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Abstract

Pygmy mammoths (Mammuthus exilis) and Columbian mammoths (Mammuthus
columbi) coexisted on the island of Santarosae (now the Northern Channel Islands
of California) until the Late Pleistocene megafaunal extinctions, but the ecology of
these mammoths is not yet well explored. In this study, we reconstructed the diets
and environments of Late Pleistocene pygmy and Columbian mammoths using stable
isotopes in tooth enamel samples from the Northern Channel Islands and Rancho La
Brea. The enamel 6"°C values indicate that these mammoths primarily consumed C,
vegetation. However, a few individuals consumed significant amounts of C, plants,
CAM plants, or water-stressed woody C, plants. The mean diet-6">C value for main-
land mammoths (—24.2 £ 1.4%o) is about 2% higher than that of island mammoths
(—26.4 £ 1.9%o0), suggesting that most mainland mammoths consumed either water-
stressed C, vegetation, or some C, and/or CAM plants. Reconstructed 50 values
of paleo-water from the mainland are generally lower than the mean §'®0 values of
modern precipitation in Southern California, suggesting conditions were wetter and/
or cooler than today. Reconstructed §'®0O values of paleo-water from the islands are
more similar to modern precipitation. §'*C-based estimates of mean annual precipi-
tation range from 159 to 1407 mm/yr on the islands and from 28 to 387 mm/yr on the
mainland. However, consumption of small amounts of C, and/or CAM plants may
have resulted in an underestimation of precipitation for the mainland. Radiometric
dating of additional fossils from both localities will help clarify the links between cli-
mate change and mammoth evolution and extinction in the region.
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1. Introduction

Pygmy mammoths (Mammuthus exilis) are thought to have evolved from Columbian
mammoth (Mammuthus columbi) populations through insular dwarfism driven by lim-
ited resources, competition, and/or predation on the island (known as Foster’s rule or
the island rule) [1-5]. Columbian mammoths cohabitated with pygmy mammoths on
Santarosae (now the Northern Channel Islands of California, USA, also known as the
Channel Islands National Park), but were lower in abundance and restricted to the
lower terraces on the island [6]. No specimens of M. exilis have been found

on the mainland [6], implying that pygmy mammoths were confined to the island. The
youngest radiocarbon date—ca. 12,700 cal yr BP (recalibrated using OxCal v.4.4 with
IntCal20) [6—8]—associated with pygmy mammoths suggests that this species went
extinct around the same time as the Late Pleistocene megafaunal extinctions at the
La Brea Tar Pits in Los Angeles, California, USA, around ca. 12.9 ka [9]. The primary
driver of these extinctions remains heavily debated [9-18].

Earliest human arrival on Santarosae is radiocarbon dated to ca. 12,900 cal yr BP
[7,8,19,20]. However, there is no evidence of humans hunting or butchering pygmy
mammoths [21]. Rapid global warming and deglaciation also occurred around this
time [22—23]. During the transition to the Holocene, sea level rise inundated lowlands
of Santarosae, leaving only the high points (which became the modern Northern
Channel Islands, or NCI) subaerially exposed [18,24]. Vegetation also shifted around
this time, with conifer forest being replaced by coastal sage scrub, grasslands, and
pine stands around 11,800 cal yr BP [25—-26]. The close timing of these events makes
it difficult to determine a primary extinction mechanism for southern California mam-
moths. Given the close timing of the extinctions of M. exilis (restricted to the NCI) and
M. columbi (present on the NCI and the mainland), NCI and Rancho La Brea (RLB)
mammoths may have shared a primary extinction driver. However, this assumption
may be flawed if the niches of the mammoths differ dramatically from the mainland to
the islands.

Previous stable isotope work on M. exilis (some of which may have been M.
columbi) had a limited sample size (8 individuals) and a single outlier indicative of
mixed feeding [27]. Published works analyzing diet through microwear suggest that
pygmy and Columbian mammoths had differing diets, with pygmy mammoths having
more attrition-dominated wear suggesting a diet of softer vegetation (such as leaves)
and having a smaller dietary range than Columbian mammoths [28-29]. However,
stable isotopes have the benefit of reflecting diet throughout tooth growth [30-33]
rather than just at the time of death [28]. Previous stable isotope work on M. columbi
from RLB using dentin [34] and bone collagen [35] yielded anomalously high §'*C
values (possibly the result of diagenesis) and no data (due to low collagen content),
respectively. Enamel is more diagenetically resistant than dentin and bone [36] and is
thus more reliable for paleoecological reconstructions [29,37—41].

In this study, we analyzed the carbon and oxygen isotope compositions of more
than 200 tooth enamel samples from 34 individual mammoths representing M. exilis
from the NCI and mainland M. columbi from RLB and coastal Santa Barbara in south-
ern California. The data are used to reconstruct diets and environmental conditions to
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explore the similarities and differences between insular and mainland mammoths. The results are compared with previ-
ously published enamel isotope data for M. columbi across southern North America to clarify environmental differences
between the southern California and other North American mammoth populations during the Late Pleistocene.

1.1. Carbon isotopes in plants and mammals

Carbon isotope ratios (6"°C) in plants reflect atmospheric 6C, photosynthetic pathway (C,, C,, or CAM), and environ-
mental factors such as rainfall amount, and amount of canopy coverage [42—46]. C, plants (trees, most shrubs, forbs,

and cool-season grasses) typically have §'*C values ranging from —37%o to —23%o, with a mean of about —27%. [46—47].
Some drought tolerant C, genera can have §™C values as high as -20%. under severe water stress [46,48-50]. C, plants
(mostly warm-season grasses) typically have higher §'*C values between -18 and —9%o, with a mean value of —13%o
[43,47,51]. CAM plants (succulents and some epiphytes) have §'°C values ranging from —26%o to —10%—intermedi-

ate between C, and C, plants—and typically inhabit water-limited environments [51-54]. These values in plants shift in
response to atmospheric 6*C values [55]. These plant §'*C values are incorporated into the structural carbonate of herbi-
vore bone and dental tissue [43,56] with an isotopic enrichment [57-59]. The mean enamel-diet enrichment (€_ . ) for
modern elephants—considered as modern analogs of mammoths [60]—is approximately +14.1%o [57,59]. Some research-
ers have proposed using body mass (BM)-based estimates to calculate the enrichment factor [58], which would result in a
higher estimate for M. columbi (+15.1%o.) [61] and a lower estimate for M. exilis (+13.8%o). However, modern ponies have
higher enamel-diet enrichments than modern horses [59], so whether the relationship is applicable for dwarfed species is
unclear.

1.2. Oxygen isotopes in meteoric water and mammals

Oxygen isotope ratios (6'80) in meteoric water are controlled by climatic conditions, including moisture source, air tem-
perature (temperature effect), distance the vapor has traveled inland away from the moisture source (continental effect),
elevation of land below the vapor (altitude effect), and amount of rainfall (amount effect) [62—63]. Surface water (such as
rain puddles, streams, lakes/ponds, and springs) provides the source of drinking water for animals. The oxygen isotope
ratios of drinking water, food, and air are incorporated into the structural carbonate and phosphate of mammalian bone
and dental tissue [64—67]. Enamel and bone apatite 6'0 values reflect primarily drinking water for drought intolerant spe-
cies (or obligate drinkers) and dietary water (i.e., leaf water) for drought tolerant species (or non-obligate drinkers) [68—70].
For obligate drinkers, their bioapatite §'®0 values are strongly correlated to the §'®0 values of local meteoric water

1.3. Modern conditions in southern California

Study sites include two localities: the Northern Channel Islands (NCI) and Rancho La Brea (RLB, also known as the La
Brea Tar Pits and Museum). The NCI are an east-west oriented chain of islands off the coast of California (Fig 1) [5,75,76].
These islands are largely a series of marine terraces covered by more recent eolian sands and alluvium deposits, with
mammoth fossils present in both marine and terrestrial deposits [24,75,77]. RLB is a site that has active asphalt seeps
and fossil-rich asphalt deposits that continue to be excavated [78-79]. The plants in both localities predominantly use C,
photosynthesis due to the Mediterranean climate of the region [25,44,45,53,80]. Notably, native C, plants are absent from
the Channel Islands [44,45,81]. CAM plants on the other hand are present on the Channel Islands and in southern Califor-
nia (such as Dudleya and Opuntia) [82—-83].

