.8 ± 9.5 years (Table 1). The
mean number of CTG repeats was 516 ± 300.

Strength and function test results are shown in Table 2. The mean handgrip strength
was 13.5 ± 7.4 kg, mean percent predicted handgrip strength was 36.5 ± 20.9%, and
long finger flexor strength was 7.6 ± 4.3 kg. The average UEFI score was 57.9 ± 15.8.
Additionally, all patients demonstrated the presence of handgrip myotonia by evidence of
a delayed release of the handgrip with a mean hand opening time of 18.7 ± 13.0 s.

Table 2. Clinical assessment outcomes of patients with DM1.

Subject HG
(kg)

HG Pred
(%)

LFF
(kg)

UEFI
(/80)

vHOT
(s)

1 12.3 22.3 4.6 59 10.0
2 12.2 23.7 7.7 75 28.8
3 30.5 55.5 15.2 80 19.5
4 13.9 43.4 6.0 41 32.0
5 8.3 24.6 4.4 55 13.0
6 4.2 7.5 2.6 45 12.0
7 23.9 70.3 18.2 78 9.0
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Table 2. Cont.

Subject HG
(kg)

HG Pred
(%)

LFF
(kg)

UEFI
(/80)

vHOT
(s)

8 6.0 11.2 3.8 37 11.3
9 4.3 15.3 3.7 15 10.8
10 5.5 16.3 2.5 41 39.0
11 22.9 71.5 10.4 65 7.0
12 4.6 9.1 4.0 40 55.8
13 12.1 46.6 8.1 65 11.5
14 16.5 51.7 6.4 74 7.5
15 16.1 53.9 7.9 68 25.5
16 17.6 51.8 11.9 71 15.5
17 16.9 31.8 9.0 n.a. 19.3
18 16.0 50.0 9.7 76 9.5

Mean 13.5 36.5 7.6 57.9 18.7
SD 7.4 20.9 4.3 18.5 13.0

All values were taken from the right arm. Quantitative muscle testing (QMT) measures include: HG = handgrip
strength; pred = predicted; LFF = long finger flexor; and pinch. UEFI = Upper Extremity Functional Index;
vHOT = video hand opening time. n.a.—Not available.

3.2. MRI Findings

Quantitative MRI data were acquired from all 18 patients for five forearm muscles:
FDP, FDS, FPL, EPB, and APL. Three-point Dixon images in a patient with mild disease, a
patient with moderate disease, and a patient with severe disease are shown in Figure 1. The
average FF and T2 values are displayed in Tables 3 and 4, respectively. FF and T2 values
showed a wide variability of muscle pathology between subjects with the greatest variability
noted in the FDP as shown in Figure 2. Across all subjects, the average FF value was highest
in the FDP (26.7%), followed by the FPL (22.1%) and APL (18.1%). Similarly, the average T2

relaxation time was noted to be longest in the FDP for all subjects except three (subjects 9,
11, and 16). For subjects 9 and 16, the FPL had the highest T2 value. For subject 11, the APL
had the highest T2 value, followed by the FPL and then the FDP.

 

Figure 1. Representative three-point Dixon images from the forearm in a patient with mild disease
presentation with little to no muscle pathology (A, Subject 11), in a patient with moderate disease
presentation with muscle pathology noted in at a few areas and/or muscles (B, Subject 1), and
in a patient with severe disease presentation with pathology noted to a large extent in more than
one muscle (C, Subject 6). FDP = flexor digitorum profundus; FDS = flexor digitorum superficialis;
FPL = flexor pollicis longus; EPB = extensor pollicis brevis; APL = abductor pollicis longus; U = ulna;
R = radius.
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Table 3. Fat fraction values of patients with DM1.

Muscle FF (%) FDP FDS FPL EPB APL Ant. Post.

Subject

1 22.8 13.1 20.6 11.3 12.1 19.4 21.0
2 14.9 10.7 12.2 9.7 8.7 15.4 13.5
3 11.4 10.1 12.4 12.7 14.5 12.8 14.8
4 37.3 18.0 21.8 37.7 43.0 n.a. n.a.
5 41.6 12.5 44.1 23.2 16.9 31.9 23.1
6 57.6 16.1 18.2 19.3 18.8 34.6 32.4
7 12.5 n.a. 19.1 n.a. n.a. n.a. n.a.
8 45.9 16.5 20.5 14.6 15.3 31.3 23.8
9 27.3 18.5 32.9 14.2 17.7 31.3 20.9
10 46.5 14.9 20.7 11.8 13.3 28.0 18.6
11 10.5 12.1 12.8 13.5 11.4 13.3 13.9
12 44.0 27.6 45.7 n.a. 43.9 31.2 32.1
13 27.7 17.1 19.8 15.0 18.1 25.6 20.6
14 12.7 14.0 13.8 n.a. 11.3 15.6 15.5
15 13.5 12.8 14.9 12.0 11.7 16.9 17.5
16 26.8 15.2 30.9 n.a. 21.0 25.4 26.0
17 15.7 14.7 21.8 16.6 14.3 21.0 20.3
18 11.8 13.2 15.9 15.1 15.5 16.2 17.4