The recent mean annual precipitation (MAP) near NCI and RLB are 292.4 mm and 334.0 mm (using data from Anacapa
Island and Culver City), respectively (Western Regional Climate Center, http://www.wrcc.dri.edu). The recent mean
annual temperature (MAT) near NCI and RLB are 15.6+2.2°C and 17.1+3.0°C, respectively (Western Regional Climate
Center, http://www.wrcc.dri.edu). The nearest IAEA/GNIP station is in Santa Maria, California. Santa Maria’s MAP is
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of Natural History; RLB = Rancho La Brea; SBMNH = Santa Barbara Museum of Natural
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Fig 1. Northern Channel Islands and southern California mammoth sites. The sites and museum collections from which mammoth fossils were
recovered, and stations from which meteorological data were sourced, are labeled on the map. The approximate paleo-coastlines of Santarosae and
mainland California with a lowstand sea level of ~130 m below modern sea level is approximated using Google Earth depth measurements.

https://doi.org/10.1371/journal.pone.0338674.9001

312.4mm [84], which is comparable to the MAP observed at the NCI and RLB. Although the temperature in Santa Maria
(13.6+2.8°C) is slightly cooler than those observed at NCI and RLB, the precipitation §'®0 values estimated using the
Online Isotopes in Precipitation Calculator (OIPC) [85—-87] are similar across these localities (Fig 2a). Precipitation in
Santa Maria exhibits higher amount-weighted 60 values during the dry summer months and lower values in winter (Fig
2) [84]. The long-term annual mean 6'0 value of precipitation from 1962 to 1976 at the IAEA station in Santa Maria is
-4.21+1.03%o, while the corresponding long-term annual amount-weighted mean oxygen isotope ratio of precipitation
(6180W6ighted‘predp) for the same period is —5.94 = 1.48%o [84], reflecting the influence of heavier rainfall with more negative
isotopic values from the non-summer months. The annual mean 60 values of modern precipitation calculated using the
OIPC (-5.5%0 and —-5.4%o, respectively) are essentially identical for the NCI (latitude: 34.00°, longitude: 119.88°W, altitude:
140.5 m a.s.l.) and RLB (latitude: 34.06°, longitude: 119.88°W, altitude: 140.5 m a.s.l.), reflecting the close similarity in
climatic conditions between these localities. While the annual 680 values differ slightly (~0.5%0) between Santa

weighted.precip

Maria and NCI/RLB, the seasonal pattern appears to be similar (Fig 2).

1.4. Radiometric dates for santarosae and rancho la brea

Available radiocarbon (*C) and uranium/thorium (U/Th) dates for bones and teeth of pygmy and Columbian mammoths
from the NCI show a range of 68,000+4000 U/Th yr BP [6,88,89] to ca. 12,600 cal yr BP [28]. However, indirect radiomet-
ric dates obtained from U/Th dating of underlying corals and ™C dating of overlying land snails, suggest that the age of
one pygmy mammoth tusk from Santa Rosa Island is between ca. 120 ka and ca. 40 ka [77]. Another pygmy mammoth
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Fig 2. Modern rainfall amount and oxygen isotope composition in southern California. (a) The modern mean amount-weighted monthly precipi-
tation 6'®0 values for the period of 1962-1976 recorded at IAEA/GNIP station in Santa Maria, California, are represented by the line, with vertical error
bars indicating 1 standard deviation from the mean [84]. Precipitation 6'®0 values modeled by the Online Isotopes in Precipitation Calculator (OIPC) for
Culver City, Santa Maria, and Anacapa Island—based on modern elevation and latitude—are shown as points [85-87]. (b) Modern mean monthly precip-
itation amounts are depicted by bars and modern monthly temperatures are represented by lines. Precipitation and temperature data for Culver City and
Anacapa Island are from Western Regional Climate Center COOP stations; data for Santa Maria are from the IAEA/GNIP station.

https://doi.org/10.1371/journal.pone.0338674.9002

tusk is constrained by U/Th dating of nearby corals to be no younger than ca. 80 ka [77]. While it is possible that mam-
moth colonization of the NCI occurred even earlier as suggested by Muhs et al. (2015), most dated NCI mammoth fossils
are much younger than the estimated dates of these two tusks. Reported calibrated radiocarbon dates for RLB mega-
fauna range from ca. 62,500 cal yr BP to 11,500 cal yr BP [9,90,91]. Pit 9, from which most of the RLB mammoths in this
study have been excavated, has yielded radiocarbon dates ranging from 62,000-14,000 cal yr BP [90]. Based on these
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previously reported radiometric dates, the estimated ages are ~68-13 ka for NCI samples [6,28,88,89] and ~62—12 ka for
RLB samples [9,90,91].

1.5. Pleistocene conditions in the channel Islands and Southern California

During the Pleistocene glacial periods, the seafloor between and surrounding the current NCI was exposed due to
glacially-induced low sea level, connecting the current NCI as one long island called Santarosae [20,24]. Multi-proxy
eustatic sea level reconstructions [92] indicate that global sea levels were on average ~90 m below modern sea level
(b.s.l.) between ~68—12 ka, with a lowstand sea level of 130 m b.s.l. and a highstand sea level of 51 m b.s.l. These are
not significantly different from older estimates of between 74 m and 125 m lower sea level for the Late Pleistocene NCI
[5,93]. Combining current mean elevation (140.5 m above sea level for the NCI, 57 m above sea level for RLB) [76] and
lower sea level estimates [92], elevation on Santarosae is estimated to be approximately 232 m above sea level (a.s.l.)
(ranging from 204 m a.s.l. to 271 m a.s.l.) and elevation at RLB is estimated to be approximately 149 m a.s.l. (ranging
from 108 m to 187 m a.s.l.) during the last glacial period.

During the last glacial period, the expansion of continental ice sheets significantly lowered sea levels and increased
the heavy oxygen isotope ('®0) content of the seawater — the primary source of moisture for precipitation on land. The
oxygen isotope ratio of seawater (6O, ) decreases by 0.009%0 per meter of sea level increase [92,94]. Based on this
relationship and the sea level reconstructions for ~68—12 ka, the global mean 6O, value would be 0.81%o (relative to
V-SMOW). The global mean 60, value would be lower during the highstand (0.46%o) and higher during the lowstand
(1.17%o). These estimates are consistent with previous studies which suggest that global ocean water was enriched in #0O
by an average of 1.0+ 0.1%o during the Last Glacial Maximum (LGM), and by approximately 0.5—1.0%o during the period
from 70 ka to 12 ka, relative to today [94-97].

During the lowstand, the distance between the nearest points of Santarosae and the mainland would have been ~7 km
(Fig 1). This is certainly a swimmable distance for modern elephants and should have been for Columbian mammoths
[98—-100]. Even the modern distance of ~20 km to Anacapa Island today is still swimmable by modern elephants [77,98],
and so dispersals or crossings during the highstand—across a distance of ~12 km from the mainland to Anacapa Island—
are not impossible. However, it is arguable whether the Pygmy mammoths would have been able to return to the mainland
due to morphological changes associated with dwarfism (i.e., shorter trunks, reduced skeletal pneumatization), which may
have reduced their swimming capabilities [98,101,102].

Pollen records from a marine core in the Santa Barbara Channel indicate that open coniferous forests—domi-
nated by juniper/cypress and pine—flourished on the mainland and probably on NCI before onset of Bglling Allerad
warming at ~14.7 ka. After this time, juniper/cypress began a steep decline and were replaced by oak, chaparral
taxa and coastal sage assemblages dominated by members of the Asteraceae [103]. A macrofloral assemblage
from Santa Cruz Island [104], spanning 17,020 cal yr BP to 15,160 cal yr BP [105—-106], contains diverse mesic
pine and cypress taxa, along with other woody species (e.g., manzanita) that currently grow in coastal Northern
California. Younger pollen records from Santa Rosa Island reveal a dominance of non-arboreal, coastal sage spe-
cies and grasses, indicating that a relatively rapid vegetation turnover occurred on the islands from 15 to 12 ka [25].
This vegetation shift coincides with an increase in human occupation sites and wildfire activity between 13,000 and
11,000 cal yr BP [18,107,108].

The last glacial period was cooler than pre-industrial climate, with a global peak cooling of 4-6°C below pre-
industrial temperature during the LGM [109—-110]. However, this cooler climate was not without perturbations; large,
rapid warming events (interstadials) oscillated with cooling events (stadials) throughout this period [111]. Northern
hemisphere interstadials generally had relatively warmer temperatures (though still cooler than modern) and wetter
conditions (with dry summers and wet winters), while stadials generally had colder temperatures with drier conditions
overall [112-117].
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2. Materials and methods
2.1. Enamel collection

Samples of enamel powder (n=217) were collected by drilling mammoth teeth (N=34) using a handheld rotary tool with

a diamond tipped burr. No permits were required for the described study, which complied with all relevant regulations.
Pygmy mammoth (Mammuthus exilis) teeth (N =20, n=145) were sampled from the collections of the Santa Barbara
Museum of Natural History (SBMNH) and the Los Angeles County Museum of Natural History (LACM). The provenance
of ORR 11 and ORR 12 is uncertain (these may have been from either Santa Rosa Island or Santa Cruz Island). All other
NCI pygmy mammoths were collected from alluvial sediments on the northern shore of Santa Rosa Island. The distinction
between islands may be irrelevant given all NCI represent highlands of the continuous, large island of Santarosae during
the age of these mammoths due to lower sea level during this period. Some of the individual teeth (LACM/CIT 177, LACM/
CIT 178, LACM/CIT 179, LACM/CIT 209, LACM/CIT 907, LACM/CIT 68714) sampled by Parry (2020) from LACM were
resampled in this study to compare isotopic values and confirm that methods are comparable between these studies.
Columbian mammoth (Mammuthus columbi) teeth (N =14, n=72) were sampled from the collections of the La Brea Tar
Pits Museum (RLB) and SBMNH. The sole Columbian mammoth tooth sampled at SBMNH (ORR 6) was collected from
the coastal Santa Barbara (SB) area roughly 100 years ago, although it is unclear whether the specimen is from the main-
land or the NCI. Species identifications for island mammoths were from previous identifications based on tooth size and
enamel plate width; however, the sampled mammoths fall within the overlapping ranges of M. columbi and M. exilis teeth
[118]. Due to the limited specimens available for sampling in museum collections, available teeth were sampled regard-
less of tooth position. While we tentatively assume each tooth represents a unique individual mammoth—and some must
indeed come from distinct individuals based on different collection localities (e.g., different canyons on the NCI) and/or
duplication of the same element type (e.g., upper left 3rd molars) (S1 Table)—we cannot be certain that all sampled teeth
represent unique individuals.

Outer enamel surfaces were cleaned of any glue or surface coating when necessary and abraded using the drill prior
to sample collection following the common practice [119—120]. In some cases, cementum was removed via drill abrasion
to access the enamel surface for sampling. Drill bits were wiped clean or replaced between removal of outer surfaces and
sample collection. Serial samples of enamel were collected by drilling perpendicular to the growth axis at several points
along the tooth (Fig 3a). Care was taken to avoid collecting dentine while drilling by lengthening drill lines when necessary
[119]. Given the estimated enamel growth rates for mammoths of 13—14 mm in crown height per year [121], each drilled
serial sample (~2.0 to 2.5mm wide) represents a mean of the isotopic values for about 2 months and the separation of
drill cuts is about the same amount of time. Depth of drill cuts was approximately 1-2 mm. Bulk samples were collected by
drilling parallel to the growth axis (Fig 3b). Drill cut depths for bulk samples were the same and width was approximately
2mm. Lengths of bulk drill cuts were 20—30 mm on average, though longer cuts were taken when possible (Fig 3b).

2.2. Ages of sampled mammoths

The ages of our tooth enamel samples were constrained to the last glacial period [111,114,116,122] by a series of radiometric
dates on fossil bones and teeth and associated charcoals reported from the fossil localities [6,9,28,88—91]. Based on these
previously reported radiometric dates, the estimated ages are~68-13 ka for our NCI samples [6,28,88,89] and ~ 62—12 ka for
our RLB samples [9,90,91]. Direct dating of the sampled specimens was not performed to minimize destructive sampling of
collection specimens and due to the high failure rate (up to 78%) for extraction of collagen from tar pit fossils [123].

2.3. Chemical treatment and isotopic analysis

5% sodium hypochlorite in a fume hood at room temperature overnight to remove organic matter, cleaned with deionized
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(a) Serial sampling (LACM HC 3805-L-12)

Fig 3. Drilling strategies for (a) serial and (b) bulk tooth samples. Photos are taken with a reference ruler (cm) as a scale. (a) Serial samples of
LACM HC 3805-L-12 are taken perpendicular to the growth axis and measure from the occlusal most point of the measured plate. (b) A bulk sample of
ORR 11 is taken parallel to the growth axis.

https://doi.org/10.1371/journal.pone.0338674.9003

water, followed by treatment with 1 M acetic acid in a fume hood at room temperature overnight to remove non-structural
carbonate. The treated samples (containing only hydroxyapatite) were then cleaned with deionized water and freeze-
dried. The dried samples (2—-3 mg each) were weighed into reaction vials and capped with rubber septa. The vials were
then loaded into the sample block of a Finnigan GasBench Il Auto-carbonate device.

For each batch of samples, multiple sets of carbonate standards—selected to bracket the expected range of sample
values—were included at the beginning, after every 10—15 samples, and at the end of the sequence. Each set of stan-
dards consisted of triplicate vials of each individual standard (one of each standard to serve as an accuracy check, two of
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each standard averaged to serve as calibration standards). The vials were then flushed with ultra-pure helium to remove
air, after which 3—4 drops of 100% phosphoric acid were injected into each vial with standard and 6—8 drops were injected
into each vial with sample to react with the powders for approximately 72 hours at 25 °C. The resulting carbon dioxide was
introduced via the GasBench Il in a continuous helium stream into the Finnigan MAT Delta Plus XP stable isotope ratio
mass spectrometer (IRMS), located in the Stable Isotope Lab at the National High Magnetic Field Laboratory (NHMFL),
for analysis of carbon and oxygen isotope ratios (§'C and §'®0).

The intra-lab calibration standards (ROY-cc: 6'C =0.67%o and §'®0 = —12.02%o; MB-cc: 6*C = -10.5%0 and 60 =
-3.14%0; and MERK: §"*C = -35.5%0 and 6'®0 = —16.2%.) are homogeneous carbonate powders—calibrated to the
international standard Vienna Peedee Belemnite (V-PDB) using IAEA reference materials NBS 18 (6*C = -5.01%o
and 680 = -23.01%o0) and NBS 19 (6°C =+1.95%. and §'®0 = —2.20%0)—that were used to calibrate measured sample
values to the V-PDB scale. Specifically, the measured and expected values of each calibration standard were used
to construct a 3-point calibration curve via linear regression. The resulting calibration equation was then applied to
the measured values of accuracy check standards and samples to obtain the calibrated values, reported as §'°C
and 680 relative to V-PDB. Analytical precision and accuracy were evaluated using the accuracy check standards.
Precision was calculated as one standard deviation (o) from the mean of the calibrated values for each accuracy
check standard, while accuracy was assessed as the absolute difference (AD) between the calibrated mean and the
expected value for each standard. The calculated accuracies and precisions for the different accuracy check stan-
dards were then averaged to obtain the mean accuracy and precision for the dataset. Mean accuracy and precision
for carbonate 6'*C measurements were 0.1%o (AD) and 0.1%o (10), respectively, based on repeated analyses of
lab standards. Mean accuracy and precision for carbonate §'®0 measurements were 0.1%o0 (AD) and 0.1%o. (10). All
enamel carbonate results are reported in the standard & notation as 6*C and 60 values in permil (%o) relative to
V-PDB (S2 Table).

2.4. Diagenesis

The teeth we sampled were all morphologically well-preserved, showing no visible signs of alteration. The enamel color
matched that of modern enamel [128]. Calcium carbonate weights (wt. CaCO,) for samples were estimated from mea-
sured ion intensities (mV of the m/z 44 peaks) using the regression equation derived from the relationship between mea-
sured ion intensities and weights of the carbonate standards. Calcium carbonate weight percentages (wt% CaCO,) were
then calculated by dividing these estimated carbonate weights by the measured weights for enamel samples after chem-
ical pretreatment. The estimated mean wt% CaCO, for samples (6.7 +0.9%) was high relative to the range of 3.2-4.6%
observed in modern mammalian enamel [124,129] because these values do not account for weight loss during chemical
pretreatment. Although we did not measure the sample weights before chemical treatments in this study, our pretreatment
procedure typically results in weight losses of ~20% in Miocene enamel and ~50% in modern enamel. Assuming a mean
weight loss of 35% during chemical pretreatment—representing the average of losses observed for Miocene and modern
enamel—the mean wt% CaCO, estimated using pretreated powder weights for these mammoth fossils would correspond
to wt% CaCO, of ~4.4% in the untreated enamel, consistent with observations in modern enamel. The estimated mean
wt% CaCO, does not differ between localities (NCI=6.5+0.9%; RLB=6.9+0.9%), despite the expected higher diagenetic
susceptibility of RLB samples due to burial with natural asphalt and the high failure rate of collagen extraction in mammoth
material from the site [35]. Additionally, the lack of correlation of enamel carbon isotope ratios (6™C_ ) and oxygen isotope
ratios (6'°0_) with estimated wt% CaCO, (R? values=0.0923 and 0.0938, respectively) would be unexpected if significant
amounts of diagenetic carbonate were present during analysis [128]. Moreover, if diagenetic carbonate had been ana-
lyzed, we would expect the correlation between 6'®0_ and wt% CaCO, to be much stronger than that between 6°C_ and
wt% CaCO, due to the differential susceptibility to diagenetic alteration of these isotopic systems in enamel [36]. While
we cannot fully exclude the possibility of alteration—especially for RLB samples, given the previous issues with mammoth
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materials from this site [34,35]—the sampled mammoth enamel is tentatively interpreted as unaltered, based on their mor-
phological integrity, the similarity in mean wt% CaCO, between localities, and the lack of correlations between estimated
wt% CaCO, and 6"C__ or §"O_ values.