Mean 26.7 15.1 22.1 16.2 18.1 23.1 20.7
SD 15.2 4.0 10.0 7.1 10.1 7.6 5.8

All values were taken from the right arm. FDP = flexor digitorum profundus; FDS = flexor digitorum superficialis;
FPL = flexor pollicis longus; EPB = extensor pollicis brevis; APL = abductor pollicis longus; Ant. = anterior
forearm; Post. = posterior forearm. n.a.—Not available.

Table 4. T2 values of patients with DM1.

Muscle T2 (ms) FDP FDS FPL EPB APL Ant. Post. Avg.

Subject

1 53.3 44.6 44.4 42.5 44.1 45.9 41.2 43.6
2 79.8 69.4 54.9 42.1 38.5 n.a. n.a. n.a.
3 41.8 34.2 38.2 33.8 32.3 37.2 32.7 34.9
4 62.4 55.6 45.3 44.1 40.5 51.4 39.9 45.6
5 65.9 52.2 57.9 52.4 42.8 52.5 44.2 48.3
6 70.1 59.0 69.3 56.5 48.3 57.8 50.4 54.1
7 46.6 34.8 40.2 33.6 34.6 37.0 32.3 34.6
8 73.2 56.6 61.3 43.3 42.9 56.5 47.6 52.1
9 61.5 63.6 68.1 39.3 44.6 60.9 45.5 53.2
10 66.3 55.4 56.4 46.1 44.5 57.1 44.7 50.9
11 35.0 31.8 35.4 34.4 36.3 34.5 33.6 34.1
12 69.5 53.7 66.7 n.a. 60.6 57.5 55.6 56.5
13 58.5 45.2 44.1 43.0 43.7 51.4 42.9 47.2
14 38.7 33.7 38.1 n.a. 35.3 36.9 34.3 35.6
15 36.5 35.1 33.7 33.0 33.1 37.6 34.6 36.1
16 54.1 43.3 60.5 n.a. 50.0 49.9 42.3 46.1
17 46.3 37.8 46.3 37.1 39.6 46.5 40.0 43.2
18 41.3 35.7 36.6 35.0 38.3 40.0 35.9 38.0

Mean 55.6 46.7 49.9 41.1 41.7 47.7 41.0 44.4
SD 13.8 11.7 12.1 7.0 6.9 8.9 6.6 7.6

All values were taken from the right arm. FDP = flexor digitorum profundus; FDS = flexor digitorum superficialis;
FPL = flexor pollicis longus; EPB = extensor pollicis brevis; APL = abductor pollicis longus; Ant. = anterior forearm;
Post. = posterior forearm; Avg. = average T2 from anterior and posterior forearm values. n.a.—Not available.
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Figure 2. Fat fraction (FF) and T2 values from the flexor digitorum profundus (FDP) muscle for each
of the 18 participants.

3.3. Relationship Between MRI and Clinical Findings

Forearm FF and T2 values presented strong correlations with measures of strength and
function (Tables 5 and 6). FDP FF values showed notably high correlations for all QMT tests
(HG: r = −0.82; Predicted HG: r = −0.82; LFF: r = −0.79; all p < 0.01) and the UEFI (r = −0.77,
p < 0.01). FDP T2 values also significantly correlated with these measures of strength and
function (HG: r = −0.75, p < 0.01; Predicted HG: = −0.81, p < 0.01; LFF: r = −0.66, p < 0.01;
UEFI: r = −0.55, p < 0.05). FPL FF showed a negative correlation with the Predicted HG
(r = −0.48, p < 0.05), but it did not show a significant correlation with either LFF or HG
tests. On the other hand, FPL T2 values showed strong negative correlations with HG and
Predicted HG (r = −0.73, −0.82, respectively; both p < 0.01) and a moderate correlation
with LFF (r = −0.66, p < 0.01).

Table 5. Spearman’s rho correlations between clinical tests and FF in the forearm muscles.