2.5. Reconstruction of modern-equivalent diet §'°C

The modern-equivalent diet carbon isotope ratios (613Cdiet:meq) of mammoths were reconstructed from the enamel 6'°C
values using the following equation (Table 1; S3 Table) [55,57,130]:

13 13 13 13
d Cdiet:meq =0 Cen_fenamel—diet + (5 Catm:modern -0 Catm:study) (1)

where §C diotmen is the carbon isotope composition of dietary vegetation adjusted to modern atmospheric carbon
isotope ratios, §"*C__ is the carbon isotope composition of enamel carbonate, €___ . is the carbon isotope enrichment
between enamel carbonate and diet (+14.1%o), 6'°C__ . is the carbon isotope composition of modern atmospheric
carbon dioxide, and 61SCatm:study is the carbon isotope composition of atmospheric carbon dioxide during the age range of
the fossils analyzed. Alternative dietary values (8"°C,,,, ..s\y) Were also reconstructed for comparison, using enrichment
factors for Columbian mammoths [61] and for pygmy mammoths calculated using the empirical relationship between body
mass (BM) [131] and enrichment factor given in Tejada-Lara et al. (2018) (S1 Fig; S3 Table). While we prefer the modern
elephant value of € _ . given that the relationship with body mass has been shown not to be consistent in modern
species [59] and dwarfed species (e.g.,., ponies, pygmy hippos) appear to have higher €__ _ . values than their ances-
tral species (e.g., horses, hippos) [59] rather than lower values as would be predicted by body mass-dependent estimates
[58], the difference in §™C,, .. values between methods—while reducing the gap between locations by 1.3%c—would not
change the interpretations of environmental conditions and/or dietary preference for either location. The carbon isotope
composition of atmospheric carbon dioxide from 1990 to 2000 C.E. ranged between -8.20%. and —7.60%o., with a mean of
=7.92%o0 [132]. Since much of the published work establishing C, and C, carbon isotope compositions is from this period,
a value of approximately —7.92%o should be appropriate for 6C__ . in reconstructions. The mean reconstructed 6'°C
value of the atmospheric CO, (61SCatm:Smdy) based on high resolution benthic foraminifera [55] was —6.98%. between 0.06
Ma and 0.01 Ma. As such, a correction of —0.94%. was applied to NCI/SB and RLB paleo-diet/paleo-vegetation §'°C
values to estimate a modern equivalent. These values were compared to modern vegetation to narrow down possible diet
(S4 Table).

Table 1. Locality means of carbon and oxygen isotope ratios.

Subdivision Means Standard Deviation
(in %o) (in %o)
613cen 613cdie(:meq 618oen 618owater:meq 613cdie!:meq 6180waler:meq
(vs. V-PDB) (vs. V-PDB) (vs. V-PDB) (vs. V-SMOW)
RLB -9.2 -24.2 -4.4 =71 1.4 0.9
(M. columbi)
SB =125 -27.5 -1.4 -3.9 N/A N/A
(M. columbi)
NCI -11.4 -26.4 -2.9 -5.5 1.9 1.0
(M. exilis)
All samples -10.6 -25.6 -3.4 -6.1 2.0 1.3

Species: Mammuthus columbi; Mammuthus exilis.
Locality: Northern Channel Islands, NCI; coastal Santa Barbara, SB; Rancho La Brea, RLB.

https://doi.org/10.1371/journal.pone.0338674.t001
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2.6. Reconstruction of paleo-water 620

Enamel oxygen isotope composition depends on various physiological factors that differ between species, but oxygen iso-
tope composition strongly correlates with local drinking water isotopic composition in obligate drinkers [64,72]. Ayliffe et al.
(1992) found the following relationship in elephants (which are obligate drinkers and which we consider a modern analog
for mammoths):

§'80p, = 0.94 (+ 0.10) x 8"®Ouwater + 23.30 (£ 0.7) 2)

where 60, __ is the oxygen isotope composition of the environmental water relative to V-SMOW and 6180p is the oxygen
isotope composition of bone or enamel phosphate relative to V-SMOW. By substituting the relationship between 680
values relative to V-SMOW in carbonate and phosphate in modern mammals [133] into Eq. 2 and converting 6'®0O_ from
relative to V-SMOW to relative to V-PDB [134], the relationship between the oxygen isotope compositions of environmen-
tal water and proboscidean enamel carbonate (assuming the fossils are not substantially altered) was simplified as:

5"8Oyater = 1.0748 (+ 0.1143) x 580, — 1.5940 (+ 0.1762) (3)

where 6"°0___ is the oxygen isotope composition of the environmental water relative to V-SMOW and 60 _ is the oxygen
isotope composition of bone or enamel carbonate relative to V-PDB. Enamel oxygen isotope ratios (6'°0_ ) (Table 1; S2.
Table) were used as 6'O_ values in this equation to reconstruct the local water isotope ratios (6O, . ) (S3 Table) relative
to V-SMOW. Alternative reconstructed water values (8'°O, .. general) using the general equation for obligate drinkers [72]
were also calculated for comparison (S3 Table). Although we favor the species-specific relationships between enamel and
water §'®0 values given the differences observed in these relationships for modern species [69,71,135], this alternative
approach resulted in only small shifts (as low as 0.01%o and only up to 0.23%0) and would not change interpretations if
used (S1 Fig). For comparison with modern 80, ..., ... values, the modern equivalent of local water oxygen isotope
ratios (8"°0,,..meq) (TaDle 1; S3 Table) were calculated by subtracting the estimated paleo-6'Oy,, value (~0.8%o) between
~68-13 ka from all 'O, values to account for the isotopic difference in the moisture sources (i.e., between Pleistocene
seawater and modern seawater). Modern precipitation oxygen isotope data in the study region (Fig 2) were obtained from
IAEA/WMO (2023) and are reported as §'®0 values relative to V-SMOW.

weighted.precip

2.7. 8"C-based reconstruction of mean annual precipitation

Kohn (2010) compiled 6'*C values of modern C, plants from various ecosystems around the world and found the following
relationship:

§C = 1.90 x 10 ALT — 5.61 x log,, (MAP + 300) — 0.0124 abs(LAT) — 10.29 4)

where 6"°C is the carbon isotope composition of C, vegetation, ALT is altitude in m, MAP is mean annual precipitation in
mm/yr, and LAT is latitude in degrees.

The above equation was used to estimate MAP from the mean §°C diotmeq EStiMated for each fossil tooth, along with
the latitude (34.00°N for NCI and 34.06°N for RLB) and estimated mean altitudes (232 m a.s.l. for NCl and 149 m a.s.I.
for RLB) at each locality. Plant 6"*C values greater than -23.0%o either reflect C, plants under severe water stress and
restricted to excessively dry regions (i.e., MAP less than 10 mm/yr) or non-C, plants (C, or CAM), and the inclusion of
these would lead to an underestimate of MAP using this equation [46]. For this study, the maximum &'C value used for
MAP reconstruction is —24.6%o, in order to avoid inclusion of mixed feeders whose diets included a significant portion
(17% or more) of C, or CAM plants, which would otherwise result in negative rainfall estimates. However, even this small
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amount of C, or CAM plant consumption may have resulted in an underestimate of MAP and therefore MAP projections

in this study should be taken as lower end estimates. The means of serial samples were used to provide approximate
bulk estimates for each serially sampled specimen for use in calculating MAP estimates, allowing for comparison with
estimates from bulk samples. While previous studies [136—138] have noted differences in bulk sampled isotopic data

and averaged serially sampled isotopic data, dual methodology sampling for one tooth (LACM HC 68190)—for which

the bulk yielded 6'*C and 60 values of —9.4%o and —2.6%o, respectively, and the mean of serial samples yielded values
of =10.0%0 and —2.9%o, respectively—showed an absolute difference in §'*C and 6'®0 values of only 0.6%o0 and 0.3%o,
respectively. While this admittedly does present a difference in values outside of analytical uncertainty, these differences
are small relative to the observed mean difference between localities (S2 Fig). Because these differences are not large
enough to obscure locality differences, the isotopic difference between sampling methods should not prohibit including all
samples for reconstructions regardless of sampling method. MAP estimates derived using §"C,. .. sy (MAP,,) were also
calculated for comparison (S1 Fig; S3 Table), though we favor MAP over MAP_, for the same reasons as discussed for
6"C . and 61C

diet:me diet:meg-BM*

2.8. 8'80-based reconstruction of temperature and precipitation

Modern relationships between monthly amount-weighted oxygen isotope values of precipitation (8O, ;.1 q precip [700 VS-
V-SMOW]) and monthly mean air temperature (T [°C]) (Eq. 5) and monthly 6180W6ighted'predp values and mean monthly
precipitation amount (MMP [mm]) (Eqg. 6) in Santa Maria from 1962 to 1976 were determined using regression analysis of
recorded monthly data from the region [84].

51" Oyeighted.precip = 0.4519 x T — 10.555 (R = 0.585, R? = 0.343) (5)

§"®Oyeighted precip = —0.0605 x MMP — 2.8413 (R = 0.731, R® = 0.534) (6)

Reconstructed 60O, _ . should reflect rainfall-derived bodies of water in obligate drinkers and is generally assumed to
be equivalent to 6180weightedprecip' However, if a significant proportion of an animal’s drinking water came from evaporated
sources such as ponds and lakes, the reconstructed O, .. based on enamel §"0 values would be higher than the
6"0 of local precipitation. This is because evaporation preferentially removes lighter isotopes into the vapor phase, leav-
ing the remaining water enriched in the heavy oxygen isotope 0 [139].

The weak coefficient of determination between §'0 values and temperature (R?=0.343) and the moderate

weighted.preci
coefficient of determination between 6180W6igm¢precip valuegs ar‘;d ::ainfall amount (R2=0.534) likely reflect the mild sea-
sonal temperature range and relatively low peak rainfall in southern California (relative to more humid regions of the
continent) from 1962 to 1976. Temperature and &0, ..., ..., values are moderately positively correlated (R=0.585)
(i.e., less negative 6180er:meq values reflect warmer conditions and more negative <S180Wmer:meq values reflect cooler
conditions). Precipitation amount and (3“30%@1@(1‘precip values are strongly negatively correlated (R=0.731) (i.e., less
negative §'®0 reflect drier conditions and more negative 6'°0, .. . values reflect wetter conditions). Consid-
ering the strength of correlations and the weakness of coefficients of determination, differences in <S180Wmer:meq were
interpreted qualitatively rather than quantified using Eq. 5 or Eq. 6. It is important to note that these relationships are
also dependent on regional climate (including prevailing wind and circulation patterns) and may not hold if the regional
climate in southern California differed in the past. However, while the strength of the correlation between
6180weighted.precip values and temperature is weaker for southern California than that for global precipitation §'®0O values
and temperature [140], the positive directionality of the correlation is consistent with global patterns and may still hold

even if regional climate differed in the past.

ter:me:

water:meq
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3. Results and Interpretation
3.1. Stable isotopes, diets, and environments of mammoths from NCl/coastal Santa Barbara

The mean 6°C_ and 60, values of NCI mammoths are —11.4%o (—=12.2%o, —=10.6%0; 95% CI) and —2.9%o (=3.3%o,
—-2.5%0; 95% ClI), respectively (Fig 5; Table 1). The modern equivalent of dietary vegetation would have a mean 613Cdiet:meq
value of =26.4%o (=27.2%o, =25.6%0; 95% Cl) (Figs 4 and 5). Using the alternative BM-based estimate of €__ _ ... for
M. exilis produces 8%C, . o\, values 0.3%o higher than 6°C,  __ values (S1 Fig; S3 Table). The reconstructed 6°C, .
(0r 8™C it meqew) Values for NCI mammoths are well within the §™C range of modern C, plants, except for two individuals
(LACM/CIT 178 and ORR 11) that may have consumed a mixture of C, and C, or CAM plants, or fed on water-stressed C,
woody plants, as evidenced by their higher 6"°C values (i.e., 8"°C_ > =6.8%o or §C > ~22%o) (Figs 4 and 5). Notably,
Parry (2020) also sampled LACM/CIT 178, one of the two outliers exhibiting higher 6°C_ values, and obtained identical
results within analytical uncertainty. The single SB mammoth (ORR 6) had 6"°C_ and 8O values of =12.5%o and =1.4%s,
respectively, both of which fall within the range of 6"°C__ and 6'®0O__ values observed in NCI mammoths and outside the
range of §°C_ and &0, values observed in RLB mammoths (Table 1; Fig 5). The similarity in enamel isotope composi-
tion between ORR 6 and the NCI mammoths (Table 1; Fig 5) suggests similar diets (mean difference =1.1%.) and water
sources (mean difference = 1.6%o).

MAP for the NCI (Fig 6; Table 2) was estimated using the reconstructed 6"°C . values (S3 Table), altitude and
latitude estimates for ~68-13 ka, and Eq. 4. The estimated MAP for NCI mammoths is between 159 and 1407 mm/yr,
with a mean of 544 mm/yr (424 mm/yr, 664 mm/yr; 95% Cl). The mean estimated MAP, for pygmy mammoths is 446 mm/
yr (340mm/yr, 552 mm/yr; 95% Cl) (S3 Table). Both estimates are higher than the mean annual rainfall amount recorded
on the present-day NCI (292.4 mm/yr) (Western Regional Climate Center, http://www.wrcc.dri.edu), suggesting a wetter
climate during that time interval than today. The maximal estimate comes from a pygmy mammoth (ORR 10) that had
much lower 6"°C__than other pygmy mammoths sampled; however, even when this is omitted, the mean MAP estimate of
493 mm/yr (422 mm/yr, 564 mm/yr; 95% CI) is still much higher than the modern MAP of 292.4 mm/yr. The estimated MAP
for the SB mammoth is 701 mm/yr, also much higher than modern rainfall in Santa Maria (312.4 mm/yr) [84] or the NCI
(292.4 mm/yr) (Western Regional Climate Center, http://www.wrcc.dri.edu). This value falls within the range of MAP for
NCI mammoths, even when ORR 10 is omitted.

Reconstructed mean 60, .. . value for NC| mammoths is 5.5+ 1.0%o (Table 1). Comparison with the modern annual
mean 80, . cq orecip VaIUE (=5.94 +1.48%o) recorded at the IAEA station in Santa Maria (Figs 2 and 5) and the OIPC-
calculated modern annual 60O value (—5.5%0) [85—87] for the NCI suggests that the NCI experienced a similar

weighted.precip
climate to modern Santa Maria and the modern NCI. The small difference (0.4%o) can likely be attributed to data scatter

and uncertainties in the reconstruction equations.

3.2. Stable isotopes, diets, and environments of mammoths from Rancho La Brea

The mean 6™C_ and 6'O_ values of RLB mammoths are —9.2%o (=10.0%o, —8.4%0; 95% CI) and —4.4%o (—4.8%o, —=4.0%o;
95% ClI), respectively (Fig 5; Table 1). The reconstructed modern equivalent of dietary vegetation has a mean §C

diet:meq
value of =24.2%o (—25.0%o, =23.4%0; 95% Cl) (Figs 4 and 5; Table 1). Using the alternative BM-based estimate of €__ _ . for
M. columbi [61] yields §'°C values that are 1.0%o lower than §"*C values (S1 Fig; S3 Table). These reconstructed

diet:meg-BM diet:meq

modern-equivalent diet-5°C values, while generally higher than those of the NCI mammoths (Fig 4), still fall within the §'*C
range of C, plants, suggesting C_-dominated diets, with one exception (LACM HC 68184). This outlier RLB mammoth (LACM
HC 68184) had a high 6™°C__ value of =5.7% (Fig 5), corresponding to a reconstructed 6°C, . value of =20.7% (Fig 5),
which suggests either a mixed C,-C,/CAM diet or a diet consisting of woody C, plants experiencing severe water stress.
MAP for RLB (Fig 6; Table 2) was estimated using the reconstructed §C,, .. values (S3 Table), altitude and latitude
estimates for ~62-12 ka, and Eq. 4. The estimated MAP for RLB mammoths is between 28 and 387 mm/yr, with a mean
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Fig 4. Modern equivalent carbon isotope compositions of plant groups present in Pleistocene southern California and reconstructed diets of
sampled mammoths. Dark green bars indicate plant taxa with primarily graminoid growth habits [141-143]. Blue bars indicate taxa with primarily forb
to shrub habits [141,142,144—147]. Light green bars indicate taxa with primarily tree growth habits [49,141,148—160]. The light gray shaded zones repre-
sent ranges of reconstructed mammoth diets, separated between diets possible with only C, plants and those that require either water-stressed pine and
cypress, C,, and/or CAM plants. Ranges of mammoths in each locality are indicated by pale violet red bars. Plant groups (families and genera) depicted
here were present at relative abundances of 15% or above at some time in the pollen record in southern California [26,103], or were a subdivision of a

plant family that did reach that level of abundance.

https://doi.org/10.1371/journal.pone.0338674.9004

of 121 mm/yr (Omm, 254 mm; 95% CI). Mean estimated MAP, is 212mm/yr for RLB (S3 Table). Both MAP and MAP,,,
estimates are lower than the modern MAP of 334.0 mm/yr in Culver City (Western Regional Climate Center, http://www.
wrcc.dri.edu). One RLB Columbian mammoth (LACM HC 68579) had a dietary 6'*C value indicative of much higher MAP
(8376 mm/yr) than the mean MAP of all other RLB mammoths (54 mm/yr), possibly coinciding with a wetter period than
these other RLB mammoths. Consumption of C, or CAM plants may have caused underestimation of MAP with Eq. 4.

Reconstructed 6O, ..., values from RLB mammoths suggest a water source with a mean 'O value of =7.1%. (Fig 5;
Table 1), which is lower than the mean 60 value of modern precipitation (60, 1 eq recp = ~2-94 £ 1.48%0; 6°0 =
-4.21+1.03%o) recorded at the IAEA station in Santa Maria (Fig 2) [84]—and also lower than the mean precipitation 680
value of —5.4%o calculated using the OIPC [85-87] for RLB—suggesting wetter and/or cooler conditions for Late Pleis-
tocene RLB than today at either Santa Maria or RLB. These estimated mean 6180W8tenmeq values are more negative than
the mean on Santarosae, likely reflecting temporal differences in the hydroclimate experienced by mammoths at these
locallities. It is worth noting that two RLB Columbian mammoths (LACM HC 68190 and LACM HC 68579) have 6™C_ and
8'80_, values approaching the most negative values of the NCI mammoths (Fig 5), possibly examples of contemporane-
ous mammoths at the two sites.