FDP FPL FDS APL EPB Ant. FA Post. FA

HG −0.82 ** −0.45 −0.61 ** −0.41 −0.17 −0.82 ** −0.60 *
HG pred −0.82 ** −0.48 * −0.59 * −0.36 −0.10 −0.77 ** −0.65 **
LFF −0.79 ** −0.41 −0.55 * −0.22 −0.09 −0.74 ** −0.46
UEFI −0.77 ** −0.68 ** −0.78 ** −0.49 −0.36 −0.81 ** −0.63 *
vHOT 0.45 0.29 0.19 0.28 −0.03 0.18 0.16

HG = handgrip strength; pred = predicted; LFF = long finger flexor; UEFI = Upper Extremity Functional Index;
vHOT = video hand opening time; FDP = flexor digitorum profundus; FPL = flexor pollicis longus; FDS = flexor
digitorum superficialis; APL = abductor pollicis longus; EPB = extensor pollicus brevis; Ant. FA = anterior forearm;
Post. FA = posterior forearm. * Correlation is significant at the 0.05 level (2-tailed). ** Correlation is significant at
the 0.01 level (2-tailed).

Table 6. Spearman’s rho correlations between clinical tests and T2 in the forearm muscles.

FDP FPL FDS APL EPB Ant. FA Post. FA

HG −0.75 ** −0.73 ** −0.83 ** −0.72 ** −0.80 ** −0.90 ** −0.90 **
HG pred −0.81 ** −0.82 ** −0.84 ** −0.74 ** −0.75 ** −0.89 ** −0.92 **
LFF −0.66 ** −0.66 ** −0.73 ** −0.62 ** −0.79 ** −0.80 ** −0.81 **
UEFI −0.55 * −0.69 ** −0.64 ** −0.68 ** −0.67 ** −0.82 ** −0.83 **
vHOT 0.48 * 0.34 0.44 0.27 0.31 0.46 0.37

HG = handgrip strength; pred = predicted; LFF = long finger flexor; UEFI = Upper Extremity Functional Index;
vHOT = video hand opening time; FDP = flexor digitorum profundus; FPL = flexor pollicis longus; FDS = flexor
digitorum superficialis; APL = abductor pollicis longus; EPB = extensor pollicus brevis; Ant. FA = anterior forearm;
Post. FA = posterior forearm. * Correlation is significant at the 0.05 level (2-tailed). ** Correlation is significant at
the 0.01 level (2-tailed).

As shown in Table 5, the anterior FA FF showed a stronger correlation with HG
(r = −0.82, p < 0.01), Predicted HG (r = −0.77, p < 0.01), and LFF (r = −0.74, p < 0.01)



Tomography 2025, 11, 136 9 of 14

strength compared to the posterior FA FF (HG: r = −0.60, p < 0.05; Predicted HG: r = −0.65,
p < 0.01; LFF: r = −0.46, p = 0.073). However, similar correlations were found between
anterior and posterior FA T2 values and clinical tests (Table 6). Additionally, the anterior
FA FF showed a stronger correlation with UEFI (r = −0.81, p < 0.01) relative to that of the
posterior FA (r = −0.63, p < 0.05).

We also found that the FDP T2 values positively correlated with the vHOT (r = 0.48,
p < 0.05). Although there were no significant correlations between other qMRI values and
the vHOT, there was a trend for correlations between FDP FF and the vHOT (p = 0.061)
and between the anterior FA T2 and the vHOT (p = 0.064). Lastly, we did not find any
significant correlations between qMRI findings and the length of CTG repeats or the age of
diagnosis/noticed symptoms.

4. Discussion
This study demonstrated the utility of qMRI measures (FF and T2 relaxation time) to

assess the muscle structure of the distal upper extremities in patients with DM1, shown
by high FF and T2 values in the forearm of individuals with DM1 compared to unaffected
individuals from other studies [29,30]. More importantly, these qMRI variables correlated
with clinical measures of forearm strength, function, and handgrip myotonia, indicating
the potential use of qMRI as an endpoint in DM1 studies.

qMRI has been used to evaluate pathological changes in several other muscle disor-
ders [13,14,31–35]. Changes in FF may be used to assess therapeutic treatments that focus
on improving muscle strength and function [34,35]. Similarly, increased T2 relaxation time,
which is indicative of edema caused by inflammation, may be used as an early marker of
pathologic changes in muscles of patients with neuromuscular disease [8,36,37]. Through
the widespread usage of qMRI, it is evident that quantitative imaging is a promising ob-
jective assessment for disease progression and treatment response for individuals with
DM1 [7,8,15].