3.3. Intra-tooth isotope variations in mammoths from NCl/coastal Santa Barbara and Rancho La Brea

Most of the serially sampled teeth from the NCI had a small intra-tooth variability in 6"°C_ and 6'®O_ values (Fig 7; S4
Table), with mean ranges of 0.9%0 and 1.4%o, respectively. Serial samples of teeth from RLB show greater variability in
&"C_ and similar variability in §'®*O__values (Fig 8) with a mean range of 2.2%o and 1.3%o, respectively. Patterns within the
isotopic composition of these serial samples are evaluated for seasonality assuming that within a year of enamel growth
[121], the lowest 6'®0_ value represents winter and the highest value represents summer [30,84]. The 6"°C__ values are
then interpreted in this seasonal framework to determine if there is a seasonality in diet. Unfortunately, the loss of a data
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Fig 5. Enamel isotopic compositions of mammoths by location and species. The purple dashed line represents the 6'*C cutoff between C, and

C, vegetation (613Cmeq= —23.0%o), or between a pure browsing/typical C, plant diet and mixed C,-C, feeding diet expected in fossil enamel assuming

an atmospheric correction of —0.94%o. between 0.06 and 0.01 Ma and assuming an enrichment of +14.1%. between diet and enamel for proboscideans.
The dark blue dashed line represents the long-term amount-weighted oxygen isotope ratios for precipitation (61BOW9ighted_prec‘p) measured in Santa Maria
from 1962-1976 [84]. The dark blue dash-dot line represents long-term unweighted annual oxygen isotope ratios for precipitation (6180predp) measured in
Santa Maria from the same period [84]. The light blue dashed line represents the 6180weigh(ed.precip calculated using the OIPC [85-87] for the NCI. Mea-
sured mammoth enamel 6'*C and &0 values are presented as open symbols separated by species (Mammuthus columbi or Mammuthus exilis) and
location. Localities include Northern Channel Islands (NCI), coastal Santa Barbara (SB), and Rancho La Brea (RLB). The means of serial samples were
used as approximate bulk values to include with measured values from bulk samples. Locality means (u) and one standard deviation (o) are presented
as closed symbols and dotted ovals, respectively. Vertical arrows with gradients represent relative differences in precipitation amount or air temperature
inferred from enamel 5'°0 values based on modern relationships between 8'°0, .. .4 o, @Nd Precipitation amount or 60, o i, @Nd air temperature,
respectively, in Santa Maria from 1962-1976. The horizontal arrow with gradient represents relative differences in precipitation amount inferred from
enamel §°C values based on modern relationships between plant §'*C values and precipitation amount [46].

https://doi.org/10.1371/journal.pone.0338674.9005

point in LACM/CIT 209, ORR 1, and ORR 2 (Figs 7c, 7e, and 7f) due to vial or septa leaks makes discussion of possible
patterns in intra-tooth ranges of isotopic compositions of these specific teeth difficult.

Some of the intra-tooth isotope profiles exhibit sinusoidal patterns across ~13—14 mm of tooth length, consistent with
annual cycles, suggesting seasonal variation in meteoric water (Figs 7a-7b, 7i—71-71, 8a-8b, and 8d-8e) and/or diet (such
as in ORR 9). For RLB mammoths, these sinusoidal patterns are often superimposed on longer-term trends (Figs 8a
and 8d) or interrupted by abrupt shifts (Fig 8b), likely reflecting the greater range of mobility on the mainland. Assuming
mammoths behaved similarly to elephants, movements may have included seasonal migration, range expansion, natal

PLOS One | https://doi.org/10.1371/journal.pone.0338674 January 7, 2026 15731



https://doi.org/10.1371/journal.pone.0338674.g005

-18.0 -
: Modern Plants
21.0 + O o Regression data
1= o Regression outliers
24.0 _ & Canopy outliers
a Reconstructions
5 70 4 B
e O RLB
w % & SB
€ 300 NCI regression

& 4 ‘ — (Lat: 34.00°N;
. 0 Alt: 232 mas.l)

3307 RLB regression
] X - - (Lat: 34.06°N;
36.0 : : N : A Alt: 149 mas.l)
0 1000 2000 3000 4000
MAP
(mm/yr)

Fig 6. Mean annual precipitation and vegetation carbon isotope ratios. Reconstructed modern equivalent 6"*C values of dietary vegetation (exclud-
ing those above —24.6%o) are plotted in the context of isotopic values for modern vegetation reported in the supplemental material of Kohn (2010) and
curve fits to Eq. 4 for each locality.

https://doi.org/10.1371/journal.pone.0338674.9006

Table 2. Mean annual precipitation (MAP) estimates for mammoth localities.

Subdivision Mean Annual Precipitation (mm/yr)
Median Mean Standard Deviation Minimum Maximum
RLB 56 121 152 28 387
(M. columbi)
SB 701 N/A N/A N/A N/A
(M. columbi)
NCI 532 544 260 159 1407
(M. exilis)
All samples 468 462 295 28 1407

Species: Mammuthus columbi; Mammuthus exilis
Locality: Northern Channel Islands, NCI; coastal Santa Barbara, SB; Rancho La Brea, RLB

https://doi.org/10.1371/journal.pone.0338674.t002

dispersal, or nomadism [161]. Seasonal migration tends to flatten the isotopic signals [30,162], whereas other movement
types can produce more irregular patterns (e.g., shifts in mean values reflecting change in locality/environment) or vari-
ability over longer time scales. Migration is assumed to have been limited to within the islands for M. exilis—given the
inference that pygmy mammoths could not effectively cross the channel to the mainland [98], whereas M. columbi likely
undertook broader movements, including potential channel crossings. Although this assumption may not hold during the
LGM when lowered sea levels greatly reduced the channel distance (Fig 1), the slightly larger amplitudes in the 6'*0_
sinusoidal patterns in NCI mammoths (range: £ 0.3 to £ 1.0%o, mean: £ 0.6%0) compared to RLB mammoths (range: 0.3
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Fig 7. Serial carbon and oxygen isotope compositions of Santarosae/coastal Santa Barbara mammoths from the Museum of Natural History
of Los Angeles County collections (a-d) and from the Santa Barbara Museum of Natural History collections (e-l). Enamel §'*C and §'®0 values

are plotted against distance along each tooth from the occlusal surface. All mammoths serially sampled from LACM and SBMNH are M. exilis, except for

ORR 6 which is a tooth from M. columbi collected from the coastal area near the Northern Channel Islands. The maximum intra-tooth ranges of §*C_

and 8"0,_ values are provided as A™C and A0 values. The approximate time captured by samples assumes a growth rate of 14mm for 1.0 year [121].

The tooth growth axis assumes this growth rate and treats the occlusal surface as the starting point of tooth growth. Note that this starting point does

not account for loss of enamel due to wear of the occlusal surface during mastication. The purple dashed lines represent the §'°C cutoff (6"*C, = —8.0%o)

between a pure browsing/typical C, plant diet and mixed C,-C, feeding diet expected in fossil enamel assuming an atmospheric correction of —0.94%o
between 0.06 and 0.01 Ma and assuming an enrichment of +14.1%. between diet and enamel for proboscideans. Gaps in the 6"*C_ and 6'°0_ lines
of panels (c), (e), and (f) indicate a missing sampling point for each of these mammoths due to vial septa leaks and air contamination during sample

analysis.

https://doi.org/10.1371/journal.pone.0338674.9007
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Fig 8. Serial carbon and oxygen isotope compositions of Columbian mammoths from the La Brea Tar Pits and Museum collections. Enamel
&6'3C and &80 values are plotted against distance along each tooth from the occlusal surface. All mammoths serially sampled from RLB are M. columbi.
The maximum intra-tooth ranges of §"*C_  and 6'0O__ values are provided as A"3C and A™O values. The approximate time captured by samples assumes
a growth rate of 14mm for 1.0 year [121]. The tooth growth axis assumes this growth rate and treats the occlusal surface as the starting point of tooth
growth. Note that this starting point does not account for loss of enamel due to wear of the occlusal surface during mastication. The purple dashed

lines represent the 6'°C cutoff (6"C_ = —8.0%o) between a pure browsing/typical C, plant diet and mixed C.-C, feeding diet expected in fossil enamel
assuming an atmospheric correction of —0.94%. between 0.06 and 0.01 Ma and assuming an enrichment of +14.1%. between diet and enamel for
proboscideans.

https://doi.org/10.1371/journal.pone.0338674.g008
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to + 0.4%o) support the assumption that seasonal migration was more common or extensive among mainland mammoths.
Other teeth show relatively flat or irregular patterns in 6'°0_ values (Figs 7h and 8c) or 6"°C__ values (Figs 7a, 7g-7h, 7k-
71, and 8c), likely reflecting isotopic damping [32,163,164], seasonal migration [30,162], and/or isotopically stable sources
of water (for 6'®O_ ; e.g., perennial lakes, rivers, or springs) and/or food (for 6'*C_ ). The relatively large isotopic shifts over
short time spans (within a few months of tooth growth) observed in some teeth (Figs 7d, 7h, and 8b) are best explained by
dispersals or nomadic movements.

Another common pattern observed in portions of these teeth is an anticorrelation between §'®*0_ and 6"C__ values
when both display sinusoidal variation (Figs 7b, 7d, 7i-7j, and 8b). Interpreting 6"°0__as a seasonal indicator [30,84] and
8"C_, as reflecting precipitation amount [46] suggests wet summers and dry winters. This is consistent with patterns
seen in summer monsoon regions [165]. Notably, this pattern is less common in mainland mammoths, likely due to higher
mobility and exposure to more stable environmental or different climatic regimes. One mainland mammoth tooth (LACM
HC 3805-L-12) (Fig 8b) shows 60_ and 6"°C_ values that alternate between correlation and anticorrelation along its
length, suggesting movement between regions with warm- and cold-season rainfall. Another mainland mammoth tooth
(LACM HC 68190) records a pronounced mid-summer dip in §'®O__values (Fig 8d) consistent with the amount effect
during warm season precipitation [166]. Although it is unclear whether RLB had warm season precipitation or if these sig-
nals reflect migratory behavior, the serial 6'°0__data from these teeth indicate that some RLB mammoths were exposed
to such climates. The anticorrelation between §'®*O_ and 6'°C__ values in several serially sampled NCI mammoth teeth
suggests similar conditions for NCI mammoths.

4. Discussion
4.1. Reconciling enamel isotopes with the pollen record of southern California

The carbon isotope data indicate that the majority of mammoths living in Late Pleistocene southern California (both the
NCI and RLB) consumed diets composed primarily of C, vegetation (Figs 4 and 5). The slightly elevated mean

8"°C otmeq Value of =24.3%, for RLB mammoths suggests that most individuals from this locality consumed either more
water-stressed C, plants or small amounts of C, or CAM plants (Figs 4 and 5). A few individual mammoths—LACM/CIT
178, ORR 11, and LACM HC 68184— had <S13Cdietmeq values > —23%o, indicating that these mammoths either consumed a
mixture of C, and C, plants, ingested CAM plants, and/or fed predominantly on material from trees experiencing severe
water stress (likely of the family Cupressaceae and/or the genus Pinus) (Fig 4).

Macrofloral fossils [104,167] and pollen records [25,26,103,107] from southern California indicate the predominance of
woodland/forest habitat—primarily Pinus and Cupressaceae—from ~60 ka to ~10 ka. The carbon isotope data show that
M. columbi had a higher mean <S13Cdietmeq value (—24.3%o) than M. exilis (-26.5%o), suggesting drier and more open envi-
ronments for M. columbi. These mean 613Cdiet:meq values for NCI and RLB appear to be consistent with microwear analysis
results [28—29], which suggest that M. exilis browsed on more woody or leafy tree material, while M. columbi switched
between browsing and grazing. Elevated 6™C__ values observed in one M. columbi tooth and in two M. exilis teeth (LACM
HC 68184, LACM/CIT 178, and ORR 11) (Figs 4 and 5) may be explained by consumption of water-stressed pines or juni-
pers, which exhibit higher 6°C values [46,49,50]. However, this interpretation is inconsistent with the microwear evidence
if the water-stressed woody plants are assumed to be the cause of these higher 6"°C_ values. The alternative proposed
explanations—the consumption of C, or CAM plants—are thus more likely, as they align with both the isotope data and
microwear results.

While C, grasses are not currently common in Southern California [45,81], due to a lack of sufficient summer
rainfall [168], pollen records suggest that herbs are between ~30% and ~60% of the biomass in Southern California
from 60 ka to today [103] and that grasses increased in some areas during warm and dry intervals [26]. Grass pollen
cannot be used to distinguish C, from C, grass, thus we cannot exclude the possibility that C, grasses and/or other
C, plants such as sedge or saltbush (Atriplex spp.) were present during the last glacial period in the region. In the
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modern climate, the North American Monsoon (NAM) brings moisture from the Gulf of California and Gulf of Mexico
into northwestern Mexico and large areas of the southwestern United States, producing thunderstorms during the
summer months [169]. California lies west of the core NAM region—receiving only occasional monsoon-related sum-
mer rainfall—and most modern precipitation in southern California occurs in winter and spring from westerly storms
(Fig 2b) [84,170]. However, a potential strengthening of the NAM in the past, under a different climatic regime, could
conceivably have brought sufficient summer rainfall to allow C, grass expansion in the region. Uncertainties in the
Late Pleistocene climate modeling [171] unfortunately leave some ambiguity as to which type of grass would have
predominated in the region at that time. However, the apparent amount effect recorded in the 6'°0O__ values of LACM
HC 68190 does seem to lend support to the idea that NAM was active in the study region during at least part of the
Late Pleistocene.

CAM plants can also not be excluded as a possibility, especially for the RLB mammoths, which seem to have under-
taken migrations or dispersals over large distances, similar to modern elephants [164]. For the NCI, CAM plants may be a
possibility, but the evidence is less clear. The pollen records from the Santa Barbara channel [103] and from lake records
in southern California [26] are based on the lowest taxonomic level identifications possible. Heusser (1998) notes various
chaparral species (e.g., Ceanothus, Adenostoma, Rhus), none of which are expected to employ CAM photosynthesis.
Modern chaparral flora in southern California is dominated by chamise (Adenostoma fasciculatum), scrub oak (Quercus
berberidifolia), ceanothus (Ceanothus spp.), and manzanita (Arctostaphylos spp.) [172], though cacti (such as Bergero-
cactus) can also occur [172]. Chaparral pollen generally makes up less than 10% of the pollen record until ~14 ka [103],
but it is present throughout the last glacial period. Isoétes, an aquatic CAM plant [53,83], occurs sporadically at low abun-
dances (~5% or lower) in southern California throughout the last glacial period [26]. Asteraceae make up large portions
of the southern Californian pollen record [26] at certain times during the last glacial period, but which genera or species
is not confirmed. Some genera in Asteraceae use CAM photosynthesis (such as Senecio) [83]. The lack of species-level
identifications on some of the pollen record leaves open the possibility of CAM plants—at least in small proportions—on
the island and/or in southern California, and these CAM plants could possibly account for the higher 6"*C_ values of
LACM/CIT 178, ORR 11, and LACM HC 68184.

4.2. Comparison of mammoths’ diets and environments between NCIl and RLB

There are clear differences in both 6"°C_ and 6'°0_ values between NCI and RLB, reflecting differences in diet and
environment (Fig 5). While the provenance of the SB mammoth ORR 6 is unknown, it is likely that ORR 6 was recovered
from the NCI, given the similarity in 6"°C_ and 6"O_, values between ORR 6 and the NCI mammoths (Table 1; Fig 5).
ORR 6 remains excluded from NCI means to avoid introducing potential error; however, its inferred diet and environmen-
tal conditions overlap with those of the NCI mammoths and differ from those of the RLB mammoths. The reconstructed
<‘313Cdiet:meq values (-26.4 = 1.9%o) for NCI mammoths are, on average, lower than those for RLB mammoths (—24.2 + 1.4%o).
In contrast, both the MAP estimates (544 mm/y) and the reconstructed local water §'®0 values for NCI (-5.5 + 1.0%o) are
on average higher than those for RLB (121 mm/y, =7.1+0.9%o) (Fig 5; Tables 1 and 2). These differences most likely
reflect temporal variation in the hydroclimate experienced by populations at these localities, given the very similar modern
climatic conditions at both sites.

Integrating the 6*C-based MAP estimates with §'®0O-based inferences of hydroclimate and temperature, the data sug-
gest that NCI mammoths lived under relatively warmer and wetter conditions than RLB mammoths (Fig 5), likely during an
interstadial, whereas the RLB population experienced a colder, drier stadial climate. The outliers—two pygmy mammoths
(LACM/CIT 178 and ORR 11) from NCI and one Columbian mammoth (LACM HC 68184) from RLB (Fig 5)—all of which
consumed either significant amounts of C, and/or CAM, or water-stressed C; woody plants—suggest dry, warm condi-
tions, possibly reflecting episodes of enhanced aridity or increased summer rainfall during interstadials as C, grasses
require sufficient summer rain to grow [168].