4.1. Increased FF and T2 Values in DM1 Forearm

Similarly to the findings of Sugie et al. [5] and Hayashi et al. [6], we found the FDP
and FPL muscles to be most affected in the forearm of people with DM1. As shown in
Tables 3 and 4, our muscular evaluations are based on quantified FF and T2 values, while
the other two studies provide MRI findings classified according to an ordinal (Mercuri) [38]
or semi-quantitative (Fischer) scale [39]. Other notably affected muscles were the FDS
(patient 14), EPB (patient 11), and APL (patients 3 and 4), which may be associated with
weakness in finger flexion and handgrip myotonia. Additionally, the anterior forearm had
slightly higher average FF values compared to the posterior forearm, which could be due
to the largely affected flexor muscles, such as the FDP, FPL, and FDS. Therefore, future
clinical trials may want to focus on the impact that therapeutic interventions have on the
anterior compartment to address the difficulties of fine motor control and the performance
of ADLs in patients with DM1 [9–11].

4.2. Contribution of FF and T2 to Strength and Function Impairments

While Sugie et al. [5] and Hayashi et al. [6] have shown correlations between semi-
quantitative MRI findings and forearm muscle weakness, this study demonstrated notably
high correlations between qMRI FF and T2 values and forearm strength and function
(Tables 5 and 6; Figures 3 and 4). Therefore, qMRI measures may be a valuable tool to
quantitatively evaluate forearm strength and function in patients with DM1.
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Figure 3. Correlation of MRI FF findings and clinical assessments. FDP = flexor digitorum profundus;
FF = fat fraction; HG = handgrip strength; LFF = long finger flexor; UEFI = Upper Extremity
Functional Index.

Figure 4. Correlation of MRI T2 findings and clinical assessments. FA = forearm; HG = handgrip
strength; UEFI = Upper Extremity Functional Index; FDP = flexor digitorum profundus; vHOT = video
hand opening time.

Building upon the findings of Sugie et al. [5] and Hayashi et al. [6] that focused on
individual muscles, our study evaluated individual muscles as well as the anterior and
posterior FA to determine DM1’s impact on different FA compartments. The anterior FA
FF values showed prominent correlations with handgrip strength and long finger flexor
strength as well as with the UEFI. These findings show that the anterior FA may be more
affected in patients with DM1, signifying distal arm weakness and prominent involvement
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of the wrist and finger flexors [40,41]. Interestingly, the FDP was the only muscle to show
a significant correlation between T2 relaxation time and handgrip myotonia, which was
assessed using vHOT (Figure 4). While the contributing factors to myotonia extend beyond
skeletal muscle pathology, further investigation is needed to address the effect that FDP
has on handgrip myotonia. Using qMRI to quantify pathology in individual muscles and
compartments may help in the development of specific treatment plans for the affected
musculature such as exercises using silicone-based putty for resistance and endurance
training [42,43].

4.3. Correlation of CTG Size with FF and T2 Values

Unlike Sugie et al. [5] but analogous to Hayashi et al. [6], we found no correlation
between forearm FF and T2 values and CTG repeat length. This could be because our
cohort of subjects had a narrower range of CTG-repeats compared to that of Sugie et al.
The lowest from our sample was 111 (patient 15), and the highest was 1033 (patient 10).
This range contrasts with that of Sugie et al. whose patients’ CTG-repeat lengths ranged
from 100 to 2300, and several of these individuals had much higher repeat lengths than
in our sample. Another possible reason is that the correlation found in the Sugie et al.
study was between an overall MRI involvement score (analyzed from an ordinal scale) and
CTG-repeat length, while our study focuses on the correlation between quantifiable FF and
T2 values and CTG-repeat length. Therefore, further investigation is necessary to examine
any relationship between qMRI measures and CTG-repeat length.

4.4. Study Limitations

Our study had some limitations. First, while no unaffected controls were included in
this study, our findings can be compared with the results from other qMRI studies involving
healthy controls. From these studies, it is clear that our patients demonstrated elevated
FF and T2 values well above the healthy population [29,30]. A second limitation was the
limited resolution of the imaging system that causes a partial volume effect. However, this
effect was minimized by selecting specific ROIs on each forearm region. Third, the results
from this single-center study only involving 18 adult participants with DM1 does limit
generalizability. Lastly, our study was not a longitudinal study; therefore, we recommend
additional studies to assess the sensitivity of qMRI measures over time when assessing the
progression of DM1 in individual patients.

5. Conclusions
This is the first study to use qMRI to evaluate the distal upper extremity of patients

with DM1. qMRI FF and T2 values show significant correlations with various clinical
assessments of forearm strength, function, and handgrip myotonia. The anterior forearm
appears to be a largely affected compartment in the upper extremity and should be further
investigated. Our results suggest qMRI is a valuable method to evaluate the muscle
structure and the efficacy of therapeutic interventions in patients with DM1.
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