PLOS One | https://doi.org/10.137 1/journal.pone.0338674 January 7, 2026 20/ 31




PLO\Sﬁ\\.- One

4.3. Hydroclimate in the Late Pleistocene and the present

Both NCI and RLB have a semi-arid Mediterranean climate today, with annual rainfall concentrated in winter months
(Fig 2). The estimated mean MAP for NCI (544 mm/yr), based on 8"°C,, .. values, is higher than the modern average
value (292.4 mm/yr) recorded at Anacapa Island (Western Regional Climate Center, http://www.wrcc.dri.edu), suggesting
wetter conditions consistent with interstadials [113,114,116]. In contrast, the low mean estimated MAP (121 mm/yr) for
RLB, based on 8"°C,, .. values, is lower than the modern mean value (334.0 mm/yr) recorded in Culver City (Western
Regional Climate Center, http://www.wrcc.dri.edu), suggesting that the area may have been even more arid than today
consistent with stadials [113,114,116]. This interpretation, however, is inconsistent with the reconstructed <‘5180Wmenmeq
values for RLB, which suggest wetter conditions in the last glacial period compared to today (Fig 5), assuming that the
relationships between monthly 8'°0, ... ..., Values and precipitation amount and temperature during the late Pleistocene
were similar to those of today, and that moisture sources remained relatively constant during the timespan of the studied
mammoths. The low MAP estimates derived from RLB éS"*Cdimeq values may underestimate the local MAP due to the
inclusion of C, or CAM in the diet. This is supported by some of the serial samples from LACM HC 68575, which include
8"C_ values 2 -8%o (Fig 8e), indicating dietary shifts involving significant (~14-37%) contributions of CAM or C, plants
(83 Table). LACM HC 3804-R-8 and LACM HC 3805-L-12 also have §C_ values approaching this threshold, along with
high intra-tooth variability (Figs 8a and 8b), suggesting smaller proportions of C, or CAM plant consumption (~6-24%)
(S3 Table). If the higher-end MAP estimate from LACM HC 68579 (387 mm/yr) is compared with the modern MAP in the
area (334 mm/yr), rainfall was, on average, 15% greater during the lifespan of this individual, possibly reflecting temporal
or locality differences between this mammoth and other RLB mammoths.

4.4. Regional comparison of stable isotopes of Columbian mammoths

Comparing the isotopic data for NCI and RLB mammoths with previous isotopic analyses of Columbian mammoths across
in diet from the eastern and central continental North American M. columbi, but are reasonably similar in diet to other
sampled mammoths from western continental North America (Fig 9). The §®O_ value ranges of NCI and RLB mammoths
overlap with western continental North America M. columbi; however, within the western USA, samples from localities in
Nevada have lower 6"°0__ values than those from California mammoths, likely accounted for by the altitude effect and
continental effect. The three sampled mammoths with higher 6"*C_ values—LACM/CIT 178, ORR 11, and LACM HC
68184—have 6"°C_ and §'0_ values consistent with Mexican Columbian mammoths supporting that environmental
conditions for these mammoths were warmer and drier, and that these mammoths might have consumed C, and/or CAM
plants.

5. Conclusions

Enamel 6"C values indicate that mammoths on Santarosae, like those on the southern California mainland, primarily con-
sumed C, plants, although whether this consisted of grasses, herbs, shrubs, and/or trees remains unclear. However, two
NCI mammoths and one RLB Columbian mammoth have elevated enamel §'C values (2 —6.7%o), indicating a diet that
included a mixture of C, and C, plants (ca. 13 to 46% C,), CAM plants, or woody plants under water stress. These outliers
likely represent brief intervals of C, plant emergence, CAM plant consumption, and/or the consumption of woody plants
experiencing severe water stress. Most M. columbi from RLB have higher enamel §'°C values and lower "0 values

than those of Santarosae and coastal mammoths. However, overlap in enamel isotopic values between some M. columbi
from RLB and NCI mammoths suggests that environmental conditions at the two sites were similar during certain inter-
vals in the Late Pleistocene. This, along with very similar modern climatic conditions at these sites, implies that observed
isotopic differences between the two localities most likely reflect temporal (i.e., stadial vs interstadial) variations, rather
than spatial variations. Both the §'*C-based MAP estimates and reconstructed local water 6'®0 values for NCI suggest a
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Fig 9. Enamel8™C and 830 values of mammoths across southern North America. Measured mammoth enamel §'*C and §'®0 values from this
study (closed symbols) are plotted with those of published values for Mammuthus columbi in other regions of southern North America (open symbols).
Western USA mammoths are Columbian mammoths from Nevada [37] and California, USA [37,41]. Southwestern USA mammoths are Columbian mam-
moths from Arizona [37], New Mexico [37,39], and Texas, USA [29,39,41]. Southeastern USA mammoths are Columbian mammoths from Florida, USA
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enamel for proboscideans, and modern plant carbon isotope composition ranges described in section 1.1. The means of serial samples were used as
approximate bulk values to include with measured values from bulk samples.

https://doi.org/10.1371/journal.pone.0338674.9009

wetter climate during the late Pleistocene than today. In contrast, the 6'*C-based MAP estimates for RLB suggest a much
drier late Pleistocene climate than today. However, this low estimate is likely due to consumption of small amounts of C,
and/or CAM plants by many of the M. columbi analyzed from RLB. Integrating the §'*C-based MAP estimates with §'®0O-
based inferences of hydroclimate and temperature, the data suggest that most NCI mammoths analyzed in this study
lived under relatively warmer and wetter conditions than most RLB mammoths, likely during an interstadial, whereas the
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RLB population lived under colder and drier stadial conditions. The presence of C,, CAM, and/or water-stressed woody
plants in the diets of some of these mammoths suggests that this region likely experienced either (1) sufficient summer
rainfall to support C, plants at both sites or (2) severe water stress affecting both sites during the lifetimes of these specific
mammoths. Future work should prioritize radiometric dating of additional fossils from both localities, including some of the
specimens analyzed in this study, and expanding isotopic sampling. A refined chronology and expanded isotopic sampling
are necessary to elucidate the relationship between Late Pleistocene climate changes and the evolution and extinction of
mammoths in the study region.

Supporting information

S$1 Fig. Comparison of reconstruction methods using generalized relationships across taxa or elephant-specific
relationships. The upper panel compares the reconstructed dietary vegetation isotope compositions (§'°C diet:meq_BM) —using
the enrichment factor for Columbian mammoths [61] and the enrichment factor for pygmy mammoths calculated using the
relationship from Tejada-Lara et al. (2018)—with the reconstructed dietary vegetation isotope compositions (6'*C dietmq)—using
enrichment factors from modern elephants. The lower panel compares the reconstructed water isotope compositions (6'°O
er. genera)—USING @ generalized equation for multiple taxa [72]—with 50, calculated using a specific equation for modern
elephants [69]. Applying these different methods would noticeably shift §'°*C diotmeq VaIUES of each species/locality toward one
another (reducing separation by 1.3%o). The shift in 6O __ _ values is small (only up to 0.23%o) relative to the 1.4%o difference
between locality means. However, these changes would not change the conclusions of (1) differing levels of rainfall for RLB
and NCI, (2) the presence of three individuals with significant amounts of C,, CAM, or water-stressed conifer in the diet, or (3)
that 8'°0, ,...meq Values from RLB are lower than the modern mean 80, ., .4 v, Value and that NCI values are higher than the

modern annual mean 60, __value and lower than the modern unweighted annual mean 6®0___ value.
ghted.precip precip
(TIF)

$2 Fig. Comparison of bulk and serial sampling. Enamel carbon and oxygen isotope ratios (6"°C_ and 6'°O_ ) of

bulk sampled teeth and the means of serially sampled teeth are plotted for both the Northern Channel Islands (NCI) and
Rancho La Brea (RLB). Closed symbols show mean 6"*C_ and 6'°0_ values of serial samples while open symbols show
&"C_ and &0, values of bulk samples. Mean 6°C__ values of each locality (u 6"C_ ) for each sampling method are
marked on the upper axis and mean 6'°O__ values of each locality (u 6O, ) for each sampling method are marked on the
right axis. The three teeth with 6"°C_ > —7.0%o. One standard deviation (o) from locality means (u) are outlined with dotted
or dashed lines, with darker colored lines showing locality means for bulk sampled teeth and lighter colored lines showing
locality means for serially sampled teeth. The mean differences between serially sampled and bulk sampled teeth from
each locality (absolute difference in §'3C and §'®0 values of 0.5%. and 0.6%. for the NCI and 0.4%. and 0.3%. for RLB) are
much smaller than mean differences between localities (absolute difference in §'3C and §'®0 values of 2.1%0 and 1.4%o).
Mean differences between bulk samples and means of serial samples from each locality are similar to the differences
measured in LACM HC 68190 (absolute difference in §'*C and 60 values of 0.6%. and 0.3%o), and so likely reflect the
systematic differences caused by sampling method [136—138].

(TIF)

S1 Table. Descriptions of mammoth teeth.
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S2 Table. 6°C and §'®0 values of enamel samples analyzed in this study.
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S3 Table. Reconstructed modern-equivalent diet 8'°C and water §'°0O values.
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S4 Table. Relative abundances of various plant groups present in the pollen record and their modern equivalent
8'3C values.
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